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Abstract
This technical note is the latest update on a continuing 

study, first designed and initiated by Brundage et al. over 
twenty years ago. This study was borne out of increased scru-
tiny of firearms identification in response to Daubert v. Mer-
rell Dow Pharmaceuticals, Inc. in 1993. The purpose was to 
determine whether forensic firearms examiners were able to 
associate fired bullets with the barrels through which they had 
been fired. To date 792 participants from 36 countries have 
utilized over 240 test sets consisting of bullets fired through 
10 consecutively rifled Ruger P-85 pistol barrels. Here we pro-
vide an update on the results of the ongoing “10 barrel test” up 
until the point in time of writing. To analyze the data thus far 
collected, a Bayesian approach was again selected. Posterior 
examiner error rates are estimated assuming only vague prior 
information. Given the data found over the course of this di-
verse decades long study, our most conservative estimate for 
examiner error rate has a posterior median of 0.03% with a 
95% probability interval of [2×10-6 %, 0.1%].

المستخلص
وأطلقها  صممها  مستمرة،  لدراسة  تحديث  آخر  هي  الفنية  المذكرة  هذه 

الدراسة  هذه  نشأت  عامًا.  عشرين  من  أكثر  منذ  وآخرون  بروندج  مرة  لأول 

النارية استجابة لقضية داوبرت ضد  التدقيق المتزايد على تحديد الأسلحة  من 

ميريل داو فارماسوتيكالز، Inc. عام 1993. كان الهدف هو تحديد ما إذا كان 

فاحصو الأسلحة النارية الجنائيون قادرين على ربط الرصاصات التي تم إطلاقها 

 36 792 مشاركًا من  إطلاقها من خلالها. حتى الآن، شارك  تم  التي  بالبراميل 

عبر  إطلاقها  تم  من رصاصات  تتكون  اختبار  مجموعة   240 من  أكثر  في  دولة 

»اختبار  نتائج  على  تحديثًًا  هنا  نقدم   .85 بي  روجر  لبنادق  متتالية  براميل   10

البراميل العشرة« المستمر حتى وقت كتابة هذا التقرير. لتحليل البيانات التي 

تم جمعها حتى الآن، تم اختيار النهج البايزي مرة أخرى. يتم تقدير معدلات 

بالنظر  فقط.  غامضة  أولية  معلومات  بافتراض وجود  الخلفي  الفاحص  خطأ 

إلى البيانات التي تم العثًور عليها على مدار هذه الدراسة المتنوعة التي استمرت 

عقودًا، فإن تقديرنا الأكثر تحفظًا لمعدل خطأ الفاحص له وسط احتمالي يبلغ 

0.03٪ مع فاصل احتمال 95٪ يبلغ ]2 × ٪6-10، ٪0.1[.
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2. Methods
The procedure and test design are briefly 

discussed here, for additional information on the 
design of the study in the context of the statistical 
analysis presented, see previous literature [5]. 
One Ruger P-85 9mm caliber semiautomatic 
pistol (manufactured in 1990), serial number: 302-
06291 with one 15-cartridge capacity magazine 
was used to generate all samples to be examined. 
Ten consecutively rifled 9mm caliber barrels 
manufactured by Ruger for their P-85 pistol were 
collected. Twenty thousand Winchester 9mm 
caliber NATO, 124 grain FMJ cartridges, lot 
number: Q4312, Head stamp: WCC96 were used 
to generate test samples, as well as a selection 
of vintage 9mm Luger cartridges manufactured in 
Canada during WWII. The pistol with numbered 
slide was test fired into a vented 800 gallon water 
recovery tank, located in the firearms section of 
the Indianapolis-Marion County Forensic Services 
Agency (IMCFSA), Indianapolis, Indiana and the 
samples were engraved with a unique identification 
code. The test samples were then placed into 
envelopes and mailed out in protective packaging 
to prevent handling damage.

2.1. Construction of Test Sets
The test was set up as a “closed set” test where 

all of the 15 unknown bullets were fired in one of 
the 10 consecutively rifled barrels, with at least 
one bullet from each barrel and no more than three 
from any one barrel. These unknown bullets were 
packaged with a control set consisting of two bullets 
fired from each of the 10 barrels.  A total of 240 such 
test sets were prepared.

Test firing commenced on July 8, 1999 and 
concluded on August 10, 2000. Production of 
the test ultimately involved shooting 16,800 
cartridges; 1,680 from each of the 10 consecutively 

1. Introduction
Current practices in firearm and toolmark 

identification training and actual laboratory 
casework are based on the hypothesis that fired 
bullets can be positively associated with the gun 
that fired them [1]. It is recognized that striations 
are caused by microscopic imperfections in the 
rifling tools used to make gun barrels during 
the manufacturing process. The tools used to 
manufacture firearms change during their use 
and therefore impart a continually changing set of 
striations on the items manufactured [2]. It would 
therefore be expected, that the greatest amount 
of similarity (and thus the greatest chance for 
identification error) would be encountered with 
firearms that are consecutively rifled using the 
same rifling tool [3]. Previous studies addressing 
this fundamental topic [4-7] will not be discussed 
further here. 

The current work is an update of the previous 
expansion [6] of the Brundage study [4]. In this 
update we estimate the rate at which examiners 
correctly associate fired bullets with the barrels 
through which they have been fired, given those 
barrels were consecutively manufactured. The 
statistical model used, which was first proposed 
by Schuckers [8], takes into account our prior 
ignorance about the rate at which examiners 
commit identification errors and combines it with 
a sample of examiner test results. The model also 
takes into account possible correlations between 
the “match” and “no-match” conclusions examiners 
render for each bullet/barrel pair in the test. A 
posterior estimate of examiner error rate was 
produced which helped to quantify an answer to the 
question: Can projectiles fired from consecutively 
manufactured gun barrels be correctly associated 
with the barrel through which they passed most of 
the time? 

World Wide Study of 9mm Ruger Ballistics: Examiner Error Using Bayesian Statistics
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manufactured barrels. All 16,800 cartridge cases 
were test fired using the same slide installed on the 
Ruger P-85 semiautomatic pistol.    

Seven cartridges were test fired for each test 
sequence and combined into ‘groups’ by barrel and 
firing sequence number in order to allow for the 
same relative amount of barrel wear on both the 
control and the unknown bullets.

The test sets were individually packaged 
according to the sequence of the test set being fired 
and continued until all 240 test sets were completed. 
A 10% random sampling of the 240 prepared sets 
was conducted before the sets were shipped to 
participants. The random sample was examined 
with an optical comparison microscope, ensuring 
that there were enough surface features such that 
it was feasible to identify the 15 ‘unknowns’ to the 
‘known’ bullets. Next, the samples were mailed out 
in padded envelopes with instructions and a blank 
answer form. Table 1 lists the number of examiners 
who took the test in this study along with counts of 
the inconclusive and incorrect identifications they 
rendered. 

2.2. Distribution of Test Sets
Although all of the original 240 test sets have 

been distributed to forensic laboratories, universities 
and researchers around the world, twenty additional 
test sets were recently constructed, composed 
of the Canadian manufactured WWII ammunition 
as described above.  Ten of these sets were sent 

to European forensic laboratories, and 10 sets 
were distributed throughout the United States. 
Additionally several polymer clone sets, using the 
double cast method previously described [9,10], 
have been distributed. 

3. Statistical Model
We are interested in estimating the probability 

that an examiner will reach the conclusion that 
there is a match between a bullet and a barrel, 
when in fact that is not the case. Under the design 
of this study, this is a false discovery rate (FDR). 
To illustrate the FDR concept (and understand how 
inconclusive opinions can be handled) consider 
the standard 2-by-2 contingency table known from 
hypothesis testing:

A “discovery” for FDR is a rejection of the null 
hypothesis. A “discovery” in our case is the event 
of an examiner rendering an opinion of a “match” 
between a bullet and a barrel with the null hypothesis 
of “no match” implied. A false discovery [11,12] is an 
opinion of match rendered in a comparison when in 
fact a bullet was fired through a different barrel than 
that concluded by the examiner. The false discovery 
rate is, on average, how often we can expect this 
error to happen [11]:

6 
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 False discovery rate in the context of this study is an expression of examiner error rate, which 

is how we will refer to this statistic throughout the paper. When error rates are small it turns out that it 

can be difficult to estimate them precisely. Frequentist based methods are known to perform poorly in 

this situation (9,14,15). Thus we have opted to take a Bayesian approach from which we may infer a 

reasonable estimate of examiner error rate, eer, given the data observed in this study (9,14). Below we 

describe the model framework, due to Schuckers, which has been shown to render reasonable estimates 

for eer even when they are very small. 

 A Bayesian technique takes what is “known” or “believed” about an unknown parameter 

(examiner error rate, eer, in our case) and represents it as a prior probability distribution p(eer). When 

the data (s) is measured, all the information it contains about eer’s value is contained in its likelihood 

function, or “probability model” for the data, p(s| eer).   

Each time an examiner renders an opinion of “match” they can be correct or incorrect. We treat 

the outcome as a Bernoulli random variable, xi, which can take on the value of 0 or 1. That is, for the ith 

unknown bullet (i  {1, …, nj}), xi = 0 if the examiner makes the correct “match” and xi = 1 if the 

examiner makes an incorrect “match”. In symbols: 

. 

The actual data analysed will be the sum of the nj Bernoulli random variables constituting the outcome 

of the test for each examiner. To make this more explicit, let xi,j represents the outcome for the jth 

examiner rendering an opinion on the ith unknown bullet. Then sj is a random variable representing the 

number of wrong IDs rendered by the jth examiner: 

. 

If an examiner renders an opinion of match or no-match for each bullet to a barrel, then nj = 15. 

For this study however, examiners were not barred from rendering an opinion of inconclusive. Because 

False discovery rate in the context of this study 
is an expression of examiner error rate, which 

Table 1- Combined results of the previous Brundage study and this study.

Test Series  # Examiners
Participating in Test

 # Examiners Reporting
Inconclusives

 #Inconclusively
Identified Bullets

 #Incorrectly Identified
Bullets

Brundage 67 1 1 0

Hamby 725 4 7 0

Totals 792 5 8 0

J. Hamby et al.
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is how we will refer to this statistic throughout 
the paper. When error rates are small it turns out 
that it can be difficult to estimate them precisely. 
Frequentist based methods are known to perform 
poorly in this situation [8,13,14]. Thus we have 
opted to take a Bayesian approach from which we 
may infer a reasonable estimate of examiner error 
rate, πeer, given the data observed in this study 
[8,13]. Below we describe the model framework, 
due to Schuckers, which has been shown to render 
reasonable estimates for πeer, even when they are 
very small.

A Bayesian technique takes what is “known” or 
“believed” about an unknown parameter (examiner 
error rate,  πeer, in our case) and represents it as a 
prior probability distribution p(πeer). When the data 
(s) is measured, all the information it contains about  
πeer

,s value is contained in its likelihood function, or 
“probability model” for the data, p(s| πeer).  

Each time an examiner renders an opinion of 
“match” they can be correct or incorrect. We treat 
the outcome as a Bernoulli random variable, xi, 
which can take on the value of 0 or 1. That is, for 
the ith unknown bullet (i ε {1, …, nj}), χi = 0 if the 
examiner makes the correct “match” and χi = 1 if the 
examiner makes an incorrect “match”. In symbols:
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. 

If an examiner renders an opinion of match or no-match for each bullet to a barrel, then nj = 15. 

For this study however, examiners were not barred from rendering an opinion of inconclusive. Because 

The actual data analysed will be the sum of the nj 
Bernoulli random variables constituting the outcome 
of the test for each examiner. To make this more 
explicit, let χi,j represents the outcome for the jth 
examiner rendering an opinion on the ith unknown 
bullet. Then sj is a random variable representing the 
number of wrong IDs rendered by the jth examiner:
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If an examiner renders an opinion of match or 

no-match for each bullet to a barrel, then nj = 15. 
For this study however, examiners were not barred 
from rendering an opinion of inconclusive. Because 
inconclusive is neither correct nor incorrect, this 
outcome affects the total number of possible 
positive match opinions an examiner could render 
on the test. That is, inconclusive opinions affect 
max(R) (cf. Table 2). Thus if an examiner renders 
one or more inconclusive opinions nj < 15.

Data for this study are the number of errors 
each examiner made, sj, organized into a vector 
of length 792, s. Often sums of Bernoulli outcomes 
are modelled as arising from a Binomial distribution. 
However in our case, there can be correlation 
between the 15 matching attempts (Bernoulli trials) 
each examiner undertakes; i.e. an examiner’s answer 
on one trial may affect their answer on another trial. 
Modelling the data with only the binomial distribution 
would not take the correlation into account.

The Beta-binomial distribution is a generalization 
of the binomial distribution that naturally accounts 
for correlation between Bernoulli trials, and is the 
likelihood we will use to model the number of errors 
in identification each examiner commits [8]:
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The Beta-binomial distribution, is (usually) 
parameterized in terms of two new parameters, αβ, 
instead of  πeer. From α and β we can recover the 
examiner error rate, πeer, as:

7 
 
inconclusive is neither correct nor incorrect, this outcome affects the total number of possible positive 

match opinions an examiner could render on the test. That is, inconclusive opinions affect max(R) (cf. 

Table 2). Thus if an examiner renders one or more inconclusive opinions nj < 15. 

Data for this study are the number of errors each examiner made, sj, organized into a vector of 

length 792, s. Often sums of Bernoulli outcomes are modelled as arising from a Binomial distribution. 

However in our case, there can be correlation between the 15 matching attempts (Bernoulli trials) each 
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FIG 1. Simulation of the low correlation prior for examiner error rate: eer, with  = 1  and  = 15. 
Prior mean and median are both approximately 50%. 
 
 
 
 
 
 

100%80%60%40%20%0%

 πeer = α
α + β

J. Hamby et al.



107

AJFSFM 2024; Volume 6 Issue (2)

This equation says that everything we currently 
“know” about the examiner error rate is formed by 
what we believed about it before, combined with 
what we learned about it from the data. The quantity 
p(πeer | s) is the posterior or “updated” probability 
distribution for peer in light of the data we observe.

For the prior, we would like to assume little (there is no 
such thing as a completely uninformative prior) which for 
us amounts to spreading possible values for peer fairly 
evenly over the interval [0,1]. The prior for peer must be 
specified in terms of priors for α and β. For these we 
take fairly diffuse truncated normal distributions:

α, β ~ TruncNorm (μ, σ)

Gaussians are proper probability densities (i.e. 
normalizable, though this is not strictly necessary), 
and we truncate them because α > 0 and β > 0 for 
the Beta-binomial distribution. To maintain α and β 
above 0 we take as a practical truncation point 1 × 
10-8. Figure 1 shows a simulation of the prior for πeer 
with μ = 1  and σ = 15.  It is fairly uninformative and 
has a (prior) mean of about a 50% error rate.

These values for μ and σ  imply a distribution for 
correlation that is shown in Figure 2.

This is a fairly informative prior on φ and indicates 
that we initially believe that there is not much 
correlation between the ID opinions an examiner will 19 

 

 
 
FIG 2. “Low correlation prior”: Simulation of the prior for correlation between Bernoulli trials: , with 
 = 1 and  = 15. Prior mean = 0.05, prior median = 0.04. 
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Figure 2- “Low correlation prior”: Simulation of the prior for correlation between Bernoulli 
trials: φ, with μ = 1 and σ = 15. Prior mean = 0.05, prior median = 0.04.

World Wide Study of 9mm Ruger Ballistics: Examiner Error Using Bayesian Statistics



108

AJFSFM 2024; Volume 6 Issue (2)

render. We will call this the “low correlation prior”. A 
priori we don’t really know that this is the case. In 
fact we suspect that it is not. However, we will run 
the posterior analysis for πeer using this prior on φ for 
comparison to other choices for a prior on φ. 

To change the prior on φ, for this study we simply 
changed the values μ and σ. Figure 3 shows the 
implied priors on πeer and φ using μ = 1 and σ = 3. 

Note the prior for on πeer is essentially unchanged 
from that shown in Figure 1 where μ = 1 and σ = 15. 

20 
 

 
FIG 3. “Moderate correlation prior”: Simulation of the prior for eer and , with  = 1  and  = 3. Prior 
mean/median on eer are 50%/50%, . Prior mean/median on  are 0.19/0.16. 
 
 
 
 
 

 
 
FIG 4. “High correlation” prior: Simulation of the prior for eer and , with  = 0.5  and  = 0.5. Prior 
mean/median on eer are 50%/50%, . Prior mean/median on  are 0.47/0.45. 
 

Figure 3- “Moderate correlation prior”: Simulation of the prior for πeer , and φ, with μ = 1  and σ = 3. Prior mean/median on 
πeer, are 50%/50%, . Prior mean/median on φ are 0.19/0.16.
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FIG 4. “High correlation” prior: Simulation of the prior for eer and , with  = 0.5  and  = 0.5. Prior 
mean/median on eer are 50%/50%, . Prior mean/median on  are 0.47/0.45. 
 

Figure 4- “High correlation” prior: Simulation of the prior for  πeer , and φ, with μ = 0.5  and σ = 0.5. Prior mean/median on 
πeer, are 50%/50%, . Prior mean/median on φ are 0.47/0.45.
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However the prior on φ has significantly spread out, 
now with mean 0.19. We will call this the “moderate 
correlation prior”. Figure 4 shows the implied priors 
on  πeer and φ using μ = 0.5  and σ = 0.5. 

While the tails have thinned a bit, the prior for πeer 
still resembles those in figures 2 and 3. The prior 
mean and median are both still also 50%. The prior 
for φ however now has a much fatter right tail than 
the previous priors with significant mass from 0.6 to 
0.9 (prior mean is 0.47). We will call this the “high 
correlation prior”. Further discussion and justification 
for the chosen parameterization of this model 
appears below in the results and discussion section.

Posterior analysis for πeer was carried out using these 
three priors; “low”, “moderate” and “high” correlation. 
The joint probability density for the Schuckers’ model 
framework may be very compactly represented as the 
directed acyclic graph (DAG) shown in Figure 5.

The DAG shows visually how the data’s likelihood 
depends on the parameters α and β. Since we have 
examiner error data (si, i = 1 through 792 we can 
use it to update our prior assumptions about α 
and β, and hence our knowledge about the mean 
examiner error rate πeer.

The posteriors for α and β were determined 
by sampling the joint probability density with  the 
statistical modelling software Stan [15]. Eight 
chains were used with 10,000 warm-up and 10,000 
sampling iterations each. After warm-up, the chains 
were thinned by keeping only every 10th sample. 
R-hat convergence diagnostics were all 1.0 (the 
chains are effectively converged) [16]. A total of 
approximately 7,500 (marginal) samples for α and β 
were drawn from the posterior using each prior. With 
posterior samples of α and β in hand, the overall 
examiner error rate given the data was computed 
as described above.

4. Results and Discussion
A total of seven hundred and ninety-two (792) 

responses have been received from a total of 36 
countries. In the original Brundage study, one 
laboratory reported an inconclusive result in that 
they were unable to associate an unknown bullet 
with the known bullets due to damage to the 
projectile [4]. In the expanded studies by Hamby 
et al. two examiners felt that there were insufficient 
individual characteristics on two of the bullets due 
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FIG 5. DAG for the probabilistic model of error rate. Parameters  and  are fixed and taken to be (1, 
15) “low correlation prior”, (1, 3) “moderate correlation prior” and (0.5, 0.5) “high correlation prior”. 
 

 
 
 
 
FIG 6. Box-and-whiskers graphical summary of posterior results for eer|s, examiner error rate based 
on their responses to the test. The thin horizontal black lines are the posterior medians. The thick black 
vertical lines are the 95% highest posterior density intervals. Low, medium and high correlation refers 
to the modeled intra-response correlation between each of the examiners’ 15 matching tasks. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5- DAG for the probabilistic model of error rate. Parameters μ and σ are fixed and taken to be (1, 15) 
“low correlation prior”, (1, 3) “moderate correlation prior” and (0.5, 0.5) “high correlation prior”.
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to tank rash (tank rash is an unofficial term used 
by some firearms examiners to denote the damage 
caused when fired bullets strike the bottom of the 
water recovery tank.) [5-7]. In another instance, 
two trainee examiners were unable to correctly 
associate 5 of the unknown bullets (1 for one 
examiner, 4 for the second examiner). In each 
instance, the examiners reported their findings as 
an inconclusive. No misidentifications were found 
for any of the above iterations of the “10-barrel 
test”.

Eight test sets were also examined using ‘ballistics’ 
imaging equipment. The sets were examined using 
the following semi-automated systems:

- Intelligent Automation’s SciClops™ - 
Maryland, United States (1 set);

- Automated Land Identification System (ALIS) 
- Tokyo, Japan (1 set);

- Integrated Ballistics Identification System 
(IBIS)™ - Georgia, United States (1 set);

- BulletTRAX-3D™ - Forensic Technology - 
Montreal, Canada (2 sets);  

- National Institute of Standards and 
Technology (NIST) - Maryland, United States 
(2 sets);

- Plu-neox Sensofar 3D™ – Alabama 
Department of Forensic Sciences (1 set);

- EVOfinder Scan Bi™, Forensic Institute, 
Zurich, Switzerland (1 set);

- BalScan™, Forensic Institute, Czech 
Republic (1 set),

- BulletTRAX-HD3D™ – National Forensic 
Science Services, Ladyville, Belize (1 set). 

The operators of each system reported 
correct answers. As a side note, this subset of 
data provided by the semi-automated systems 
indicates that they can be helpful to the forensic 
examiner and effective when properly used by an 
experienced operator.

5. Evaluation
Background information was provided on 

approximately 630 of the questionnaires. Responses 
were obtained from 36 countries on four continents. 
Participants from the following countries contributed 
to this worldwide research project: Algeria, Australia, 
Barbados, Belgium, Belize, Botswana, Canada, 
China, Czechoslovakia, Germany, Greece, Israel, 
Jamaica, Japan, Jordan, , Mexico, Netherlands, 
New Zealand, Norway, Pakistan, Palestine, 
Panama, Philippines, Saudi Arabia, Singapore, 
Switzerland, South Africa, Thailand, Trinidad & 
Tobago, United Arab Emirates, United Kingdom and 
the United States. In the United States, responses 
were received from examiners in 49 states and 
the territories of Guam and Puerto Rico. Several 
states and/or provinces from Australia and Canada 
submitted responses as well. Demographic data of 
this continued work has not significantly changed 
from that of previously reported iterations. We refer 
the interested reader to the study of Hamby et al. for 
the complete information [6].

6. Analysis of Examiner Error Rate
Empirically, no errors were made in this aggregate 

10-barrel study. A total of five examiners called eight 
inconclusives between them. The goal of this study 
is now to take a principled probabilistic approach to 
infer what the data say about the overall examiner 
error rate πeer.

Note for any high performance "classifier" the 
count of errors made will be low. However in this 
situation, i.e. when examiners make few to no errors, 
the theoretical mean error rate becomes difficult to 
determine because it is so small. In fact, classic 
frequentist based interval estimates completely fail 
in this situation without ad-hoc corrections  [13]. For 
this reason we have opted for the Schuckers’ model 
framework presented in the methods section  [8]. 
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Inconclusive opinions were not forbidden as 
responses for test participants. Their presence 
factors into the statistical analysis by affecting nj. 
For respondents who rendered an ID on each test 
exemplar (correct or incorrect) nj = 15. For the five 
participants who rendered inconclusive opinions the 
nj’s were equal to 14, 13, 13, 14 and 11 respectively (cf. 
first paragraph of the Results and Discussion section). 

Table 3 summarizes the posterior examiner 
error rate probabilities πeer|s under assumptions of 
“low”, “moderate” and “high” correlation between 
responses for each examiner.

The intervals presented in Table 3, and through 
out the paper, all represent a highest (posterior or 
prior) density set with 95% probability. That is, they 
are the narrowest regions that encompass πeer|s 
with 95% posterior probability. A graphical summary 
of these results appears in Figure 6.

The whiskers of the plots range over the support 
for πeer|s resulting from the MCMC calculation. 
The thick black vertical lines represent the 95% 
highest posterior density sets indicating the 
narrowest posterior region where we believe the 
examiner error rate lies with 95% probability given 

FIG 6- Box-and-whiskers graphical summary of posterior results for πeer,|s, examiner error rate based 
on their responses to the test. The thin horizontal black lines are the posterior medians. The thick black 
vertical lines are the 95% highest posterior density intervals. Low, medium and high correlation refers to the 
modeled intra-response correlation between each of the examiners’ 15 matching tasks.
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FIG 1. Simulation of the low correlation prior for examiner error rate: eer, with  = 1  and  = 15. 
Prior mean and median are both approximately 50%. 
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the data observed. The first thing to note is that 
while the posterior mean/median examiner error 
rate estimates are all low, they do increase with 
increasing intra-response correlation. As can be 
seen in Figure 6 however, this effect is relatively 
small. The most conservative estimate is that which 
results from a “high correlation” prior assumption. 
Those posterior quantities are a posterior median 
examiner error rate of 0.03% with a 95% probability 
interval of [2×10-6 %, 0.1%].

7. Conclusion
The design of this multi-decade study was 

intended to explore if examiners and researchers in 
forensic firearms analysis could accurately identify 
15 ‘unknown’ bullets; obtained by test firing 10 
consecutively rifled semiautomatic pistol barrels. A 
total of 792 completed tests have been received up 
until this point in time, which includes sixty-seven 
responses from examiners who participated in the 
original study [4]. Of the 11,880 unknown bullets 
examined, three examiners felt that there were 
insufficient individual characteristics on two of the 
bullets (due to tank rash), two trainee examiners 
were unable to correctly associate 5 of the unknown 
bullets, reporting their findings as an inconclusive. 
The remaining 11,872 ‘unknown’ bullets were 
correctly identified by participants to the provided 
‘known’ bullets.  The fact that there no actual 
misidentifications have been reported up until this 
point empirically demonstrates the efficacy of the 
training and procedures used to ascribe bullets fired 
from consecutively rifled barrels.

The international nature of the study demonstrates 
that the results are not produced by some localized 
effect or sampling bias. However the lack of actual 
errors makes it difficult to calculate the true error 
rate. For purposes of discussion – and considering 
that the Daubert legal ruling in the United States 

discusses an ‘error’ rate; we decided to exploit a 
Bayesian framework described by Schuckers to 
estimate a matching systems performance when no 
or few errors are observed. By using this statistical 
framework a reasonable estimate of examiner error 
rates given our observations. Recently, critics have 
decried this test design, comparing it to a matching 
problem on an exam or a Sudoku puzzle  [17]. The 
suggestion is that examiners narrow down their 
choices as they identify unknown bullets to specific 
barrels, thus reducing the sampling space for the 
remaining unknown bullets. In practice though, the 
situation is more complex. This comparison relies 
on the assumption that no mistakes are made at 
the beginning of the task; if a mistake is made and 
an unknown bullet is identified to the wrong barrel, 
then that error would propagate throughout the test 
leading to a higher error rate. A valid shortcoming 
of this study is that it is a closed set test design and 
each test exemplar has a match.

This study shows that there are identifiable 
features on the surface of bullets that may link them 
to the barrel that fired them. Errors due to subclass 
characteristics, which one could conjecture would 
be a significant issue when consecutively rifled 
barrels are involved, has not been a problem for 
the examiners who participated in the “10-barrel 
test”. Overall, the study as reported up until this 
point in time, has continued to demonstrate that the 
identification process has an extremely low error 
rate if the fired bullets are in good condition and 
the examiners have been trained under currently 
accepted regimes  [18]. In fact this error rate is too 
low to empirically be found and must be inferred with 
Bayesian statistical methods. This study also shows 
that various statements made about the inability of 
examiners to associate fired bullets to consecutively 
rifled barrels are clearly incorrect. It should be noted 
that 781 participants conducted their examinations 
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using conventional optical comparison microscopy 
while 11 participants used some type of ballistics 
imaging to conduct their examinations.

Using the Schuckers statistical model, posterior 
mean/median examiner error rates were determined 
to be 0.01%/0.008% assuming “low” examiner 
intra-response correlation (denoted φ in this study). 
These estimates increased slightly to 0.02%/0.02% 
and 0.05%/0.03% under “moderate” and “high” 
correlation. Inconclusive opinions factored into the 
analysis by affecting the total number of matches 
that could be called. This effectively decreases 
the sample size for the examiner calling the 
inconclusive(s).

Though the data did not strongly change prior 
assumptions of correlation, increasing correlation 
did increase the posterior examiner error rate 
estimates and widened the uncertainty (highest 
posterior density intervals) around the error 
estimates. Our most conservative posterior estimate 
for examiner error rate assumes correlation is high 
within an examiner’s responses. Given the data 
collected for this study, we believe the error rate 
to be in the range of [2×10-6 %, 0.1%] with 95% 
probability. Note that all of our computations started 
a priori assuming the examiner error rate was about 
50% and overall it was fairly uncertain.

In circumstances where bullets are deformed 
or fragmented, the comparison process may be 
more difficult. Another limitation of this study is 
that bullets that were not fired through one of the 
ten consecutively manufactured barrels were 
not included in the test sets. There inclusion 
could conceivably increase the inferred examiner 
error rate. These criticisms are appropriate. To 
accommodate them we are currently conducting a 
redesigned “10-barrel test” which does not suffer 
from these issues. The data gathered will ultimately 
be compared with that found here.
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