

The Emerging Dimensions of Desert Forensics: Enhancing Investigative Strategies and Techniques in Desert-Related Death Investigations

الأبعاد الناشئة لـ«التحقيق الجنائي الصحراوي»: تعزيز الإستراتيجيات والتقنيات الاستقصائية في تحقیقات الوفيات المرتبطة بالصحراء

Muhammad Rashad Bhatti¹, Ayesha Latif¹, Fatma Nadeem Sarwar², and Akbar Ali^{3*}

¹Department of Physics and Chemistry, Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, , Johor, Malaysia

²Al-Aleem Medical College, Lahore, Pakistan

³College of Forensic and Investigative Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia

Received 08 Sep. 2025; Accepted 01 Nov. 2025; Available Online 29 Dec. 2025.

Abstract

The review article expands on the challenges forensic scientists encounter in desert environments, including limited access, dry and extreme climate conditions, uncontrolled decay of forensic remains, and scavenger activity.

Specialized methods and techniques are needed to help address these issues; because while forensic science has broad appeal across disciplines, there is no research addressing specific forensic needs in a desert environment.

The article discusses specific methods for the identification, collection, and analysis of forensic evidence because the review article focuses on: drone forensics, forensic imaging, and remote sensing. The article also discusses the importance of cultural sensitivity in forensic death scene investigations because of the diverse communities living in the deserts.

Keywords: forensic sciences, death scene investigation, desert forensics, innovative methods, drone

Production and hosting by NAUSS

المستخلص

تناول هذه المقالة المصطلح الجديد «التحقيق الجنائي الصحراوي» (Desert Forensics)، والذي يمثل حاجة ماسة في التعامل مع حالات الوفاة التي تحدث في البيئة الصحراوية. وتستعرض التحديات التي يواجهها خبراء الطب الشرعي في البيئات الصحراوية، بما في ذلك صعوبة الوصول، والظروف المناخية الجافة والقاسية، والتحلل غير المنضبط للبقايا الجنائية، وحتى نشاط الحيوانات الكاسحة (الزيلا).

هناك حاجة إلى أساليب وتقنيات متخصصة لمساعدة في معالجة هذه القضايا؛ فبينما يتمتع علم الطب الشرعي بجاذبية واسعة عبر مختلف التخصصات، لا يوجد بحث مُخصص يتناول الاحتياجات الجنائية النوعية في البيئة الصحراوية.

تناول المقالة طرفةً محددة لتحديد الأدلة الجنائية وجمعها وتحليلها، حيث ترتكز على: التحقيق الجنائي بالطائرات بدون طيار (الدرون)، والتصوير الجنائي، والاستشعار عن بعد. كما تطرق المقالة إلى أهمية الحساسية الثقافية في تحقیقات مسرح الوفاة الجنائية، نظرًا لتنوع المجتمعات داخل الصحراء.

الكلمات المفتاحية: علوم الأدلة الجنائية، تحقيق مسرح الوفاة، التحقيق الجنائي الصحراوي، الأساليب المبتكرة، طائرة بدون طيار (درون)

* Corresponding Author: Akbar Ali

Email: aali@nauss.edu.sa

doi: [10.26735/ECCF5384](https://doi.org/10.26735/ECCF5384)

1. Introduction

An investigation of a death scene in the vast, open desert landscape can pose some interesting challenges for the forensics investigator. Many of these challenges are related to the difficult environment, remote locations and cultural concerns and require specifically tailored strategies to untangle the details of any deaths in the harsh environment that is a desert. The challenges begin with very little access to the remote areas of the desert that are often inaccessible due to weather events that hamper travel and transport. Secondly, assessing the cause and manner of death can be complicated due to rapid decomposition of remains in an arid climate. Thirdly, animal scavengers can decompose remains and deprive investigators of further evidence of death. When there are no witnesses and little to no forensic evidence to evaluate, it can also be challenging to determine how and when a person died. As a result of more land becoming desertified and climate change, which implies that there will probably be more arid areas, the number of deaths in arid regions are rising globally [1, 2].

When combined with environmental factors and long-range weather impacts, the desert poses special challenges for death investigation work. The work of the forensic investigator may be hampered in several ways.

- Desert environmental conditions can be especially extreme when it comes to weather or temperature, having an impact on the investigator's ability to both collect the evidence and complete their investigation
- Due to extreme temperatures, dead bodies will deteriorate extremely fast and therefore affect the investigator and pathologist's capacity to make accurate determination of the cause and manner of death.

- The desert environments will often not only attract scavengers but also allow them to disturb the evidence on the death scene.
- Desert locations may not have potential witnesses for investigators to gather information related to the circumstances leading to the death.
- The forensic investigation in the desert may lack the accessibility to forensic investigation facilities.

Well-structured trainings, expert's involvement, and technological assistance will contribute to better results under such adverse situations [3].

Objectives:

1. Identify some of the challenges created by limited access to desert locations in investigating the discovery of a deceased in the desert.
2. Identify how prevailing climatic conditions impact the preservation of evidence.
3. Identify the circumstances of the cause of death from the time of discovery to exhumation during states of rapid decomposition as associated to a desert situation.
4. Consider the implications of animal (wildlife) scavenging on forensic evidence and propose solutions that might include some (but not restricted to) fencing, trapping, and deterrents to limit animal disturbance.
5. Consider how an investigator can gather history/information/lack of witnesses in the desert environment.
6. Assess the opportunity and the effectiveness of mobile forensic units in desert areas lacking access to resources.
7. Environmental reconstruction: Forensic investigators may use various weather/environmental databases that include

temperature, humidity, etc., to reconstruct some of the environmental conditions at the crime scene, particularly to estimate time of death or post mortem interval (PMI).

8. Remote sensing, satellite imagery, aerial photography, and drones offer investigators options to assess and process crime scenes in rural deserts via an aerial survey.
9. Importance of cultural sensitivity and diversity in death scene investigation is a coded way to approach the complexities of diversity and cultural sensitivity to working in several desert communities.

This study aims to build the capacity of forensic investigators and contribute both theoretically and pragmatically to the field “Desert Forensics”.

2. Literature Review

Causes of Death and Challenges in Desert

The primary reasons for mortality reported in desert areas include various environmental, health-related, and socioeconomic. Studies have cited the substantial impact of desert dust upon humans, and the distinction between mortality and morbidity because of respiratory diseases, cardiovascular diseases, and their causes [4]. Desert dust has been connected with more deaths, hospital admissions, and emergencies in desert regions [5]. Reports have that desert invaders in the 21st century were related to environmental alterations that may significantly affect mortality and health outcomes [6]. The exposure to air pollution containing barrelled particulate matter and ozone is also resulting in high mortality [7]. Trauma of Head injury, bleeding, and multiple organ failure has been noted to be the most prevalent reason to avert preventable trauma patient fatalities thereby emphasizing the role of accidents and injuries in deserts [8]. road traffic injuries, poisoning, and

injuries due to burns have also been leading causes in deserts [9]. While outcomes of climate change human implications, and ecological disruptions on desert ecosystems have been hypothesized to correlate to, of all things desertification that may affect mortalities and health outcomes may not out dissimilar [10, 11]. Infectious diseases; zoonotic cutaneous leishmaniasis specifically was noted as a major issue for health and mortality dimension in desert regions for which studies have documented ranges [12, 13]. Reactive nitrogen compounds, hydrocarbon migration and atmospheric moisture have been tied to desert environments, respiratory diseases and health aspects of mortality [12, 14, 15]. Likewise, armed conflict, insecticide poisoning and neonatal mortality have been identified as issues of concern in desert regions, demonstrating the vast influences on mortality and health [16, 17]. The impacts of land use change, maternal mortality and soil organic matter, have also been identified as a concern in desert areas, when considering mortality and health outcomes [18, 19].

Desert areas generally have limited in access and poses challenges for investigators to respond the scene of death in time.

Socio political problems are often exacerbated by limited access to socio political systems, making it more difficult for investigators to arrive at a scene in a timely manner. A lack of roads, wide-open geography, and the difficulty in terms of scale and complexity affect forensic response.

Smith *et al.*, 2017 [20], highlighted the challenges of access and means of responding to events in socio-political sectors.

Georgiou *et al.*, 2022 [21], explored how technology may bridge the specific facets of access for investigators in desert arid and socio-political exploratory investigation. In each instance identified

and noted, this access gap was often bridged with technology that is well-established for supporting incident management, debris clearance, area search and assessment and incident merit based rescues. Social media was reported as being ultimately utilized for support at scene investigative functions. Unmanned aerial vehicles (UAVs), or drones, were highlighted for use in reporting on environmental setting contexts, as well as surveying to assist in mitigation planning and modelling. UAVs are becoming an option in a variety of uncontrolled and hazardous situations because the intended function can be modified based on any operational contingencies. Technological advances have greatly enhanced the capabilities of investigators to obtain information and document scenes in remote desert areas to avoid issues concerning access in remote places. Though technology has contributed to the ease of access to remote areas, cooperating with law enforcement agencies, first responders, and collaborators in local communities is essential for addressing access issues in the desert. Gupta et al., [22] noted that community engagement and local knowledge was important for navigating and accessing remote desert areas, and that employing partnerships could lead to improved capabilities for response to investigation and evidence collection in deserts.

Hot and extreme weather can impact the preservation of evidence and investigations.

The preservation of evidence can be impacted by the extreme weather found in desert conditions. In deserts and semi-desert areas, extreme temperatures and sparse vegetation can present difficulties in preserving evidence and conducting investigations [23]. The adaptations of the flora and fauna to the extreme conditions can also impact the preservation of evidence [24]. Extreme weather in

deserts, such as extreme heat, drought, or lack of precipitation, create difficult environmental conditions to conduct an investigation [23]. Furthermore, unfavorable natural conditions in arid regions, like a dreary lifestyle and weather, can have an impact on people's physical and mental well-being, [25, 26]. In arid areas, it may worsen the state of human remains. Forensic investigations may be hampered by environmental factors such as faunal scavengers and the harmful effects of extremely harsh environments like the desert [27]. The fluidization of desert-bordering regions due to unfavorable circumstances relates more to the broader conclusions about weather and immigration policy [28]. Additionally, it shows how vulnerable and adaptive Australian Aboriginal communities are in the face of the intricate interactions between human behavior and harsh desert climates [29].

Determining the likely cause and manner of death is becoming more and more challenging due to the high rate of decomposition of dead bodies brought on by high temperatures and environmental factors.

Desert environments have a short decomposing timeframe, which can impact forensic investigations, including precise determinations of the cause and manner of death [11]. During intense desert environments, the unintentional drying of the body (mummification) can loosen or have a decaying effect on bacteria, which may affect the preservation of evidentiary close examination [30]. Short cycles of decay in the desert environment following decomposition events can also result in a loss of visual identification and cause determination, whether due to environmental factors or foul play [31]. In a desert, bodies can decompose quickly, leaving behind little physical evidence like bite

marks, this can also have an impact on conducting appropriate forensic examinations and determining the cause and manner of death [32].

Desert scavengers present challenges to the proper response at death scenes and the recovery of forensic material.

This research also indicated that scavengers may be attracted to, and/or repelled from, hunting style of activities establishing a sophisticated ecological relationship between human and scavenging behavior [33]. Another research cited dissolved and particulate organic matter as agents in promoting scavenging behavior producing potential mitigating effects on inhibiting the natural decay process within the aquatic environment [34].

Rapid removal of scavenger disturbed remains could interfere with the collections of needed evidence which could hinder reconstructing events forensic investigations and the determination of the cause of The article also examined how scavengers were involved in the decomposition of organic matter and the ecological disturbance, scavenger activity may have in a natural ecosystem. A removal of a scavenging species can have further implications for ecological disturbances. and Researchers examined the ecological importance of scavengers and how aspects of their biology and ecology could be relevant to discussion of disturbances carved out by scavengers [35].

Desert areas may lack the potential witnesses, and can make gathering information surrounding the events leading to the death difficult

In a desert environment, investigators are in a geographical landscape. Given that there are often very few available direct witnesses in these locations of an investigation. Different scientific

methodologies can be used to piece together the events surrounding death. Forensic entomology is helpful in determining postmortem interval based on insect colonization patterns on the human body, understanding the timing involved in a sequence of events leading up to death, in the absence of witnesses. The arid geographical conditions have noteworthy effects on degradation and the formation of adipocytes in biological material affecting how biological materials decay and are represented after death. The forensic entomology and geographical/environmental context which can help put together a timeline of events leading up to death, now includes the potential for examining advanced technologies such as radiomics which can help identify and characterize environmental features and other potential artifacts associated with activities pre death, in reasonable proximity to the death site, during the human demise potentially confounding the investigation of all of the influences involved in a desert context. Current geographic technologies such as spectroscopic analysis of soil, or other vegetation, patterns, or other environmental indicators may potentially help identify activities related to human movements from the death site and potential environmental indicators not always connected to human movements. Law enforcement normally opts an informative approach with collaborators and eye witnesses that build harmony towards trust to extract information [36]. Also, assessment on potential evidence like DNA and genomics to understand affective circumstantial information linked with death [37]. There is also research around interview techniques such as eye-closure interviews that demonstrate elevation of recall from eyewitness responsibilities after witnessing heinous crime, which relate to course of action for obtaining responses and information [38]. In addition to the methods mentioned above, digital

forensic methods and analysis of digital evidence retrieved from smartphone and other digital devices can unveil more effective information relating to death [39]. Forensics odontology and the study of bite marks may assist in determining the events and potential offenders [40]. The study of visual evidence (e.g., maps, photos and remotely sensed data) may provide you with useful characteristics of where events leading to death occurred [41]. Forensic evidence that enables analysis of residual data generation of smartphone applications and medical devices may also assist in establishing the sequencing of events [42]. Utilization of forensic readiness intelligence crime repositories and visualization techniques may work for organizing and analyzing enabling exhibition of any potential digital evidence, and reconstructing events [43]. Utilizing expert witnesses, such as a social anthropologist or a forensic pathologist, and other experts can assist in developing perspectives and explorations of the circumstances of the death [44]. As a whole, collecting information about the events leading to death requires multidisciplinary, technologically enabled convergence of many methods derived from the disciplines of forensics, investigation and/or scientific modelling and practice.

Desert areas may not have forensic facilities and resources to support forensic investigation

Insufficient forensic facilities and resources in desert areas are a major obstacle to adequately complete investigations. Limited availability of forensic facilities hinders the investigation and evidence review processes. Forensic entomology, which is an important and useful tool for estimating post-mortem interval, may never be fully utilized due to the absence of forensic entomologists and facilities to conduct entomological studies in desert areas. In addition, the limited number of

contemporary forensic psychiatric hospitals and forensic mental health facilities may limit a full assessment and treatment for criminally implicated individuals with mental health components. The absence of basic epidemiological data for forensic patients and common indicators of forensic care in desert regions can limit comparative research to quantify and develop evidence-based forensic practice. The lack of a fully-functional forensic autopsy facility and forensic pathologist may limit the full investigation of deceased individuals, possibly with potential negative implications for the accuracy of death determination. The provision of basic forensic facilities and resources in desert regions is compounded by a lack of advanced technologies and processes for forensic investigations. Limited availability of imaging techniques such as near infrared spectroscopy and lack of facilities for the rapid detection and examination of environmental indicators can create challenges for the collection and interpretation of relevant forensic evidence. In addition, the absence of forensic laboratories and trained scientists in desert regions can result in substantial delays in the forensic testing and overall analysis of forensic evidence. Multiple methodologies can assist in addressing shortages and improve the capacity of forensic investigations in challenging environments.

Establishing collaborative partnerships with local and other state forensic agencies, research institutions, and nongovernment organizations can help share resources and techniques. Collaborations can help alleviate resource issues and allow access to unique forensic tools and technologies [45]. Secondly, development of structured training programs and capacity-building initiatives in forensic science can improve the forensic workforce's ability to gather evidence, utilize all available resources, and conduct an investigation.

Training in alternative forensic techniques, evidence collection methods, and how to use portable forensic kits can provide them with tools to sensibly investigate and document their evidence [46]. Recent innovations like mobile forensic laboratories and portable analysis technologies can enhance the mobile capacity of forensic teams and their ability to conduct processing and analysis on site, especially when working in remote desert regions. These portable technologies can help provide rapid evidence processing, analysis, and documentation, which can improve their efficiency and effectiveness and alleviate some of the logistical obstacles associated with transporting evidence to a forensic lab that is hours or days away from the scene of the incident [47].

Alternatively, open-source and free forensic software, as well as free databases can provide some free services to support forensic analysis in desert regions. Although they can provide support for digital forensic investigations, DNA testing, profiling, and other investigative processes and also can help to alleviate the inability to access perfusion services because of financial reasons. [48, 49]. It is important to advocate for and support for forensic infrastructure and research on desert regions. This includes funding for the purchase of essential forensic equipment, funding for forensic laboratories, and hiring and training forensic professionals [50].

Finally, the inclusion of traditional knowledge and local capacity supports a forensic investigation in some desert regions. Working with people who live in the desert, and getting to know the indigenous peoples, is critical engagement that provides information on the environmental and cultural contexts in each forensic case, which leads to a more comprehensive approach to investigation. Addressing forensic investigation resource gaps

in desert regions will require various approaches that will be engaged simultaneously, including collaboration, training, operational technology, advocacy, and local engagement. This is all aimed at increasing forensic capacity, which can result in fundamentally different approaches to investigation in desert regions with limited resources.

Challenges for navigation in desert terrain, causing difficulty to locate Incident points

Desert terrain may create navigational challenges so locating a specific death scene may become a challenge the challenging terrain of desert regions creates significant navigational barriers, creating challenges with locating a specific scene of death. The desert, with its varied topography, intense environmental conditions, and sparse landmarks, creates significant challenges for individuals who or teams tasked with locating a specific area of incident. Innovations in technology and methods are significant means of overcoming navigation challenges in desert landscapes. Legged robots offer a practical alternative for navigation in challenging terrain and may also find application as autonomous exploratory and information-gathering agents in remote desert landscapes [51]. Furthermore, the blending of artificial intelligence and path integration techniques in insect navigation offers a launching point to propose best multi guidance integration for the navigation of challenging regions [52]. Utilizing autonomous aerial vehicles, in particular decision support systems reliant on terrain-aided navigation, can assist in improving outcomes and achieving safer search and rescue operations for human subjects in desert environments. Terrain-aided navigation systems utilize the shape information and terrain features along with digital elevation models to determine locations and accomplish mission tasks,

which is especially necessary in a desert context due to the rough, uncluttered terrains often found in deserts [45]. Ability and empowerment of a robust particle filter as well as the functionalization of a deep learning based navigability estimator can increase effective navigation of ground robots in unstructured desert environment conditions, ultimately resulting in affective improvements for facilitating path planning and navigability in challenging regions [53, 54]. The in terrain matching localization, and terrain aided navigation algorithms using autonomous vehicles and planetary rovers in specific and extreme terrains, including deserts [55, 56].

Deserts have a variety of ecosystems and cultures, and researchers must be sensitive to and aware of cultural diversity when exploring or studying desert environments.

Geographical and ecological trends typical of deserts have created a distinctive variety of microbes, flora, and fauna, with a large pattern of spatial, cultural and ecological variety. For instance, several actinobacteria are facilitated by the Atacama Desert, with most of the microorganisms that were isolated from soil samples obtained in hyperarid areas of the desert showing the possibility for new and intriguing discoveries of novel environmental and biotechnological applications [57, 58]. Microbial diversity of desert soils and ecological characteristics of viruses in arid desert environments highlight the need to understand the intricate interactions between microorganisms and their environment [59, 60]. Cultural diversity found in desert populations is complemented by specialized ecological and biological diversity. For instance, rural and desert-native communities draw upon rich and sophisticated systems of knowledge and customary practices that are naturally inextricably immersed

in the local ecosystem and biodiversity. A number of reconstructed ethnobotanical studies have found to detail a sophisticated use of ethnobotanical knowledge by human societies [61].

3. Methodology

This research article is based on a thorough review of existing literature, including peer-reviewed scientific articles, books, and reports, as well as the author's own experiences in forensic investigations in desert environments.

4. Discussion

Risk factors for death in desert areas can be categorized according to the various causes of death. These risks include:

- **Environmental hazards:** High temperatures, toxic exposure from plants or contaminated water, and rapid changes in weather conditions contribute significantly to heat stroke, heat exhaustion, and dehydration.
- **Animal encounters:** Venomous animals, such as snakes, scorpions, and spiders, pose a threat to humans. Insect/bee sting attacks are also a potential threat.
- **Quicksand:** Areas with saturated sand can trap individuals, causing them to sink.
- **Sandstorms:** powerful winds can blind drivers, disorient travelers, and bury people.
- **Flash floods:** A sudden and severe rain event can transform dry riverbeds into rushing rivers capable of washing away vehicles and drowning unsuspecting individuals

The most common injuries associated with desert-related deaths include closed injuries (e.g., sprains, strains, contusions, fractures), open injuries (e.g., blisters, cuts, abrasions, punctures), and venomous bites or toxic exposure from plants or contaminated water. In addition to injuries,

environmental hazards may also contribute to the morbidity and mortality associated with conditions specific to desert climates. Less often, injuries from quicksand, sandstorms, or flash floods can also be substantial hazards in the desert [3, 62-64].

There are two primary topics of interest:

- Specialized Strategies and Techniques
- Interdisciplinary Collaboration.

Specialized Strategies and Techniques: The following will provide a detailed analysis of the many specialized techniques and strategies.

1. Drone Forensics: Drones are able to provide surveillance capabilities and cartographic internet maps for aerial photographs collected by high-resolution cameras and sensors to document death scenes in desert locations [65]. Drones also have thermal sensors that can detect the activity of insects or animals in the immediate vicinity of the corpse [66, 67].

2. Video Interpretation: Artificial vision-based surveillance systems can monitor human activity and identify different objects. These systems can also be employed to record data pertaining to locations where people have undertaken hunting activities [68].

3. Aerial Imaging and Plant-Life Assessment: With the help of satellite images and drone observation, analysts can investigate vegetation patterns and ecosystem structure. These approaches have been found useful in the identification of probable death sites and possible burial grounds within deserts [69]. Additionally, forensic examination of vegetation—based on such evidence as seeds, leaves, or pollen can reveal information on the environment, soil type, and any contact a victim might have had with indigenous plant life. In arid environments, techniques

Figure 1- Deceased body was covered by the locals before the arrival of Law Enforcement- (Photos courtesy of Law Enforcement South Punjab, Pakistan)

Figure 2- The position and condition of the deceased became clearer once the covering cloth sheet was removed. (Photos courtesy of Law Enforcement South Punjab, Pakistan)

like botanical sampling, pollen analysis, identification of species, and investigation of plant-associated traces can all be used [70].

4. Landform Evaluation: Geospatial analysis such as elevation-based measurement and digital terrain modeling assists in defining desert terrain physical characteristics more accurately. Such methods aid in the identification of potential locations where deaths are likely to have happened [71, 72].

5. Identifying Water Sources and Environmental Traces: Application of near-infrared spectral analysis coupled with chemical data modeling of plant constituents such as benzoxazinoids allows desert areas to be searched for evidence during reconstruction of death scene. This

encompasses combined searching for water sources and ecological indicators by analysis of acidic organic residues within an integrating investigative framework [35, 73].

6. Dust Aerosol Distribution Analysis: Numerical modeling and simulation techniques have been employed to analyze the distribution and impact of dust aerosols in desert environments, aiding in the assessment of potential death scenes and environmental hazards [74-76]

7. Forensic Visualization and Imaging for Scene Documentation: Pam Johnson's approach integrates technologies like 3D scanning reconstruct and interpret human remains in a highly precise manner. With these technologies, one is able to create detailed

Figure 3- Dead body of a female was placed on the cot outside the house's premises by the family before the arrival of Law Enforcement- (Photos courtesy of Law Enforcement South Punjab, Pakistan)

Figure 4- Dead body of a female which was covered with cloth by the family before the arrival of Law Enforcement- (Photos courtesy of Law Enforcement South Punjab, Pakistan)

visual models of the scene, including spatial relationships as well as physical evidence. Validating the visual products depends on proper mapping and contextualization of the scene through annotated imagery and corroborative information. This procedure is critical to guarantee the reliability, credibility, and evidential strength of computer-based reconstructions in forensic investigations in desert regions [77, 78].

B.Collaboration within the different disciplines: This kind of collaboration is integral during investigation of deaths related to deserts by collaborating conventional forensic disciplines e.g. trace and fingerprints with other analysis types;

1. Forensic Anthropology: A forensic anthropologist analyzes human remains and determines individual characteristics including gender, age, health, and indicators of accidental death or disease to identify unknown decedents [44, 79, 80].

2. Rapid DNA Technology: Rapid analysis of DNA can be employed at a crime scene in order to identify unidentified remains [81].

3. Digital Forensics and Memory-Based Forensic Techniques. Digital forensic tools are used to recover and analyze digital evidence, including establishing the integrity and credibility of electronic material surrounding investigation of death [12, 82]. Internal storage of computers plays a significant role in the forensic analysis of metadata, which is required in the construction of timeline and context deaths in arid terrain [11, 83]. Examination of recovered digital media, particularly through imaging methods on corrupted storage media and damaged memory cards can provide valuable forensic

information and aid the evidentiary process [84].

4. Molecular Fingerprinting: The examination of biological, microbial and environmental samples also referred as molecular fingerprinting helps in understanding the ecological framework of desert death scenes [85, 86]. Forensic botanists therefore may also play an effective role in such cases.

5. Forensic Entomology: The analysis and subsequent interpretation of insect colonization and decomposition in desert environments serve as forensic florist predictors of postmortem intervals in understanding civil or criminal circumstances involving a death. Current forensic entomology practices supplied via insect collections or specimen and subsequent ecological or environmental data will be critical for forensic investigations in desert spaces. [87, 88].

6. Forensic Odontology: Dental identification is one of the most common forensic techniques in the world. It would be a good and robust technique to identify while dealing with human skeletal or decomposed bodies in desert [89].

Cases with Reference to the Desert Dynamics

Concealing the identification of the deceased, like homicide cases involving disfiguring the deceased body to mislead the investigation were dumped in water channels for concealing identification. In a desert, where water channels are not available. Such activities are the result of enmity and vengeance, which normally represent the social and cultural behavior of desert life. The case below is one such example: a dead body of an unknown male aged about 50 years was found to be fully clothed outdoors and decapitated. The deceased person was later identified by the

Figure 5- Photograph is showing only the face and feet of the deceased female body (Photos courtesy of Law Enforcement South Punjab, Pakistan)

Figure 6- Dead body of a male which was moved and shifted before the arrival of Law Enforcement (Photos courtesy of Law Enforcement South Punjab, Pakistan)

local law enforcement. No plausible link or clue of assailant was found on the crime scene as it was already disturbed before the arrival of investigators. The nephew of the deceased was arrested by the police on suspicion who later confessed, and led the police team to recover the head of the deceased person.

Another case demonstrating aspect of social and cultural values while dealing with a death scene. A dead body of a female about 45 years old was covered with cloth sheet and also barricaded with wooden cots to avoid people other than family. The investigation team was also restrained and only allowed to take photographs of face and feet. The

team was not allowed to observe the clothing of the deceased to check any foul play. Such activities normally hinder the process of crime scene investigation, the family/tribe not allow to conduct autopsy in most of the cases. However, keeping in view and honoring the cultural values of the locals, investigation teams have to process the scene to assist the criminal justice system.

Another important factor frequently encountered by law enforcement is the decomposition of dead bodies in desert areas. In this case, a decomposed body of an unknown male was found and moved from the original crime scene to a nearby health facility. Such activities caused an almost complete loss of evidence and even the exact scene locations due to sand movement and the absence of legends or location identifiers.

Such situations, when encountered by the locals and law enforcement agencies should be handled with strategies (like fencing, trapping) to mitigate the effect of scavengers on deceased bodies as well as the crime scene.

5. Conclusion

In conclusion, this study discusses the diverse challenges associated with deaths in desert areas, ranging from environmental hazards to animal encounters, quicksand, sandstorms, and flashfloods, all of which result in various injuries. Recognizing the urgency for a specialized and multidisciplinary approach to death scene investigations in desolate landscapes, this study delineates two crucial facets: Specialized Techniques and Strategies, and Interdisciplinary Collaboration. The deployment of cutting-edge methodologies, such as Aerial and Drone Forensics, Video-Based Evidence Analysis, Remote Sensing and Vegetation Monitoring, Terrain Analysis, Waterhole Detection, Dust Aerosol Distribution Analysis, and Forensic Imaging and

Visualization, can be tailored to the unique challenges of desert environments. At the same time, the combination of disciplines, including Forensic Anthropology, Rapid DNA Technology, Digital Forensics, Memory-Based Forensic Approaches, Molecular Fingerprinting, and Forensic Entomology, highlights the importance of combining knowledge and skill sets to address the challenges associated with deaths in desert contexts. The use of cutting-edge techniques, in conjunction with various is critical to advancing forensic and investigative protocols in desert regions.

6. Recommendations

Drawing on the literature review and the discussion, the study provides a series of recommendations to achieve improvements and effectiveness in the field of desert forensics.

Dedicated mobile forensic units

dedicated crime scene vehicle with all necessary apparatus and consumables to carry out desert forensics, fitted with heat resistant tent / temperature controlled evidence boxes.

Technological Advancements

Continue with the development and integration of advanced technologies such as drone forensics, video based evidence analysis, and remote sensing, additional developments in these areas will increase the effectiveness and efficiency of death scene investigations in desert settings.

Interdisciplinary Training Programs

Organize and create interdisciplinary training programs with experts in forensic anthropology, digital forensics, entomology etc. Hence, creating a joint.

Research and Development

Creating more funding opportunities for the

research and development in the challenging field of desert forensics.

Standards and Protocols

Develop standards and protocols to deal with challenges related to desert forensics. like drastic weather conditions, decomposition of human remains.

Community Engagement

Engagement and trust of local community is always very beneficial. The intelligence gathered with local community support help in understanding the local environment and conditions.

Continuous Professional Development

Continuous professional training and development of the crime scene investigators and other forensic staff will ensure capacity building desert death scene investigations.

International Collaboration

Promote international collaboration by sharing and exchanging the latest experiences regarding desert forensic investigations through seminars, conferences, webinars, research articles and case studies.

Integration of Environmental Sciences

The integration of environmental sciences like climatology, aquatic biology, human and soil ecology with criminal investigations while dealing with desert death scenes will further enhance the capacity and approach of investigators.

Validation Studies

Perform validation of methods and procedures to evaluate their performance and reliability in varying environments of deserts.

Public Awareness Campaigns

Conduct public awareness campaigns through social and print media about risks and hazards involved associated with desert environments.

Long-Term Environmental Monitoring

Periodic environmental monitoring in deserts with respect to aquatic and vegetative regions is necessary to properly evaluate the potential risks associated with desert death scene.

Ethical Considerations

Develop ethical standards and guidelines to address the sensitive social and cultural aspects related to the desert.

These recommendations will not only ensure the capacity building of forensic experts to conduct comprehensive death scene investigations but also educate the relevant community in the desert environment.

Conflict of interest

The authors declare no conflicts of interest.

Source of funding

The authors received no financial support for the research, authorship or publication of this paper.

References

1. L. Fan, K. Baylis, C. Gundersen, and M. Ver Ploeg, Does a nutritious diet cost more in food deserts, *Agricultural Economics (United Kingdom)*, vol. 49, no. 5, pp. 587–597, Sep. 2018, doi: 10.1111/agec.12444.
2. J. Shannon, Beyond the Supermarket Solution: Linking Food Deserts, Neighborhood Context, and Everyday Mobility, *Ann Am Assoc Geogr*, vol. 106, no. 1, pp. 186–202, Jan. 2016, doi: 10.1080/00045608.2015.1095059.

3. J. F. Koleski, S. Aldulaimi, A. M. Allen, P. Rivers, and L. A. Denny, Border Crosser Deaths in the Arizona-Mexico Desert: Data on Remains 2001–2020, *J Health Care Poor Underserved*, vol. 33, no. 1, pp. 398–406, 2022, doi: 10.1353/hpu.2022.0030.
4. X. Zhang, L. Zhao, D. Q. Tong, G. Wu, M. Dan, and B. Teng, A systematic review of global desert dust and associated human health effects, 2016, MDPI AG. doi: 10.3390/atmos7120158.
5. C. Bouet et al., Impact of desert dust on air quality: What is the meaningfulness of daily PM standards in regions close to the sources? The example of Southern Tunisia, *Atmosphere (Basel)*, vol. 10, no. 8, Aug. 2019, doi: 10.3390/atmos10080452.
6. F. Wu et al., Active Nitrogen Cycle Driven by Solar Radiation in Clean Desert Air, *Earths Future*, vol. 10, no. 4, Apr. 2022, doi: 10.1029/2021EF002451.
7. J. Wang, J. Li, X. Li, and C. Fang, Characteristics of Air Pollutants Emission and Its Impacts on Public Health of Chengdu, Western China, *Int J Environ Res Public Health*, vol. 19, no. 24, p. 16852, Dec. 2022, doi: 10.3390/ijerph192416852.
8. Y. Park et al., Major Causes of Preventable Death in Trauma Patients, *Journal of Trauma and Injury*, vol. 34, no. 4, pp. 225–232, Dec. 2021, doi: 10.20408/jti.2020.0074.
9. K. J. Prasad, B. Venkatesulu, and M. A. Khalid, Pattern of Medicolegal Autopsies Conducted at Tirupati, Andhra Pradesh: A 3-Year Retrospective Study, vol. 14, p. 2021, 2021, doi: 10.22159/ajpcr.2021v14i12.43304.
10. R. Yang, Y. Su, and J. Kong, Effect of tillage, cropping, and mulching pattern on crop yield, soil C and N accumulation, and carbon footprint in a desert oasis farmland, *Soil Sci Plant Nutr*, vol. 63, no. 6, pp. 599–606, Nov. 2017, doi: 10.1080/00380768.2017.1396878.
11. M. Madadin, R. Al-Abdulrahman, S. Alahmed, R. Alabdulqader, L. Alshehri, and N. Alkathery, Desert related death, Nov. 01, 2021, MDPI. doi: 10.3390/ijerph182111272.
12. X. Liu and L. Xin, China's deserts greening and response to climate variability and human activities, *PLoS One*, vol. 16, no. 8 August, Aug. 2021, doi: 10.1371/journal.pone.0256462.
13. R. Hussain et al., Clostridium perfringens Types A and D Involved in Peracute Deaths in Goats Kept in Cholistan Ecosystem During Winter Season, *Front Vet Sci*, vol. 9, Mar. 2022, doi: 10.3389/fvets.2022.849856.
14. M. Boultif, N. Boughobra, N. Bakroune, and N. Deghiche-Diab, Assessment of Biotope Suitability of Desert Locust (*Schistocerca gregaria*) in the Region of Hoggar (Southern Algerian Sahara), *Journal of Ecological Engineering*, vol. 23, no. 9, pp. 171–180, 2022, doi: 10.12911/22998993/151842.
15. W. Barhoumi et al., “Risk assessment of the role of the ecotones in the transmission of zoonotic cutaneous leishmaniasis in central tunisia, *Int J Environ Res Public Health*, vol. 18, no. 17, Sep. 2021, doi: 10.3390/ijerph18179274.
16. L. Luo et al., Are the shoreline and eutrophication of desert lakes related to desert development?, *Environ Monit Assess*, vol. 193, no. 1, Jan. 2021, doi: 10.1007/s10661-020-08806-0.
17. R. McCarthy, B. Gino, K.-L. Williams, P. D'Entremont, and T. S. Renouf, Prehospital Trauma Care: A Simulation Scenario for Rural-Based Healthcare Providers, *Cureus*, Jun. 2020, doi: 10.7759/cureus.8834.
18. I. A. El-Magd, N. Zanaty, E. M. Ali, H. Irie, and A. I. Abdelkader, Investigation of aerosol climatology, optical characteristics and variability over Egypt based on satellite observations and in-situ measurements, *Atmosphere (Basel)*, vol. 11, no. 7, Jul. 2020, doi: 10.3390/atmos11070714.
19. A. T. Showler and M. Lecoq, Incidence and ramifications of armed conflict in countries with major

desert locust breeding areas, *Agronomy*, vol. 11, no. 1, Jan. 2021, doi: 10.3390/AGRONOMY11010114.

20. P. A. Smith, M. D. Raven, K. Walshe, R. W. Fitzpatrick, and F. D. Pate, Scientific evidence for the identification of an Aboriginal massacre at the Sturt Creek sites on the Kimberley frontier of north-western Australia., *Forensic Sci Int*, vol. 279, pp. 258–267, Oct. 2017, doi: 10.1016/j.forsciint.2017.08.018.

21. A. Georgiou, P. Masters, S. Johnson, and L. Feetham, UAV-assisted real-time evidence detection in outdoor crime scene investigations., *J Forensic Sci*, vol. 67, no. 3, pp. 1221–1232, May 2022, doi: 10.1111/1556-4029.15009.

22. S. D. Gupta, A. Khanna, R. Gupta, N. K. Sharma, and N. D. Sharma, “Maternal Mortality Ratio and Predictors of Maternal Deaths in Selected Desert Districts in Rajasthan. A Community-Based Survey and Case Control Study,” *Women’s Health Issues*, vol. 20, no. 1, pp. 80–85, Jan. 2010, doi: 10.1016/j.whi.2009.10.003.

23. J. Mamut, D. Tan, C. C. Baskin, and J. M. Baskin, Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual *Lachnoloma lehmannii* in China, *J Arid Land*, vol. 11, no. 5, pp. 774–784, Oct. 2019, doi: 10.1007/s40333-019-0015-8.

24. M. Ferrante, D. Möller, G. Möller, E. Menares, Y. Lubin, and M. Segoli, Invertebrate and vertebrate predation rates in a hyperarid ecosystem following an oil spill, *Ecol Evol*, vol. 11, no. 17, pp. 12153–12160, Sep. 2021, doi: 10.1002/ece3.7978.

25. F. Yang, Y. Zhang, R. Qiu, and N. Tao, Association of sleep duration and sleep quality with hypertension in oil workers in Xinjiang, *PeerJ*, vol. 9, p. e11318, May 2021, doi: 10.7717/peerj.11318.

26. T. Jiang, H. Ge, J. Sun, R. Li, R. Han, and J. Liu, Relationship between occupational stress, 5-HT2A receptor polymorphisms and mental health in petroleum workers in the xinjiang arid desert: A cross-sectional study, *Int J Environ Res Public Health*, vol. 14, no. 4, Apr. 2017, doi: 10.3390/ijerph14040402.

27. G. Soto, Migrant memento mori and the geography of risk, *Journal of Social Archaeology*, vol. 16, no. 3, pp. 335–358, Oct. 2016, doi: 10.1177/1469605316673171.

28. L. Stephen, Creating Preemptive Suspects: National Security, Border Defense, and Immigration Policy, 1980–Present, *Lat Am Perspect*, vol. 45, no. 6, pp. 7–25, Nov. 2018, doi: 10.1177/0094582X17699907.

29. E. Simpson and R. W. Byard, A Review of osteological remains submitted for forensic examination in south Australia over a 7-year period (2013–2019)., *J Forensic Leg Med*, vol. 76, p. 102074, Nov. 2020, doi: 10.1016/j.jflm.2020.102074.

30. A.-S. Ceciliason, & M. G. Andersson, S. Nyberg, and H. Sandler, “Histological quantification of decomposed human livers: a potential aid for estimation of the post-mortem interval?”, doi: 10.1007/s00414-020-02467-x/Published.

31. S. H. Al-Amad, “Dental Evidence as a Sole Human Identifier in World Disasters: A Literature Review with Emphasis on the 2004 Tsunami Disaster,” *Arab Journal of Forensic Sciences & Forensic Medicine*, vol. 1, no. 7, pp. 781–791, Jun. 2018, doi: 10.26735/16586794.2018.006.

32. A. A. da F. de Souza, C. T. A. de Rosa, L. C. Arantes, and J. R. Pujol-Luz, Artifacts Caused by Leaf-Cutting Ants of the Genus *Atta* (Hymenoptera: Formicidae): Postmortem Bite Injuries and the Tearing of Clothes, *J Forensic Sci*, vol. 65, no. 3, pp. 1012–1015, May 2020, doi: 10.1111/1556-4029.14279.

33. C. Brown, R. Julian, and L. M. Howes, Strands in a cable: effective investigator decision-making using forensic identification evidence in volume crime investigations, *Policing Soc*, 2023, doi: 10.1080/10439463.2023.2279063.

34. J. L. Caruso, Decomposition Changes in Bodies Recovered from Water, Mar. 01, 2016, SAGE Publications Inc. doi: 10.23907/2016.003.

35. J. Draper, T. Rodgers, and J. K. Young, Beating the heat: ecology of desert bobcats, *BMC Ecol Evol*,

vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12862-022-01973-3.

36. J. P. Vallano, J. R. Evans, N. Schreiber Compo, and J. M. Kieckhafer, Rapport-Building During Witness and Suspect Interviews: A Survey of Law Enforcement, *Appl Cogn Psychol*, vol. 29, no. 3, pp. 369–380, May 2015, doi: 10.1002/acp.3115.
37. M. Diepenbroek et al., Evaluation of the Ion AmpliSeqTM PhenoTrivium Panel: MPS-Based Assay for Ancestry and Phenotype Predictions Challenged by Casework Samples, *Genes* (Basel), vol. 11, no. 12, p. 1398, Nov. 2020, doi: 10.3390/genes11121398.
38. A. Vredveldt, C. G. Tredoux, A. Nortje, K. Kempen, C. Puljevic, and G. N. Labuschagne, A field evaluation of the Eye-Closure Interview with witnesses of serious crimes, *Law Hum Behav*, vol. 39, no. 2, pp. 189–197, Apr. 2015, doi: 10.1037/lhb0000113.
39. A. Nieto, R. Rios, and J. Lopez, IoT-forensics meets privacy: Towards cooperative digital investigations, *Sensors* (Switzerland), vol. 18, no. 2, Feb. 2018, doi: 10.3390/s18020492.
40. G. Fonseca, E. Mora, J. Lucena, and M. Cantín, Forensic studies of dog attacks on humans: a focus on bite mark analysis, *Research and Reports in Forensic Medical Science*, p. 39, Oct. 2015, doi: 10.2147/RRFMS.S92068.
41. J. Kerti, C. Sturdy Colls, and R. Swetnam, Visualising Evidence and Landscapes of Atrocities: An Ethical Perspective, in *Digital Holocaust Memory, Education and Research*, Cham: Springer International Publishing, 2021, pp. 119–144. doi: 10.1007/978-3-030-83496-8_6.
42. G. Grispos, W. B. Glisson, and P. Cooper, A Bleeding Digital Heart: Identifying Residual Data Generation from Smartphone Applications Interacting with Medical Devices. [Online]. Available: <https://hdl.handle.net/10125/59865>
43. V. R. Kebande, N. M. Karie, K. R. Choo, and S. Alawadi, Digital forensic readiness intelligence crime repository, *SECURITY AND PRIVACY*, vol. 4, no. 3, May 2021, doi: 10.1002/spy2.151.
44. J. W. W. Rose, Forensic social anthropology: an Australian perspective, *Journal of the Royal Anthropological Institute*, vol. 29, no. S2, pp. 9–26, Sep. 2023, doi: 10.1111/1467-9655.13991.
45. L. Gerdes, M. Azkarate, J. R. Sánchez-Ibáñez, L. Joudrier, and C. J. Perez-del-Pulgar, Efficient autonomous navigation for planetary rovers with limited resources, *J Field Robot*, vol. 37, no. 7, pp. 1153–1170, Oct. 2020, doi: 10.1002/rob.21981.
46. S. Wüllenweber and S. Giles, The effectiveness of forensic evidence in the investigation of volume crime scenes, *Science & Justice*, vol. 61, no. 5, pp. 542–554, Sep. 2021, doi: 10.1016/J.SCIJUS.2021.06.008.
47. D. O. Larson, A. A. Vass, and M. Wise, Advanced Scientific Methods and Procedures in the Forensic Investigation of Clandestine Graves, *J Contemp Crim Justice*, vol. 27, no. 2, pp. 149–182, May 2011, doi: 10.1177/1043986211405885.
48. M. Sharma and D. Sharma, Murder Mystery Solved with the Help of Forensic Investigation, *Brazilian Journal of Forensic Sciences, Medical Law and Bioethics*, vol. 9, no. 3, pp. 366–372, 2020, doi: 10.17063/bjfs9(3)y2020366.
49. C. A. J. van den Eeden, C. J. de Poot, and P. J. van Koppen, The Forensic Confirmation Bias: A Comparison Between Experts and Novices, *J Forensic Sci*, vol. 64, no. 1, pp. 120–126, Jan. 2019, doi: 10.1111/1556-4029.13817.
50. B. S. Van Deventer, L. Du Toit-Prinsloo, and C. Van Niekerk, Practical tips to using formalin-fixed paraffin-embedded tissue archives for molecular diagnostics in a South African setting, *Afr J Lab Med*, vol. 11, no. 1, p. 6, Jun. 2022, doi: 10.4102/ajlm.v11i1.1587.
51. M. Bjelonic, N. Kottege, T. Homberger, P. Borges, P. Beckerle, and M. Chli, “Weaver: Hexapod robot for autonomous navigation on unstructured terrain,” *J Field Robot*, vol. 35, no. 7, pp. 1063–1079, Oct. 2018, doi: 10.1002/rob.21795.

52. T. Hoinville and R. Wehner, "Optimal multiguide integration in insect navigation," *Proc Natl Acad Sci U S A*, vol. 115, no. 11, pp. 2824–2829, 2018, doi: 10.1073/pnas.1721668115.

53. F. C. Teixeira, J. Quintas, P. Maurya, and A. Pascoal, "Robust particle filter formulations with application to terrain-aided navigation," *Int J Adapt Control Signal Process*, vol. 31, no. 4, pp. 608–651, Apr. 2017, doi: 10.1002/acs.2692.

54. M. Visca, S. Kuutti, R. Powell, Y. Gao, and S. Fallah, "Deep Learning Traversability Estimator for Mobile Robots in Unstructured Environments," May 2021, [Online]. Available: <http://arxiv.org/abs/2105.10937>

55. L. Zhou, X. Cheng, Y. Zhu, C. Dai, and J. Fu, "An effective terrain aided navigation for low-cost autonomous underwater vehicles," *Sensors (Switzerland)*, vol. 17, no. 4, Apr. 2017, doi: 10.3390/s17040680.

56. Long Zhao, Nan Gao, Baoqi Huang, Qingyun Wang, and Jianhua Zhou, "A Novel Terrain-Aided Navigation Algorithm Combined With the TERCOM Algorithm and Particle Filter," *IEEE Sens J*, vol. 15, no. 2, pp. 1124–1131, Feb. 2015, doi: 10.1109/JSEN.2014.2360916.

57. M. S. M. Selim, S. A. Abdelhamid, and S. S. Mohamed, "Secondary metabolites and biodiversity of actinomycetes," *Journal of Genetic Engineering and Biotechnology*, vol. 19, no. 1, p. 72, Dec. 2021, doi: 10.1186/S43141-021-00156-9.

58. M. E. Rateb, R. Ebel, and M. Jaspars, "Natural product diversity of actinobacteria in the Atacama Desert," Aug. 01, 2018, Springer Netherlands. doi: 10.1007/s10482-018-1030-z.

59. O. Zablocki, E. M. Adriaenssens, and D. Cowan, "Diversity and Ecology of Viruses in Hyperarid Desert Soils," *Appl Environ Microbiol*, vol. 82, no. 3, pp. 770–7, Feb. 2016, doi: 10.1128/AEM.02651-15.

60. A. T. Bull, J. A. Asenjo, M. Goodfellow, and B. Gómez-Silva, "The Atacama Desert: Technical Resources and the Growing Importance of Novel Microbial Diversity," Sep. 08, 2016, Annual Reviews Inc. doi: 10.1146/annurev-micro-102215-095236.

61. E. Estrada-Castillón *et al.*, "Ethnobotanical biocultural diversity by rural communities in the Cuatrocienegas Valley, Coahuila; Mexico," *J Ethnobiol Ethnomed*, vol. 17, no. 1, p. 21, Dec. 2021, doi: 10.1186/s13002-021-00445-0.

62. K. M. Lougee, G. L. Hess, and D. C. Winston, "Environmental Deaths in Southern Arizona," Mar. 01, 2018, SAGE Publications Inc. doi: 10.23907/2018.004.

63. S. Lawrence and J. Wildgen, "Manifold Destiny: Migrant Deaths and Destinations in the Arizona Desert," 2012.

64. D. K. Androff and K. Y. Tavassoli, "Deaths in the desert: the human rights crisis on the U.S.-Mexico border," *Soc Work*, vol. 57, no. 2, pp. 165–73, Apr. 2012, doi: 10.1093/sw/sws034.

65. A. Al-Dhaqm, R. A. Ikuesan, V. R. Kebande, S. Razak, and F. M. Ghabban, "Research challenges and opportunities in drone forensics models," Jul. 01, 2021, MDPI AG. doi: 10.3390/electronics10131519.

66. G. Horsman, "Unmanned aerial vehicles: A preliminary analysis of forensic challenges," *Digit Investig*, vol. 16, pp. 1–11, Mar. 2016, doi: 10.1016/j.dii.2015.11.002.

67. O. Butters, M. N. Krosch, M. Roberts, and D. MacGregor, "Application of forward-looking infrared (FLIR) imaging from an unmanned aerial platform in the search for decomposing remains," *J Forensic Sci*, vol. 66, no. 1, pp. 347–355, Jan. 2021, doi: 10.1111/1556-4029.14581.

68. J. Xiao, S. Li, and Q. Xu, "Video-Based Evidence Analysis and Extraction in Digital Forensic Investigation," *IEEE Access*, vol. 7, pp. 55432–55442, 2019, doi: 10.1109/ACCESS.2019.2913648.

69. J.K. Pringle *et al.*, "Geophysical monitoring of simulated homicide burials for forensic investigations," *Sci Rep*, vol. 10, no. 1, p. 7544, May 2020, doi: 10.1038/s41598-020-64262-3.

70. H. Ram et al., Meiotic Studies in *<i>Withania somnifera</i>* (L.) Dunal.: A Threatened Medicinal Herb of Indian Thar Desert, *Am J Plant Sci*, vol. 03, no. 02, pp. 185–189, Feb. 2012, doi: 10.4236/ajps.2012.32022.

71. J. V. Gedir, J. W. Cain, T. L. Swetnam, P. R. Krausman, and J. R. Morgart, Extreme drought and adaptive resource selection by a desert mammal, *Ecosphere*, vol. 11, no. 7, Jul. 2020, doi: 10.1002/ecs2.3175.

72. O. Argudo et al., Coherent multi-layer landscape synthesis, *Vis Comput*, vol. 33, no. 6–8, pp. 1005–1015, Jun. 2017, doi: 10.1007/s00371-017-1393-6.

73. M. M. Abdullah, Z. M. Al-Ali, M. T. Abdullah, and B. Al-Anzi, The use of very-high-resolution aerial imagery to estimate the structure and distribution of the *rhanterium epapposum* community for long-term monitoring in desert ecosystems, *Plants*, vol. 10, no. 5, 2021, doi: 10.3390/plants10050977.

74. H. Sun and X. Liu, Numerical modeling of topography-modulated dust aerosol distribution and its influence on the onset of East Asian summer monsoon, *Advances in Meteorology*, vol. 2016, 2016, doi: 10.1155/2016/6951942.

75. E. Vergadi, G. Rouva, M. Angelis, and E. Galanakis, Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review., *Int J Environ Res Public Health*, vol. 19, no. 11, p. 6907, Jun. 2022, doi: 10.3390/ijerph19116907.

76. Y. Yuan et al., Dust Events and Indoor Air Quality in Residential Homes in Kuwait., *Int J Environ Res Public Health*, vol. 17, no. 7, p. 2433, Apr. 2020, doi: 10.3390/ijerph17072433.

77. W. B. Law, P. Hiscock, B. Ostendorf, and M. Lewis, Using satellite imagery to evaluate precontact Aboriginal foraging habitats in the Australian Western Desert, *Sci Rep*, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-89642-1.

78. H. Suzuki and S. Ozaki, Multi-stage terramechanics simulation: Seamless analyses between formation of wind ripple pattern and wheel locomotion, *Cogent Eng*, vol. 7, no. 1, Jan. 2020, doi: 10.1080/23311916.2020.1758289.

79. D. Franklin, Estimation of Skeletal Sex, *Encyclopedia of Forensic Sciences: Volume 1-4, Third Edition*, vol. 2, pp. 292–303, Jan. 2022, doi: 10.1016/B978-0-12-823677-2.00098-2.

80. V. Berezowski, I. Moffat, Y. Shendryk, D. MacGregor, J. Ellis, and X. Mallett, A multidisciplinary approach to locating clandestine gravesites in cold cases: Combining geographic profiling, LiDAR, and near surface geophysics., *Forensic Sci Int*, vol. 5, p. 100281, 2022, doi: 10.1016/j.fsisyn.2022.100281.

81. H. J. Hird and M. K. Brown, Design, optimisation and preliminary validation of a human specific loop-mediated amplification assay for the rapid detection of human DNA at forensic crime scenes, *Science & Justice*, vol. 57, no. 6, pp. 409–414, Nov. 2017, doi: 10.1016/J.SCIJUS.2017.08.001.

82. M. Zhang, *Forensic imaging: a powerful tool in modern forensic investigation*, 2022, Taylor and Francis Ltd. doi: 10.1080/20961790.2021.2008705.

83. S. Atkinson, G. Carr, C. Shaw, and S. Zargari, *Drone Forensics: The Impact and Challenges*, Springer, Cham, 2021, pp. 65–124. doi: 10.1007/978-3-030-60425-7_4.

84. C. W. Queen and F. E. Nelson, Characteristic periglacial topography: Multi-scale hypsometric analysis of cryoplanated uplands in eastern Beringia, *Permaf Periglac Process*, vol. 33, no. 3, pp. 241–263, Jul. 2022, doi: 10.1002/ppp.2148.

85. S. Gombeer, J. B. Ramond, F. D. Eckardt, M. Seely, and D. A. Cowan, The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert, *Geobiology*, vol. 13, no. 5, pp. 494–505, Sep. 2015, doi: 10.1111/gbi.12144.

86. A. Goyanes and J. M. Hoch, Using Ecological

Diversity Analyses to Characterize the Availability of Healthy Food and Socio-Economic Food Deserts, *Int J Environ Res Public Health*, vol. 18, no. 19, p. 10297, Sep. 2021, doi: 10.3390/ijerph181910297.

87. D. Charabidze and V. Hedouin, Temperature: the weak point of forensic entomology, *Int J Legal Med*, vol. 133, no. 2, pp. 633–639, Mar. 2019, doi: 10.1007/S00414-018-1898-1.

88. A. Mashaly and A. Ibrahim, Forensic entomology research in Egypt: a review article, Dec. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s41935-022-00272-8.

89. G. V. Reesu, J. Augustine, and A. B. Urs, Forensic considerations when dealing with incinerated human dental remains, *J Forensic Leg Med*, vol. 29, pp. 13–17, Jan. 2015, doi: 10.1016/j.jflm.2014.10.006.

