
171

Forensic Approaches for End-to-End Encryption Cloud Storage
Services: MEGA as a Case Study

التشــفير تســتخدم التــي الســحابي التخزيــن خدمــات مــع للتعامــل الجنائيــة للأدلــة منهجيــات
حالــة كدراســة MEGA الشــامل:

Jeongyoon Kang1, Jieon Kim1, Seokhee Lee2, Jungheum Park1*
1School of Cybersecurity, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, Republic of Korea.
2Center for Cybercrimes and Digital Forensics, Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh,
Saudi Arabia.

Received 05 Dec. 2023; Accepted 24 Mar. 2024; Available Online 18 June 2024.

 Keywords: Forensic sciences, digital forensics, cloud
forensics, end-to-end encryption, MEGA.

Production and hosting by NAUSS

الكلمات المفتاحية: علوم الأدلة الجنائية، الأدلة الجنائية الرقمية،
استضافة خدمة الشامل، التشفير السحابية، الجنائية الأدلة

.MEGA الملفات السحابية

1658-6794© 2024. AJFSFM. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Abstract
The advancement of cloud-based data storage technology

allows users to conveniently access and manage files using end-
point devices without being constrained by their environment.
While cloud storage services have improved the efficiency of
performing our daily tasks, they have also become a medium
for criminals to distribute illegal materials. Services that support
end-to-end encryption (E2EE), cannot decrypt data even when
it's stored on their servers, attracting users who require high se-
curity. There are some existing studies related to cloud-based
services using E2EE, but they only deal with local artifacts, which
makes it difficult to analyze when local devices cannot be found
or when there are changes to local artifacts. This study identifies
the mechanisms by which MEGA, a cloud-based file hosting ser-
vice, operates to obtain user authentication, explore metadata,
and collect files while applying end-to-end encryption. Further-
more, we propose a forensic investigation methodology to ex-
plore various metadata and selectively acquire cloud resources
relevant to an incident through an understanding of E2EE algo-
rithms. Also, we apply MEGA to the existing framework to sug-
gest improving the framework that encompasses E2EE cloud-
based services. The findings of this study serve as a valuable
reference for dealing with cloud-based services with E2EE from
the perspectives of computer security and digital forensics.

المستخلص
يتيح التقدم في تكنولوجيا تخزين البيانات السحابية للمستخدمين الوصول

بسهولة إلى الملفات وإدارتها باستخدام أجهزة نقطة النهاية دون التقيد ببيئتهم.

اليومية، مهامنا أداء كفاءة حسنت السحابية التخزين خدمات أن حين في

تستطيع لا القانونية. غير المواد لتوزيع للمجرمين وسيلة أيضًًا أصبحت فقد

الخدمات التي تدعم التشفير الشامل)E2EE(، فك تشفير البيانات حتى عندما

يتم تخزينها على خوادمها؛ مما يجذب المستخدمين الذين يحتاجون إلى أمان

عالٍ. وهناك بعض الدراسات الموجودة المتعلقة بالخدمات السحابية باستخدام

الصعب من يجعل مما مع المصنوعات المحلية؛ فقط تتعامل لكنها ،E2EE

هناك تكون عندما أو المحلية، الأجهزة على العثور يمكن لا عندما التحليل

من تعمل التي الآليات الدراسة هذه وتحدد المحلية. المصنوعات في تغييرات

خلالها شركة MEGA، وهي خدمة استضًافة الملفات السحابية، للحصول على

تطبيق أثناء الملفات الوصفية وجمع البيانات واستكشاف مصادقة المستخدم

التشفير الشامل. علاوة على ذلك، نقترح منهجية التحقيق الجنائي لاستكشاف

البيانات الوصفية المختلفة والحصول بشكل انتقائي على الموارد السحابية ذات

الصلة بحادث ما من خلال فهم خوارزميات E2EE. كما أننا نطبق MEGA على

الإطار الحالي لاقتراح تحسين الإطار الذي يشمل الخدمات المستندة إلى السحابة

الخدمات مع للتعامل قيم مرجع بمثابة الدراسة هذه نتائج تعتبر .E2EE

السحابية مع E2EE من منظور أمن الكمبيوتر والطب الشرعي الرقمي.

Naif Arab University for Security Sciences
Arab Journal of Forensic Sciences and Forensic Medicine

المجلة العربية لعلوم الأدلة الجنائية والطب الشرعي
https://journals.nauss.edu.sa/index.php/AJFSFM

Arab Journal of Forensic Sciences and Forensic Medicine 2024; Volume 6 Special Issue (ASFSFM 2023), 171-190 Case Study

* Corresponding Author: Jungheum Park
Email: jungheumpark@korea.ac.kr
doi: 10.26735/TMPV1812

https://journals.nauss.edu.sa/index.php/AJFSFM
https://nauss.edu.sa/
https://nauss.edu.sa/ar-sa/Arab-Societyn/Pages/about.aspx
https://doi.org/10.26735/TMPV1812
https://crossmark.crossref.org/dialog/?doi=10.26735/TMPV1812&domain=pdf
https://doi.org/10.26735/TMPV1812

172

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

end-to-end encryption techniques in the process of
user authentication and data access has been con-
ducted on a limited basis.

Among various STaaS providers, the MEGA,
which supports end-to-end encryption and offers
larger free storage space than other services, is
widely used for criminal activities. Many researchers
studied other cloud-based services such as Google
Drive or OneDrive, but there are insufficient stud-
ies conducted on the MEGA. In November 2019,
criminals of the infamous ‘Nth Room’ case in Korea
distributed numerous child pornographic materials
through MEGA's link-sharing [9]. While MEGA im-
plemented policies to prevent link sharing of ille-
gal video files by comparing their hash values with
those uploaded files, it is merely a post-response
measure limited to the known files.

In addition, it can be seen that creating and eas-
ily distributing web URIs that can share illegal con-
tent using 'Link' functions through various reported
events [2, 4, 5, 7] is a way to use MEGA Cloud for
cybercrime. This is a function that makes it easy to
download content even for non-member users who
do not subscribe to MEGA Cloud, and it is important
for digital forensic investigators to identify various
types of metadata provided by MEGA Cloud to find
the first distributor of illegal content circulating at a
rapid pace and analyze events. In other words, it
can be seen that it is necessary to identify the en-
cryption and decryption algorithm of MEGA Cloud,
which has not been studied much in the past, and to
obtain various metadata.

This study proposes a method of systematical-
ly collecting data stored on remote servers through
software whitepapers and SDK analysis provided by
MEGA, assuming that investigators obtained user
credentials or recovered cached auto-login creden-
tials. The findings could help digital forensic experts
to analyze encrypted cloud-based services since

1. Introduction
With the recent advancements in information

and communication technology, the proliferation of
personal digital devices such as smartphones has
led to the widespread adoption of storing and man-
aging data in cloud-based storage. This cloud stor-
age service, commonly referred to as Storage as a
Service (STaaS), is experiencing continuous growth
in the relevant market. TechNavio forecasts the
global cloud storage service market to grow from
$29.79 billion in 2019 to an estimated $103 billion
by 2024, with a CAGR of 28.16% [1].

The growth of the cloud storage market can
be interpreted as an increase in demand for data
synchronization and accessibility among individu-
al-owned terminals, which means that data storage
locations have expanded from local storage devices
(such as hard disk drives and SD cards) to cloud
servers. In particular, cloud storage service pro-
viders also offer free storage of tens of gigabytes
for free. As a result, the importance of cloud-based
storage is increasing as a potential source of digital
evidence related to the suspect's behavior during
an investigation.

Cloud storage services generally provide fea-
tures that enable easy sharing of content with spe-
cific or multiple users, and due to these characteris-
tics, they have frequently been utilized as a medium
for sharing crime-related content [2, 3, 4, 5, 6, 7,
8]. In cases where cloud storage services are used
for criminal activities, the functionalities offered by
each service, communication mechanisms between
clients and servers and content encryption mech-
anisms, can significantly impact forensic activities.
Accordingly, research from a security and digital fo-
rensics perspective has been actively conducted on
services such as Google Cloud, MS One Drive, and
Dropbox, which occupy a high share in the STaaS
market. However, research on services applied with

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

173

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

existing studies are mainly conducted on cloud-
based services that do not support data encryption.

The contributions of this study are as follows:
• This study comprehensively examines the

data collection capabilities and scope on
MEGA required by the recently proposed
framework for data collection in cloud stor-
age, suggesting specific methods to support
the framework, including authentication, dis-
covery, filtering, and collection.

• This study identifies keys used for web API re-
quests and responses through source code de-
bugging and packet monitoring to collect mean-
ingful data from a digital forensic perspective.

• This study discovers processes of decrypt-
ing E2E data to collect all available data from
MEGA servers. Based on our findings, we
have also developed tool that can be used to
collect encrypted cloud resources.

2. Background and related works
In this section, we describe features provided by

MEGA including E2EE and introduce previous stud-
ies on several cloud storage services.

2.1. Background
2.1.1. MEGA

MEGA is an open-source cloud storage service
provided by Mega Limited, based in New Zealand
[10]. MEGA users can access their cloud resources
using a web browser or dedicated (desktop, mobile)
applications. As a service that offers end-to-end en-
cryption, only encrypted data is stored on the cloud
servers, making it impossible for the service pro-
vider to decrypt the uploaded data without a user's
encryption key due to the system design [11]. Con-
sequently, MEGA ensures its high level of security
for personal data, that has been utilized to distribute
illegal contents [2, 3, 4, 5, 6, 7, 8].

In addition to its basic file storage functionality,
MEGA offers additional features compared to oth-
er services. Users can upload files with the same
name but different content to manage versions of
the files. They can also engage in personal or group
chats, make voice and video calls, and participate
in video conferences. Furthermore, MEGA provides
various sharing capabilities, including 'Incoming
share', 'Outgoing share', 'Link', and 'File Request
(a file upload request functionality that can also be
used by non-MEGA users)'.

2.1.2. End-to-End Encryption
End-to-end encryption (E2EE) is a technology

where a user sends an encrypted message, file,
audio, or video stream on their device, and the
other user receives and decrypts data on their de-
vices using encryption key known only to the end-
points. This ensures that users third-party, including
MEGA, cannot access the content of the encrypted
data. E2EE guarantees the privacy and security of
all communication, safeguarding the confidentiality
and integrity of the exchanged data [12].

If the cloud storage service does not provide
E2EE, even with TLS (Transport Layer Security)
communication, the encrypted data is decrypted as
it passes through the server and re-encrypted just
before it is received Figure-1a. As a result, cloud
service providers can access the decrypted data.
Without E2EE, it is also vulnerable to man-in-the-
middle attacks, which means that someone can de-
crypt and leak the data you upload to the cloud.

MEGA supports E2EE that when a user logs into
their account, the password value is used for gener-
ating a one-way hash and encrypting data as well.
The encrypted data then will be stored on cloud
servers Figure-1b. This data protection mechanism
ensures that only authorized users can access cloud
resources and the service provider cannot view the

J. Kang et al.

174

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

contents uploaded by users. While this enhanced
security strengthens data protection, it means that
a user should remember the password not to lose
access to their contents. Therefore, MEGA recom-
mends users to manage a password recovery key
separately.

Due to these characteristics, malicious users
who engage in sharing illegal content utilize cloud
services that employ E2EE techniques, taking into
consideration the potential for leakage of crime-re-
lated data and the identification of accounts [2, 3, 4,
5, 6, 7, 8]. As a result, digital forensic experts may
experience difficulties by not acquiring sufficient in-
formation regarding the suspect's criminal activities.

2.2. Related works
2.2.1. Digital forensic approaches for cloud storage
services

Previous studies on cloud-based services have
primarily focused on remote data collection using
open and internal APIs, as well as investigating lo-

cal artifacts in mobile and PC environments.
Chung et al [13] proposed a method for investi-

gating cloud storage-related information by extract-
ing artifacts found on PCs and mobile devices, tar-
geting applications such as Amazon S3, Dropbox,
and Evernote, which provide cloud storage.

Martini and Choo [14] introduced a method for
collecting user data by analyzing the open-source
code of ownCloud. They suggested utilizing server
log files and metadata when the forensic experts
cannot collect digital evidence thoroughly on the cli-
ent side.

Han et al [15] proposed and implemented a
method for efficiently selecting and collecting fo-
rensically significant metadata using Dropbox and
OneDrive APIs from digital forensic perspectives.

Kim et al. [16] proposed a method to track user
behavior based on collected cloud data using Goo-
gle Takeout.

Yang et al. [17] developed a systematic approach
for selectively collecting data from cloud storage,

Figure 1 - Communication types of cloud storage services

175

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

specifically OneDrive. Their method utilizes web
APIs to gather metadata and contents from remote
servers. Additionally, they introduced a framework
to address limitations in existing commercial digital
forensic tools.

While the methods proposed in previous re-
search help to collect cloud resources from gener-
al cloud services, they may not apply to services
such as MEGA, which employs E2EE techniques.
In such services, the data is stored in an encrypted
state within the servers, making it difficult to expect
complete data collection by invoking required APIs.

2.2.2. Studies on MEGA service from a security and
forensics perspective

Thamburasa et al. [18] conducted a study on
the traces generated by the MEGA and IDrive cloud
storage services when used in Windows 7. They
identified these traces from local artifacts such as
physical memory, registry, and web browser logs.

Daryabar et al. [19] studied the MEGA client app
on both Android and iOS platforms, in order to iden-
tify a range of artifacts arising from user activities,
such as login, uploading, downloading, deletion,
and sharing of files.

Ji et al. [20] analyzed the security policy of MEGA
and identified the structure of download URIs (Uni-
form Resource Identifiers) that require passwords.
Also, they proposed attacks that can guess valid
passwords. This research focused on analyzing
the cryptographic vulnerabilities of publicly shared
download links and explaining methods to access
the data without the owner's account information.

The existing digital forensic research focusing
on MEGA has mainly centered around identifying
artifacts generated on local client systems (PCs,
mobiles). Therefore, these studies assume that de-
vices used with MEGA are available for acquisition
and data collection. However, if access to the PC or

mobile device is difficult or if the device's state has
been altered, such as artifact deletion, conducting
smooth analysis of MEGA usage history becomes
challenging. Moreover, using the method of collect-
ing files through download links that require pass-
word input has limitations, as it is difficult to obtain
publicly shared download links that the investigation
target storage may contain, and selective collection
of desired data is not possible. In this paper, we aim
to address these limitations of previous studies by
proposing methods to effectively explore and se-
lectively collect user data stored on remote MEGA
servers.

3. Research questions and methods
3.1. Research questions

In this section, we discuss research questions re-
garding digital forensic activities when using MEGA.
As depicted in Figure-2a, it is essential to under-
stand a request and response structure of MEGA
APIs and the underlying encryption algorithms to
gain access to remote data on MEGA. Additionally,
we examine whether we could apply existing cloud
forensic frameworks to MEGA.

The main research questions of this paper are
as follows:

• RQ1: How does the communication mecha-
nism between the MEGA server and the cli-
ent (dedicated app or web browser) operate?

• RQ2: Does MEGA provide web APIs for user
authentication, authorization, data explora-
tion, and selective collection? If so, how are
their request and response packets specifi-
cally structured?

• RQ3: Does MEGA's security policies, such
as E2EE, affects digital forensic activities?

• RQ4: Can digital forensic experts apply ex-
isting methods and cloud forensic tools to
MEGA? If not, what aspects are required?

J. Kang et al.

176

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

• RQ5: What data does MEGA apply to E2EE,
and how can a user see decrypted data?

3.2 Research methods
Figure-2b illustrates the research methods and

approaches to answer the research questions.
• Utilizing state-of-the-art forensic frame-

works for cloud storage services: This

study examines the characteristics of MEGA
to identify effective selective collection meth-
ods for remote MEGA data. We develop our
method based on the CATCH framework
[17], which supports investigative activities at
each stage.

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

Figure 2 -Research questions and methods on MEGA Cloud storage for digital forensics.

177

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

• Literature review including official technical
documentation: This study conducts a
thorough investigation on official documents,
SDK codes, and other publicly available
materials to understand communication and
E2EE mechanisms of MEGA. The research
was conducted from 2022 to 2023, and the
official technical documentation that could
be obtained from MEGA during that period
is based on the ‘MEGA Security Whitepaper
Third Edition [21]’ updated in June 2022.
Further experiments and analyses were
also tested in MEGA SDK v4.28.0 [22] and
MEGA Cloud 4.10.0 versions provided as web
services.

• Reverse engineering communication mech-
anisms through network packet inspection:
This study sets up an experimental environment
to simulate communication between MEGA cli-
ents and servers to examine the operation of

REST (REpresentational State Transfer) APIs.
We reverse-engineer to understand the syntax
of API invocations and responses for user au-
thentication and data selective collection.

• Reverse engineering E2EE mechanisms
through dynamic analysis of open-source
information and code: This study docu-
ments and validates the overall process of
decrypting sample data encrypted with E2EE
through experiments.

4. Experiments and results
In this section, we introduce the methods to ac-

cess cloud resources stored in MEGA by calling
APIs and describe available cloud resources. Build-
ing upon the existing framework named CATCH
[19], we divide the process into three main steps:
authentication, exploration, and filtering & col-
lection: (1) Obtaining values such as 'SID,' 'User
Hash,' and 'User Private Key' required for MEGA

Figure 3- Workflow for authentication, exploration, and filtering & collection.

J. Kang et al.

178

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

internal API requests and data decryption with user
ID (email) and password, (2) Exploring metadata
such as file names, paths, content hash values,
thumbnails, download URLs, and timestamps, and
(3) Selectively collecting data related to the inves-
tigation using the metadata. Figure-3 summarizes
three steps of authentication, exploration, and filter-
ing and collection proposed in this paper.

4.1 Internal APIs and required parameters for
communicating with MEGA server

To access cloud resources from MEGA, foren-
sic experts need to properly set key-value pairs
in JSON format within the request header body of
each API. Therefore, in this section, we introduce in-
depth packet inspection of internal APIs. In addition,
we provide essential keys for each API to collect po-
tential digital evidence from MEGA.

Figure-4 illustrates the conceptual diagram of
API requests and responses between the MEGA
client and server. When invoking the identified

MEGA APIs, Table-1, it is necessary to include the
appropriate key-value pairs in the JSON format. For
instance, to collect metadata and download URL in-
formation of a specific file, the API request should
include the JSON data with the value of ‘g’ in the
key ‘a’, the value of ‘1’ in the key ‘g’, and the handle
value of the target file in the key ‘n’ within the HTTP
message body. For the parameters listed in Table-1,
MEGA changes the 'id' for each request based on
the current time and sets the 'ak' parameter to the
MEGA application version (app key).

4.2 Authentication of a user account
This section describes the process of obtaining

the values required in the user authentication of
MEGA, such as SID, User Hash, and User Private
Key. The first step in Figure-3 illustrates authenti-
cation process. Below this, the detailed process for
obtaining specific values or user authentication and
result collection, including examples applying the
proposed methodology, are elaborated.

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

Figure 4- Conceptual diagram of Web API requests and responses between MEGA

Table 1- MEGA internal APIs and their required parameters
Category REST API URL using POST

(a) Account Information https://g.api.mega.co.nz/cs?id={variable}sid={variable}

(b) Storage Information https://g.api.mega.co.nz/cs?id={variable}ak={variable}sid={variable}

(c) User Salt https://g.api.mega.co.nz/cs?id={variable}ak={variable}

(d) Session ID https://g.api.mega.co.nz/cs?id={variable}ak={variable}

(e) List of Files with Metadata https://g.api.mega.co.nz/cs?id={variable}ak={variable}sid={variable}

(f) Thumbnails of Files https://g.api.mega.co.nz/cs?id={variable}ak={variable}sid={variable}

(g) Encrypted File Content https://g.api.mega.co.nz/cs?id={variable}ak={variable}sid={variable}

Figure 4 - Conceptual diagram of Web API requests and responses between MEGA Cloud clients and servers.

179

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

4.2.1. Getting a user salt value
For user authentication, the request API is called

by first setting the keys listed in (c) of Table-2. The
MEGA server returns a 43-character string, unique
to each user ID (always the same when re-logging
in), to the 's' key of the response message (refer
to Table-3 (c) for details). For reference, since the
corresponding response value is a Base64URL-en-
coded string, an array of 32 bytes must be obtained
by decoding to be utilized for use in generating the
user hash in the subsequent steps.

4.2.2. Generating a user hash value

In the second step, a user hash value is gener-
ated using the PBKDF2 (Password-Based Key Der-

ivation Function 2) with HMAC (Hash-based Mes-
sage Authentication Code) algorithm. As shown in
Table-4, the hash function 'SHA-512' is utilized, and
it involves the user's password converted to bytes
format and the user salt value. Afterward, a series of
steps result in the creation of a 32-byte binary key,
of which the latter 16 bytes are used as the user
hash value in the subsequent steps.

4.2.3. Obtaining a sessionID
The final step in authentication is to generate

sessionID which is essential for collecting informa-
tion about files and folders stored within cloud stor-
age. Initially, the user includes their email address

 Table 2- Pairs of keys and values contained in a JSON-formatted message body that is transferred to MEGA
server

Category JSON-formatted message body
Key name Value Description

a) Account Information) a ug -

b) Storage Information)

a uq -
xfer 1 -
strg 1 -

r 1 -

c) User Salt)
a us0 -

user {email} User’s email address

d) Session ID)

a us -
user {email} User’s email address

uh {value}
The second half of PBKDF2
((Base64URL(User's password =)

e) List of Files with Metadata)

a f -

c 1 -

r 1 -

f) Thumbnails of Files)

a ufa -

r 1 -

fah {handle} (File handle (= a unique identifier

g) Encrypted File Content)
a g -
g 1 -

p or n {handle} (File handle (= a unique identifier

J. Kang et al.

180

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

and the generated user hash from the previous step
in the message body of the request API, Table-2 (d).
In response, encrypted master key and private key
to be used in the RSA algorithm, along with the en-
crypted sessionID, are returned Table-3 (d).

Subsequently, an operation is performed to de-
crypt the encrypted RSA private key. The required
master key can be decrypted using the first 16 bytes
of the return value of the PBKDF2 function used in
the previous step. As a result, utilizing the master
key along with AES-CBC (Cipher Block Chaining)
mode allows obtaining the RSA private key. Lastly,
the encrypted sessionID can be obtained by decod-

ing Base64URL and then decrypting it with RSA pri-
vate keys. The master key and sessionID obtained
in this way are utilized as essential elements of API
calls to explore and collect data in the next step.

In addition, MEGA supports automatic login, and
upon logging into MEGA via a web browser, it can
be observed that the sessionID and master key are
stored in the Local Storage under the respective
keys sid and k. Although this sessionID changes
with each login, a significant characteristic is the
previous sessionID can be reused unless the us-
er's password changes. Furthermore, the master
key remains unchanged even upon session recon-

 Table 3- Pairs of keys and values contained in a JSON-formatted message body that is received from MEGA
server

Category
JSON-formatted message body

Key name Value Description

a) Account Information)

u {id} (User handle (= a unique identifier
since {value} Account creation time
email {email} User email
name {name} User name

b) Storage Information)
cstrg {value} Total account storage usage
mstrg {value} Maximum storage allowance
cstrgn {value} Root, shared nodes information

c) User Salt)
s {salt} User salt
v {version} Account version

d) Session ID)
csid {csid} Encrypted session ID
privk {key} Encrypted private key

k {key} Encrypted master key

e) List of Files with Metadata)

f {value}
Directory/File-related information
p: Parent ID, u: Owner ID, t: Type, s: File size, ts: Up-
loaded timestamp

f2 {value} File versioning information
s {value} Outgoing share information
u {value} Contacts information

ph {value} Shared link information
f) Thumbnails of Files) p {url} Downloadable URL for a file's thumbnail

g) Encrypted File Content)

g {url} Downloadable URL for a file's content
s {size} File size
at {value} (File attribute (name, label, favorite
fa {value} (File attribute (thumbnail

181

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

nection. Therefore, if these values can be found in
the browser or physical memory, an attacker could
attempt user authentication through a Credential
Cloning Attack.

4.3. Exploration of files and their metadata
If user authentication is successful using a valid

user account, one can explore a list of files stored on

cloud storage and detailed metadata. The second
step in Figure-3 summarizes the process of explor-
ing storage based on metadata from files uploaded
to the MEGA. For reference, calls to all APIs refer to
Table-1 described later require session ID obtained
in the user authentication stage. The response val-
ues from the MEGA server directly related to data

Table 4- Parameters for PBKDF2 with HMAC
Parameter Value Note

Hash algorithm SHA-512 -

User password (a plain password (UTF-8 The value is converted to ‘bytes’ type

Salt value a user salt obtained in the previous step The value is converted to ‘bytes’ type

Iteration count 100,000 -

Key length 32 -

Figure 5- Various examples of 'h' key, 'p' key, and 't' key values.

J. Kang et al.

182

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

exploration and collection can be referenced from
Table-5.

4.3.1 Getting a list of files
The list of all items (files, directories, etc.) upload-

ed to the cloud storage can be obtained through the
‘f’ key in the response message of the API requests

mentioned in (e) of Table-2 and Table-3, which in-
cludes the file ID, owner ID, upload time, and more.
This key contains a sub-key ‘t’ indicating the ‘type’,
allowing differentiation of specific types of resourc-
es as follows: file (‘t’: 0), directory (‘t’: 1), Cloud
Drive (space where users can access files and fold-
ers uploaded to MEGA, ‘t’: 2), and Trash Box (‘t’: 4).

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

 Table 5- List of important keys and sub-keys contained in a JSON-formatted message body that is received
from MEGA server

Key Meaning Sub-key Meaning
ok Relevant user information h User (or shared user’s) ID

f
(f2)

Directory/File-related information
(File versioning information)

h File/Directory ID
p Parent ID
u Owner ID

t
T y p e
 File, 1: Directory (can be root if shared), 2: Cloud :0)
((Drive (root), 3: Inbox (root), 4: Trash Bin (root

a (.File attribute (name, label, favorite, etc
k Decryption key
r if incoming share 1

su Shared user's ID if incoming share
s File size
fa (File attribute (file's thumbnail
ts Uploaded timestamp

s Outgoing share information
h Shared folder ID
u User ID who shared this folder
ts Shared timestamp

us Contacts information

u User ID
ts Registered timestamp
c Me: 1, Friend: 2
m User e-mail

ps Outgoing or Pending share information
h File ID
p Shared ID
ts Shared timestamp

opc Outgoing or Pending contacts information

p Shared ID
m User ID who has access to this folder
e User ID who shared this folder

msg Request message
ts Request message sent timestamp

ph Shared link information
h File ID

ph Shared ID

183

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

Additionally, the sub-key ‘h’ represents the unique
ID of each item, and by referencing the parent ID,
sub-key ‘p’, the relationships between items can be
understood. Furthermore, details such as the own-
er ID of the file (sub-key ‘u’), file size (sub-key ‘s’),
uploaded time (sub-key ‘ts’), etc., can be identified.
An example of key values for folders and files in the
Cloud Drive and deleted files in the Trash Box is
provided in Figure-5a.

If a folder with shared relationships such as In-
coming Share or Outgoing Share exists, a JSON
element of folder type (‘t’=1) with a unique Parent
ID (‘p’) is generated in the sub-key ‘f’ within the API
response. It is important to verify whether the Par-
ent ID (‘p’) does not belong to the Cloud Drive Root
or Trash Root, as shared folders can be misinter-
preted as a subfolder of folders belonging to the
Cloud Drive. The Figure-5b shows examples of the
main keys of the shared folder and sub-file and the
unique Parent ID of the shared folder.

By setting the value ‘uq’ in the ‘a’ key during API
requests, as illustrated in Table-2 (b), it is possible
to collect information about the user’s cloud usage,
including the Cloud Drive, Inbox, and Trash Box
roots, as well as shared folder root information gen-
erated for each shared folder Table-3 (b). Through
this method, it is possible to obtain information about
shared folders and accurately interpret the file lists.

4.3.2. Decrypting metadata
The key related to metadata, such as file name,

in the collected file list value is the sub-key ‘a’, which
means the file attribute within the ‘f’ key summarized
in Table-5. However, the sub-key ‘a’ is encrypted,
necessitating a decryption step for appropriate file
metadata identification. During the preprocessing
step for decrypting the file attributes in AES-CBC
mode, new keys such as the file unique vector value
(‘iv’) are added to the JSON element, referring to the

sub-key ‘k’ representing the file decryption key and
‘u’ representing the owner ID. If the resulting string
after all the steps begins with the string ‘MEGA{’,
then the decryption is successful, and the filename
can be decrypted by parsing the JSON structure.

The decrypted metadata includes not only the
file ID and filename but also information regard-
ing favorites and label settings that users can set
for files and folders through web service of MEGA.
When comparing the JSON values of files with no
settings to those with favorites or deleted labels, the
sub-key configuration of the decrypted ‘a’ key is dif-
ferent. For instance, in the case of an element with
favorites set, a sub-key ‘fav’ is created within the ‘a’
key, and for elements with labels set, a sub-key ‘lbl’
is created. The value of the sub-key ‘lbl’ represents
each of the 7 label colors that users can set. Addi-
tionally, for deleted elements, a sub-key ‘rr’ is creat-
ed, clearly distinguished from the JSON structure of
the element that has not been deleted.

Figure-6a provides a detailed illustration of all
steps to decrypt file metadata, referring to the sub-
keys ‘a’, ‘k’, and ‘u’.

4.3.3. Matching owner IDs to user emails
The sub-key ‘u’ under ‘f’, which can be found in

the file metadata in Table-5, represents the file’s
owner ID. However, solely relying on the Owner ID
does not easily identify the file owner. Therefore, by
matching the user ID through the ‘u’ key in Table-5,
where contact information can be obtained, the us-
er’s email can be identified based on the value of
the sub-key ‘m’ under ‘u’ Table-6 (a)

If the sub-key ‘r’ exists within the ‘f’ key, it indi-
cates elements related to Incoming share. In this
case, the simultaneously existing sub-key ‘su’ al-
lows knowing the ID of the user who started the
share Table-6 (b). For files and folders related to
Outgoing share, the ‘s’ key in Table-5 provides the

J. Kang et al.

184

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

Figure 6- Data collection process of metadata and file.

185

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

ID of the shared folder (sub-key ‘h’) and the recipi-
ent’s ID (sub-key ‘u’). In such cases, by finding the
File/Directory ID in the ‘f’ key that matches the value
of the sub-key ‘h’ under the ‘s’ key and finding the
User ID in the ‘u’ key that matches the value of the
sub-key ‘u’ under the ‘s’ key, the user’s email can be
specified by referring to a total of three keys Table-6
(c).

4.3.4. Collecting file history
File versioning is a feature that tracks the chang-

es made to a file and allows for the restoration of
previous versions. When attempting to upload a
file with the same name as one already presents
in MEGA, by choosing ‘Upload and update’, users
can view information about each version, such as
the upload timestamp and the modifying user, and
restore to a specific version.

When collecting version information of files us-
ing the Internal API, the request key as in Table-2
(e) can be used, and in response, the version re-
lationship can be identified by using the ‘f’ key and
the ‘f2’ key of Table-3 (e). Let’s assume three file
versions were created by uploading different files
with the same name twice in addition to the initial
upload. The metadata for the most recently upload-
ed version can be collected from the ‘f’ key, while
the metadata for the previous two versions can be

collected from the ‘f2’ key. Each time a new version
of the file is uploaded, the parent ID of the previous
version file changes to the ID of the new version
file. Therefore, by referring to the sub-keys ‘h (File
ID)’ and ‘p (Parent ID)’ under the ‘f2’ key, as shown
in Figure-7, it is possible to determine the presence
of file versions and the upload sequence between
versions.

4.3.5. Collecting thumbnails of files
The sub-key ‘fa’ under ‘f’, which can be found in

Table-5, signifies file attributes related to thumbnails
for image and document files. This key is also en-
crypted, so a series of decryption steps is required
to collect thumbnail information. First, it is possible
to determine the existence of thumbnail and pre-
view data by checking the presence of the ‘/’ symbol
in the sub-key ‘fa’. If they exist, the string preceding
the ‘/’ symbol can be divided into a file handle and
file ID using the ‘:’ and ‘*’ symbols as further sepa-
rators.

The file handle, as mentioned in Table-2 (f), is
utilized as the request key to collect URL information
for downloading thumbnail images. Subsequently,
upon receiving a URL in response to this request
Table-3 (f), the HTTP request proceeds through the
process of Base64-URL decoding of the file handle.
During this process, the hexadecimal data of the

Figure 7- Interpretation of JSON structures for collecting file version information.

J. Kang et al.

186

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

thumbnail image can be obtained through the re-
turned data buffer. The complete steps for thumbnail
collection are elaborated in detail in Figure-6b (1).

4. 4. Filtering and Collection of files’ content
The filtering and file content collection stage in-

volves selectively collecting files based on the meta-
data such as file names and thumbnails identified in
the previous exploration stage. In the third step of
Figure-3, the whole process is summarized. Ana-
lysts investigating the MEGA can examine aspects
such as whether the file data is related to criminal
activity and is in the analyst's interest to determine
whether the file data is collected.

4. 4. 1. Filtering files
In the prior research, the CATCH framework,

which was proposed for selective data collection in
the cloud, utilized a method of requesting the serv-
er to filter files based on collected metadata by in-
cluding queries with specific keywords or times [17].
However, in the case of MEGA, it does not provide
a separate Internal API for searching. Therefore, to
enable easy data filtering and searching, the func-
tionality of DevExpress, utilized in the implementa-
tion of the WPF tool aimed at independently select-

ing the results obtained in the exploration phase,
was utilized at the local level.

4.4.2 Decrypting content of individual files
The (g) of Table-2 and Table-3 describe the mes-

sage body that should be included in the API request
and response packets used to collect file contents.
In this context, the encrypted data stream can be
obtained from the URL included in the API response,
and the data stream can be decrypted using the de-
crypt key, initialization vector, and Meta Mac code
for integrity verification. Detailed steps for collecting
file contents are explained in Figure-6b (2).

4.5. Implementation
 Based on the research described in Chapter 4

and the published tools [17, 23, 24], a tool that can
be used for digital forensic analysis of MEGA was de-
veloped. This tool, shown as Figure-8, provides stor-
age navigation using user account information and
selection and collection of thumbnail and file content.
In addition, even if user account information is not
secured through a memory dump with a login history,
the key required for login may be searched and uti-
lized (Credential Cloning Attack: described at the end
of Chapter 4.2.3). As a result, the proposed tool can

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

Figure 8- The interfaces of the automated tool.

187

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

collect various 17 metadata types crucial for digital
forensic investigations from MEGA Cloud, demon-
strating its effectiveness compared to tools limited to
collecting only 8 [23] or 9 [24] metadata types.

- The proposed tool collects: file name, trashed,
created time, modified by me time, owner
name, owner id, file size, file extension, file
hash, file version, incoming/outgoing share,
shared with me time, sharing user id, sharing
user email, file downloadable URL, file path,
thumbnail

- In contrast, one existing tool [23] only collects:
file name, trashed, created time, modified by
me time, owner id, file size, file extension, file
downloadable URL

- Additionally, another tool [24], compared to the
former, can additionally collect thumbnails

5. Conclusions and future work
This paper introduces the E2EE technology

used by MEGA, detailing the process of collecting
file metadata, thumbnails, and contents from cloud
resources. It focuses on user authentication and
permission acquisition within MEGA, elucidating the
crucial keys for subsequent storage exploration and

data collection. The responses to the initial research
questions are outlined below:

• RQ1: The Internal API used for communica-
tion between the server and client in MEGA
includes specific key-value pairs in JSON
format in the body field of each request and
response packet. Chapter 4.1 describes the
functioning mechanism of the Internal API,
and in Figure-4, you can see an example of
JSON-formatted key-value pairs in the body
field of Internal API requests and response
packets.

• RQ2: The web APIs used for MEGA’s user
authentication, data exploration, and selec-
tive collection have different request URL
and packet body structures according to their
respective purposes. Table-1 presents the In-
ternal API and request URLs of MEGA, while
Table-2 and Table-3 describe the JSON-for-
matted key-value pairs included in the re-
quests and response packets of the Internal
API.

• RQ3: MEGA’s E2EE technique encrypts and
decrypts data on the client device, making it
difficult for cloud service providers to access

Table 6- Keys referenced when matching owner ID and user email

Key Sub-key Meaning
Matching Owner ID and User email

a) Uploaded User) b) Incoming)
Share User

 c) Outgoing)
Share

f

h File/Directory ID V

u Owner ID V V

r (Only exists when is Incoming Share) 1 V

su Shared User ID
(Only exists when is Incoming Share) V

s
h Shared Folder ID V

u Sharing Started User ID V

u
u User ID V V V

m, m2 User Email V V V

J. Kang et al.

188

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

decrypted data. Consequently, in digital foren-
sics activities targeting cloud servers, direct
access to data is challenging, and decryption
of data requires the client device with user
account ID, password, or connection records.

• RQ4: Most of the existing research on selec-
tive cloud data collection does not focus on
cloud services with E2EE, such as MEGA.
Therefore, in this study, we propose a data
collection approach that can be utilized in dig-
ital forensics activities for MEGA by dividing it
into three stages: authentication, exploration,
filtering & collection Figure-3. Furthermore,
we implemented automated tool for efficient
analyst.

• RQ5: The sub-key ‘a’ under the ‘f’ key in Ta-
ble-5 is end-to-end encrypted, requiring a
separate decryption process. Figure-6 illus-
trates the process of decrypting file metadata
and collecting thumbnail and file data. Ad-
ditionally, as described in Table-6, by refer-
encing other sub-keys, we can match the file
owner’s ID and email. Further details regard-
ing this are outlined in Chapter 4.3.

The authentication, exploration, filtering, and
collection phases for digital forensic investigation
of MEGA presented in this study support efficient
digital forensic activities. Existing forensic research
on cloud storage focused on services without E2EE
between clients and servers. Thus, analysis of cloud
services with features like MEGA, where the inter-
mediate server cannot access the contents of files
uploaded by clients, becomes even more important.

The method proposed in this paper is based on
encryption and decryption algorithms used in the
complete implementation of the End-to-End Encryp-
tion function targeted by MEGA Cloud. This allows
various information on resources uploaded to the
MEGA Cloud to be obtained. However, if security

policies or encryption mechanism of cloud service
providers change, the applicability of the methods
proposed in this study may be limited.

Nevertheless, even assuming that MEGA's fun-
damental algorithm has changed, the methodology
proposed in this paper for the purpose of effective
digital forensics investigation remains unchanged.
However, it will be necessary to analyze the new
decryption process according to the changed en-
cryption algorithm. This does not take much time
for technical updates as long as MEGA maintains
an open-source policy. If the policy of disclosing
services provided by MEGA as open-source soft-
ware changes, the effectiveness of research and
description on MEGA Cloud, including this paper,
will decrease. However, considering the direction of
pursuing complete encryption, it can be said that it
is very likely to disclose updates of algorithms, ad-
ditions of new functions, and minor modifications to
their official repositories [25] as they have so far.

Furthermore, cybercrime and hacking attacks
continue to increase and evolve. Consequent-
ly, new security tools and technologies to de-
fend against and respond to them will continue to
emerge. Therefore, ongoing reviews incorporating
updated encryption technologies are necessary.
Henceforth, continual professional development is
imperative for security researchers in educational
institutions and security personnel in companies
and organizations. This will enable them to effec-
tively combat potential attacks and illegal content
dissemination crimes, enhance awareness of cloud
storage service security, and utilize necessary digi-
tal forensic investigations efficiently and proactively.
Additionally, future research should propose meth-
ods supporting digital forensic investigations target-
ing other cloud storage services alongside E2EE.
Through such analysis, it is anticipated that more
effective data collection and analysis of cloud ser-

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

189

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

vices in the digital forensic field can be achieved.
Constant learning and skill enhancement are crucial
for leading the future of cybersecurity and respond-
ing actively to it. Ultimately, a deeper understanding
of E2EE will lead to the introduction of new method-
ologies and tools for cloud forensics in the future..

Conflict of interest
The authors declare no conflicts of interest.

Source of funding
This work was supported by Police-Lab 2.0 Pro-

gram(www.kipot.or.kr) funded by the Ministry of Sci-
ence and ICT(MSIT, Korea) & Korean National Police
Agency(KNPA, Korea). [Project Name: Research on
Data Acquisition and Analysis for Counter Anti-Foren-
sics/Project Number: 210121M07].

References
1. TechNavio. Cloud Storage Services Market.

TechNavio; 2019.

2. United States Department of Justice. KC Man Sen-
tenced to 16 Years for Distributing Child Pornography.
https://www.justice.gov/usao-wdmo/pr/kc-man-sen-
tenced-16-years-distributing-child-pornography. Up-
dated 28 Nov 2023.

3. United States Department of Justice. Citrus Heights
Man Pleads Guilty to Possession of Child Pornog-
raphy. https://www.justice.gov/usao-edca/pr/citrus-
heights-man-pleads-guilty-possession-child-pornog-
raphy. Updated 26 Sep 2023.

4. United States Department of Justice. Nicholas Biase:
Former West Point Staff Sergeant Sentenced To 42
Months In Prison For Possession Of Child Pornog-
raphy. https://www.justice.gov/usao-sdny/pr/former-
west-point-staff-sergeant-sentenced-42-months-pris-
on-possession-child. Updated 19 Apr 2023.

5. United States Department of Justice. Daniel Ball: Van

Wert County Man Sentenced to 10 Years in Prison for
Possession of Child Pornography. https://www.justice.
gov/usao-ndoh/pr/van-wert-county-man-sentenced-
10-years-prison-possession-child-pornography. Up-
dated 19 Apr 2023.

6. United States Department of Justice. Noblesville
Man Sentenced to over 10 Years in Federal Prison
for Distributing Child Sexual Abuse Material. https://
www.justice.gov/usao-sdin/pr/noblesville-man-sen-
tenced-over-10-years-federal-prison-distribut-
ing-child-sexual-abuse. Updated 21 Dec 2022.

7. United States Department of Justice. Indianap-
olis Man Sentenced to 151 Months in Federal
Prison for Transporting Child Sexual Abuse Ma-
terial. https://www.justice.gov/usao-sdin/pr/indianapo-
lis-man-sentenced-151-months-federal-prison-trans-
porting-child-sexual-abuse. Updated 8 Nov 2022.

8. New Jersey Attorney General’s Office. Suspend-
ed State Trooper Indicted on Child Pornography
Charges. https://www.nj.gov/oag/newsreleases19/
pr20191219c.html. Published 19 Dec 2019.

9. Seo JY. Discussions on the Searching and Seizing
Digital Evidence from Cloud Computing Environ-
ments. Jeonbuk Law Review. 2020;64:323-351.

10. Mega Limited. MEGA cloud SDK. sdk. https://github.
com/meganz/sdk.git.

11. Mega Limited. Protecting your data and respecting
your privacy. https://mega.io/security.

12. Mega Help Centre. What does “zero-knowledge”
mean? How does MEGA’s zero-knowledge encryption
work. https://help.mega.io/security/data-protection/
zero-knowledge-encryption.

13. Chung H, Park J, Lee S, Kang C. Digital forensic in-
vestigation of cloud storage services. Digital Investiga-
tion. 2012;9(2):81-95. doi:10.1016/j.diin.2012.05.015.

14. Martini B, Choo KKR. Cloud storage forensics:
ownCloud as a case study. Digital Investigation.
2013;10(4):287-299.

J. Kang et al.

190

AJFSFM 2024; Volume 6 Special Issue (ASFSFM 2023)

15. Han J, Lee S, Oh J, Kim J, Jeong H. Implemen-
tation of Selective Acquisition for Cloud Storage
Services based on Metadata. Journal of Digi-
tal Forensics. 2020;14(3):305-315. doi:10.22798/
kdfs.2020.14.3.305.

16. Kim D, Kim J, Lee S. An Analysis of Google Cloud
Data from a Digital Forensic Perspective. Journal of
the Korea Institute of Information and Communication
Engineering. 2020;24(12):1662-1669. doi:10.6109/
jkiice.2020.24.12.1662.

17. Yang J, Kim J, Bang J, Lee S, Park J. CATCH: Cloud
Data Acquisition through Comprehensive and Hybrid
Approaches. Forensic Science International: Digi-
tal Investigation. 2022;43:301442. doi:10.1016/j.fsi-
di.2022.301442.

18. Thamburasa S, Easwaramoorthy S, Aravind K, Bhu-
shan SB, Moorthy U. Digital forensic analysis of cloud
storage data in IDrive and Mega cloud drive. In: 2016
International Conference on Inventive Computation
Technologies (ICICT). IEEE; 2016. doi:10.1109/IN-
VENTIVE.2016.7830159.

19. Daryabar F, Dehghantanha A, Choo KKR. Cloud stor-
age forensics: MEGA as a case study. Australian Jour-
nal of Forensic Sciences. 2017;49(3):344-357. doi:10.
1080/00450618.2016.1153714.

20. Ji Q, Rao Z, Ni L, Zhao W, Fu J. Vulnerability Analy-
sis of MEGA Encryption Mechanism. CMC-COMPUT-
ERS MATERIALS & CONTINUA. 2022;73(1):817-
829. doi:10.32604/cmc.2022.026949.

21. MEGA Limited. MEGA Security White Paper Third
Edition. https://mega.nz/SecurityWhitepaper.pdf.

22. Mega Limited. MEGA cloud SDK, SDK Release Ver-
sion v4.28.0, https://github.com/meganz/sdk/releas-
es/tag/v4.28.0

23. odwyersoftware. mega.py. https://github.com/odwyer-
software/mega.py.

24. Pailler G. MegaApiClient. https://github.com/gpailler/
MegaApiClient.

25. Mega Limited. MEGA cloud SDK. https://github.com/
meganz

Forensic Approaches for End-to-End Encryption Cloud Storage Services: MEGA as a Case Study

