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Abstract
The Internet of Things (IoT) and Wireless Sensor Network (WSN) devices are prone to security vulnera-

bilities, especially when they are resource constrained. Lightweight cryptography is a promising encryption 
concept for IoT and WSN devices, that can mitigate these vulnerabilities. For example, Klein encryption is a 
lightweight block cipher, which has achieved popularity for the trade-off between performance and security. In 
this paper, we propose one novel method to enhance the efficiency of the Klein block cipher and the effects on 
the Central Processing Unit (CPU), memory usage, and processing time. Furthermore, we evaluated another 
approach on the performance of the Klein encryption iterations. These approaches were implemented in the Py-
thon language and ran on the Raspberry PI 3. We evaluated and analysed the results of two modified encryption 
algorithms and confirm that two enhancing techniques lead to significantly improved performance compared to 
the original algorithm.
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I. IntroductIon

The fast development of wireless communication 
technologies calls for smarter devices such as Wire-
less Sensor Network (WSN) and embedded systems 
with lower power consumption [1]. These technol-
ogies enable sensors to communicate and transfer 
data over short distances. As the development of 
WSN devices improves, these sensors' applications 
and reliability grow. For example, Radio Frequen-
cy Identification (RFID) tags can operate at longer 
ranges, temperature and motion sensors have high-

er accuracy readings. [2]. The applications of these 
technologies are highly valued and are used in fields 
such as agriculture, the military, and healthcare. A 
big advantage of the sensors is the low-cost budget 
required for implementation and maintenance. How-
ever, these advantages have drawn much attention 
to the sensor’s security and vulnerabilities. Generally 
speaking, the components of WSN devices can only 
offer constrained resources such as limited Central 
Processing Units (CPU), low memory, and small 
battery packs [3]. Thus, sensor devices have been 
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background of the Klein block cipher and current 
attacks; Section III describes our approaches and 
the experiments relating to the optimisation of the 
Klein block cipher; Section IV presents the results 
of our experiments followed by discussion and fu-
ture work in Section V and the conclusion is out-
lined in Section VI.

II. Background

In this section, we examine the development of 
the Klein encryption scheme and the cryptanalysis 
on the Klein block cipher.

A. Related Work
With the advanced usage of WSN devices, 

many lightweight cryptography schemes have 
been developed and implemented on constrained 
devices. However, it is widely important to consid-
er the effect of the lightweight cryptography on the 
devices as they are limited to processing, memory, 
and power resource. It is then important to eval-
uate the footprint of the lightweight cryptography 
schemes to analyse the burden of each cycle and 
their effect on the devices. 

The authors of [12] proposed a new lightweight 
block cipher, TWINE which aims to achieve hardware 
and software efficiency. Their experiments involved 
software performance of TWINE encryption and de-
cryption. The results show significant performance 
used either on micro controllers or high-end CPUs. 

In another study, the authors of [13] described 
an ultra-lightweight block cipher, PRESENT. Their 
contribution was to explain the operation of the 
block cipher and its efficiency on security and 
hardware. They conducted hardware experiments 
on PRESENT and compared the results with other 
lightweight block ciphers. 

The operation of PRESENT is slightly different to 
other lightweight block ciphers such as Advance 
Encryption Standard (AES), Light Encryption De-
vice (LED) or Klein [14]. This is because AES, LED 
and Klein use diffusion on their last algorithm in the 
cycle where PRESENT uses confusion. This also 
can be true for TWINE [15]. 

As many lightweight block ciphers were devel-
oped for constrained devices, not enough block 
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challenged by malicious adversaries exploiting se-
curity vulnerabilities. The hardware constraints put 
limitations on the approaches for security protection. 
This problem has prompted academics and industry 
players to develop security schemes for these de-
vices [4], [5], [6].

A well-known security approach for protecting 
the WSN devices is called cryptography. Many 
cryptography schemes have been developed to 
protect data [7], [8]. Lightweight cryptography 
comprises a family of cryptography schemes that 
offer strong security metrics but with less compu-
tation complexity, making it suitable for devices 
with limited resources [9]. The new proposed Klein 
block cipher is targeted for the Internet of Things 
(IoT) and WSN. The Klein encryption is a symmet-
ric cryptography that has three versions, Klein-64, 
Klein-80, and Klein-96 [10], [11]. In this study, we 
focus on improving the performance of Klein-64. 
However, we expect that our approaches can be 
performed on other versions of Klein and produce 
consistent results. Our work evaluates an imple-
mentation of Klein-64 with different methodologies 
and tries to optimise it with novel modification.

The Klein block cipher is optimised for WSN 
devices which contain less hardware resources. 
For security vulnerabilities, this becomes a trade-
off between security and performance. In our work 
we analyse the Klein block cipher and propose two 
approaches which improve the performance of the 
Klein. The contribution of this study are as follows: 

• The first approach is to replace the algorithm 
with most resource consumption with an alter-
native algorithm that uses less resources of 
the hardware.

• The second approach analyses different itera-
tions of the Klein block cipher to investigate the 
efficient iteration for performance and security. 
Next, we demonstrate the effectiveness of our 
approach by conducting extensive empirical 
evaluation on 3 S-box and increased iteration.

The rest of the paper is structured as follows. 
Section II discusses related work and explains the 
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ciphers were analysed for their performance effi-
ciencies on limited resource devices. As Klein’s 
scheme is similar to the AES’s scheme and for its 
unique advantage of hardware and software capa-
bilities on constrained devices, there has been a 
limited research on each algorithm of Klein block 
cipher. A summary of the related work gap analysis 
is discussed in Table I. 

B. Related Work and Our Contribution
As some lightweight cryptography schemes are 

developed and experimented for their hardware, 
software and security features, many cryptographic 
schemes developed for microcontrollers are not 
studied for their software or hardware performances.

In the related work section, lightweight and ul-
tra-lightweight block ciphers were designed for mi-
crocontrollers, and in their respected studies, the 
block ciphers were analysed for their performance. 
These block ciphers were usually from a FPN family 
or have different structure of operation that allows 
them to perform better. Our contribution is to ex-
periment a block cipher that is also designed for 
microcontrollers that has higher throughput in their 
operation such as AES. Klein block cipher as light-
weight cryptography scheme shows similar struc-
ture of operation in its scheme. The last operation 
of Klein block cipher is a diffusion operation which 
uses higher performance to achieve its task. 

As PRESENT is ultra-lightweight, it is a Substi-
tution-permutation Network (SPN) cipher that has 
opted a higher number of rounds. The authors 
of [13] describe that with such higher number of 
rounds, the cipher becomes more secure against 
round differential characteristics attack. Our contri-
bution is to experiment Klein block cipher because 
it is from SPN family, has a lower number of rounds 
per cycle and it is not immune to differential char-
acteristics attack. Our study will experiment the in-
crease of Klein block cipher rounds for the effect of 
its software performance on constraint device. 

C. Klein Block Cipher Overview
The Klein encryption scheme was proposed by 

Gong et al. [6] in 2011. The Klein block cipher is 
a family of Substitution Permutation Network (SPN) 

ciphers with variable key sizes of 64, 80, 96-bits, 
and 12, 16, and 20 iterations, respectively. Since 
then, much cryptanalysis has been performed. 
There have been reports that the keys have been 
successfully exploited via iterative differential char-
acteristics analysis and the parallel cut meet-in-the-
middle attack [16]. The structure of the Klein block 
cipher is very similar to AES. This is because the 
original authors of Klein encryption acquired the 
algorithms from AES [17]. Some specifications of 
Klein, however, are different to AES, for example, 
the secret key size and the block size. The oper-
ation of Klein and AES are therefore, the same. 
However, their performance has a huge impact on 
their operations with their slight differences. The 
Klein block cipher has four algorithms per round 
AddRoundKey, SubNibble, RotateNibble, and Mix-
Nibble, which are briefly described as follows:

Ghorashi et al.

taBLE I
rEsEarch gap anaLysIs

Ref Contribution Gap Analysis

[12] Software perfor-
mance

 The experiment was
 conducted on type-2
generalised Feistel-per-

 mutation networks (FPN)
 whilst many algorithms
 are also designed on
 Substitution-permutation
networks.

[13]  Security and
hardware

The design of algo-
 rithm’s operation and
 schemes can impact the
 experiment results. The
 hardware performance
of PRESENT on a micro-

 controller was significant
however, similar exper-

 iments are required for
 software performance for
 both the operation and
the design of the scheme.

[13],[14]  Diffusion and
Confusion

The diffusion opera-
 tion shown to be more
impactful on the resourc-

 es than the diffusion,
 nonetheless further study
 is required on algorithms
with diffusion operation.
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• AddRoundKey - The first set of data encryp-
tion is offered with a combination of plaintext 
and the key using XOR operation.

• SubNibble - Using the non-linear 4-bit S-box, 
the linear data array is transformed by the bit-
wise operation. A difference between AES as 
it uses byte-wise operation.

• RotateNibble - In the RotateNibble algorithm, 
the state is rotated four nibbles, (two bytes) to 
the left per each round.

• MixNibble - MixNibble algorithm multiplies the 
columns of the data array by a modular poly-
nomial equation.

The last algorithm is an adaptation of the Ad-
vanced Encryption System’s (AES) MixColumn al-
gorithm. The involutive 4 bit S-box and Rijndael’s 
MixColumn allow the Klein block cipher to operate 
with a low memory requirement. This is an improve-
ment in efficiency that can affect both software and 
hardware implementations. A representation of one 
round of the Klein block cipher is shown in Fig. 1.

C. Threats to Klein
Security analysis is important for cryptographic 

schemes, especially in the case of lightweight en-
cryptions, which aim to achieve security with less 
computational overload, such as the Klein block ci-
pher [18]. This section provides an overview of two 
security vulnerabilities in the Klein encryption and 
brief analysis of the application of the threats to the 
Klein block cipher.

Parallel-Cut Meet-In-The-Middle (PCMITM) At-
tack: Security analyses are critically important for 
cryptography algorithms to observe and analyse 
any security holes in the algorithms. The PCMITM 
attack application to the Klein block cipher could 
succeed if AddRoundKey, SubNibble, and Rotat-
eNibble have diffusion between the higher and 
lower nibbles within the bytes of the state. Also, in 
order to perform a PCMITM attack, there must be 
a nibble separation. In the MixNibble algorithm, the 
higher and lower nibbles are mixed, and when it is 
done, it produces a diffusion rate. Therefore, for a 
PCMITM attack to be performed, it must compute 
the higher and lower nibbles [18], [19], [20], [21]. 
The results of a PCMITM attack on the Klein block 

cipher are given in the following form: The attack 
for Klein-64 was achieved in 10 rounds out of 12. 
The parameter of the attack is k = 64, the number 
of rounds is r = 10, and the time is t = 0 seconds. 
The attack that was performed in 10 rounds was 
achieved in T(64,10,0) = 262 seconds and used 
M(64,10,0) = 260 of memory [18].

Differential Characteristics Attack: A differential 
characteristics attack is another popular cryptan-
alysis, which exploits the algorithm's key, first by 
identifying the input and output differences of a 
round. One technique that differential characteris-
tics use is to identify the differences by condition-
ing the input and output and the path it followed to 
reach them. Once the differential of six rounds is 
satisfied, then the exploitation of the last MixNibble 
and RotateNibble can be determined after the last 
SubNibble. This is usually at the seventh round, at 
which point the differences should be zero for high-
er nibbles. 

The attack performs on lower nibbles and shifts 
them through the S-box. The outcome will be re-
versed through the MixColumn. Once the results 
are produced, the attack can be considered fea-
sible if the lower nibbles are active. To reduce the 
key recovery costs, the trials can be reduced 258 
times; the attacks always appear to work within the 
number of trials [5], [22], [23], [24]. Key recovery in 
six rounds was achieved in 10 seconds. In seven 
rounds, it was 296 seconds, and in eight rounds, 
it was 1,344 seconds. Although the first test was 
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Fig. 1 One Cycle of Klein Block Cipher. 
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quick, the authors state that the first test was mainly 
by brute force using neutral bits. They also speci-
fied that their program was sped up due to using an 
Athlon64 X2 Dual-Core 4400+ microprocessor and 
an 8-bit lookup table for SubNibble

III. optImIsatIon approachEs and ExpErImEnts

This section is divided into three parts. The first 
part explains the details of the experiment envi-
ronments, the second and the third part explains 
the details of the approaches. Similar approaches 
have been reported before for other symmetric en-
cryption ciphers; however, these approaches have 
not been experimented with on the Klein block ci-
pher [14], [25], [26]. In this study, two approaches 
were selected to optimise the performance of Klein 
encryption. It is important to note that Klein encryp-
tion is a lightweight block cipher and must remain 
lightweight throughout the experiments.

A. Experiment Environment
In this study, the Klein block cipher is mainly 

used and tested on two devices. The first device 
was a Windows 10 laptop environment with an Intel 
i7, dual-core CPU with a clock rate of 2.4 Gigahertz 
(GHz) and 8 Gigabyte (GB) of memory with 1600 
MHz memory speed. The second device was a 
Raspberry Pi Model 3 with a Broad-com BCM2711 
quad-core CPU with a clock speed of 1.5 GHz and 
1 GB of memory with 900 MHz of memory speed. 
The information of the technologies used in this 
study can also be found in Table II. The purpose 
of using these two devices was to evaluate the out-
come and the consistency of the Klein block cipher 
in two different environments. Since no reference 
code of the Klein block cipher implementation has 
been published by its designers, an implementa-
tion of Klein-64 has been written in the Python 3 pro-
gramming language. To make sure that the integri-
ty and consistency of the application were met, the 
implementation of the program was followed Gong 
et al. [6]. In the initial design of Klein encryption, the 
program was divided into 4 individual scripts. Each 
script contained the implementation of the steps in 
the Klein block cipher. Since the four steps in the 
Klein block cipher present one iteration, we imple-
mented the application to iterate twelve rounds.

The application is written in Python language for 
its simplicity and use [27], although it could have 
been implemented in other languages such as C, 
but regardless of the platform, we expect to find 
consistent results.

Raspberry Pi 3 (RPI3) is a small and inexpensive 
computer device that is used in network computing, 
remote monitoring and with sensor networks [28]. 
In this paper, a RPI3 is chosen for the experiments 
because of the accessibility of the device and the 
current usage of RPI3 in the IoT. Due to limitations 
of the research the Windows 10 computer is used 
as a different environment to observe the consis-
tency and continuity of different experiments. The 
authors of [12], have also conducted similar exper-
iment with microcontrollers as well as higher-end 
CPUs. Nonetheless, the results of our experiments 
from this device would show a realistic outcome if 
performed on a WSN device.

B. Alternative Algorithm
Alternative algorithm is the replacement of an 

algorithm of the Klein block cipher that has poor 
performance with an algorithm that can provide an 
improvement to the performance. The main objec-
tive of this approach is to replace the last algorithm 
(MixNibble) of the Klein block cipher with 3-stage 
S-box. On the other hand, an evaluation of the 
overall resource benchmark of each algorithm of 
the Klein block cipher will be measured. Although 

taBLE II
taBLE of dEvELopmEnt EnvIronmEnt

 Constrained
Device

 Non-constrained
device

Resources Raspberry Pi 3 Windows 10

 CPU  Broad-com
BCM2711 i7 Dual Core

 CPU clock
 speed
(GHz)

1.5 2.4

Memory 1 8

 Memory
 speed
(MHz)

900 1600

Ghorashi et al.
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the round after the third S-box. This can be written 
as shown in Algorithm 1.

C. Increase Iteration
Unlike the SIMON and the SPECK block ciphers 

that are part of the Feistel-Permutation family, the 
Klein block cipher is from the SPN family [3], [32]. 
SPN ciphers provide more equilibrium between 
linear and non-linear permutations. The software 
is critically important to consider in bit permutation 
because implementing non-linear bit permutation 
can cause complexity in operation. Furthermore, 
SPN block ciphers such as PRESENT are cheaper 
in hardware and software. Therefore, they are more 
likely to have more rounds to satisfy permutation.

Regarding the current attacks on the Klein 
block cipher, such as the differential characteris-
tics attack and the PCMITM attack, both attacks 
have been successful in key recovery within 8 and 
10 rounds, respectively. Regarding the Klein block 
cipher with key exploitation at lower rounds, this 
study proposes to take an approach against key 
recovery by increasing the iteration of the Klein 
block cipher. The implementation would include 
four different configurations. They are 12, 16, 20, 
and 32 rounds. Each configuration is executed with 
the same key and has the same block size. In the 
execution of each configuration there will be some 
gradual delay. Nonetheless, this optimisation is 
more targeted on the effectiveness of attacks on 
the Klein block cipher. However, we would note 
each configuration's time to complete the itera-
tions.

Given SPN ciphers are likely to be balanced in 
software, the permutation of bits is more efficient. 
Also, the fact that there has been successful crypt-
analysis of block ciphers such as Klein-64 means 
it is beneficial to construct a program like the Klein 
block cipher with more iterations. In implement-
ing increased rounds, the program was divided 
into four scripts consisting of different iterations. 
The four programs consist of 12, 16, 20, and 32 
rounds. Each round had the same key and plain-
text applied, but it ran in different configurations. 
The evaluation of the programs would be based on 
the CPU rate, the ratio of the memory, the memory 
used, and the time each took.

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

the overall software performance of Klein-64 has 
been evaluated [4], the software performance of 
each algorithm in the Klein block cipher is unknown 
[4], [29]. The construction of the Klein block cipher 
is to purposely measure the CPU percentage, the 
memory in bytes that the algorithm used, the overall 
time the program was executed, and the amount 
of data for the specific algorithm of the Klein block 
cipher. Finally, both algorithms will be compared 
for efficiency [30].

The MixNibble: In the last round of the Klein 
block cipher, the state is processed by Rijndael’s 
MixColumn (MixNibble). This step works on a 4 
bytes element of the Galois Field, and the equation 
can be written as:

(28 )=x8+x4+x2+1
The output is composed of 4 bytes and is multi-

plied by the matrix below [19].

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

The evaluation of the Klein block cipher has 
been achieved by executing and analysing the 
MixNibble algorithm. The execution of this algo-
rithm was done once in Windows 10 and once in 
the RPI3 environment. The implementation is done 
by acquiring four different scripts with necessary 
information given, as mentioned above, to evalu-
ate the data, CPU speed, memory usage, and time 
it took [31]. Once the results for the normal Klein 
block cipher algorithm are achieved, the 3 Substi-
tute Box (3 S-box) algorithm will be tested. The 3 
S-box implementation is a 4-bit permutation that 
applies to 16 nibbles after the RotateNibble algo-
rithm. Table II represents the values of 3 S-box. 
Also, to ensure the message’s integrity, before the 
3 S-box, the result from the RotateNibble is XORed 
with the key. The first algorithm of the S-box ap-
plies, and the result is again XORed with the key. It 
proceeds with the second S-box and, the result of 
the second S-box is XORed with the key. It finishes 
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taBLE III
suBstItutE BoxEs usEd In aLgorIthm trIpLE nIBBLE

Su
bs

ti-
 tu

te
 B

ox
1

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 1(X

)

B F 8 C 9 E 7 6 2 4 D 0 3 A 5 1

Su
bs

ti-
 tu

te
 B

ox
2

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 2(X

)

8 3 F 1 6 B 4 E 0 C D 5 9 A 7 2

Su
bs

ti-
 tu

te
 B

ox
3

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 3(X

)

9 B 4 7 2 C E 3 F 0 D 1 5 A 6 8

Algorithm 1 Triple Nibble Substitutes

Input: 64-bit binary state STATE RotateNibble

Output: 64-bit ciphertext CT

1: for i = 1 to 3 do:

2: STATE       STATE      subkeyi

3: STATE       subi (STATE);

4:

5: end for

6: return CT

Ghorashi et al.
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Iv. rEsuLts

In this section, we present the results of the two 
approaches described in section III.

A. Alternative Algorithm
The four scripts that consisted of each algo-

rithm of the Klein block cipher were evaluated for 
CPU speed, usage of memory, the time executed, 
and the data each process. Each round was test-
ed on two different devices to show the software 
performance. The first experiment was tested us-
ing Windows 10. When the Python program was 
executed in the Windows environment, it showed 
how much CPU was used for the specific process. 
The first algorithm had a higher percentage rate 
than the second and third algorithms; however, in 
the fourth algorithm, a bigger percentage rate was 
shown. The usage of the memory for all programs 
remained similar, but in terms of the execution time, 
the first and the fourth programs had longer times 
compared to the second and third programs. The 
results are shown in Table IV.

The evaluation of the Klein block cipher using 
RPI3 showed results with slightly different percent-
ages for each algorithm. In this implementation, the 
CPU percentage of the first and second algorithms 
was reasonably low compared to the third algo-
rithm, which slightly increased. Finally, the last al-
gorithm had the highest percentage of all. In terms 
of the memory ratio, the results were similar to the 
results in the Windows 10 environment. The mem-
ory percentage slightly increased towards the last 
algorithm; however, the time for each algorithm to 
execute was different. Again, the results were sim-
ilar to the results for the Windows 10 environment. 
The second and third algorithms took the same 
time to execute. The results of the algorithms run on 
the Raspberry Pi environment are shown in Table V.

The results for 3 S-box in Windows 10 showed 
a higher CPU rating when conducted initially. The 
memory usage was at 8352 bytes, the execution 
took almost 0.05 seconds, and the data processed 
was 267 bytes. The results are shown in Table VI.

The results for 3 S-box in RPI 3 showed a high 
CPU percentage. The memory usage was at 17076 
bytes, the execution took almost 0.09 seconds, and 
the data processed was 267 bytes. The results are 
shown in Table VII.

Given the individual results of Klein encryption 
algorithms, it is important to evaluate the optimised 
block cipher (3 S-box) within a full iteration (12 
rounds) of Klein block cipher and then compare the 
results with the original Klein block cipher within a full 
iteration. The evaluation of the original and 3 S-box 
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taBLE Iv
EvaLuatIon of kLEIn BLock cIphEr In WIn 10

Algorithm CPU (%) RAM (KB) Time (s) Data (Byte)

AddroundKey 35.0 8500 0.078095 289

SubNibble 25.0 8500 0.0156.22 89

RotateNibble 25.0 8468 0.015626 178

MixNibble 58.3 8624 0.0781302 264

taBLE v
EvaLuatIon of kLEIn BLock cIphEr on rpI 3

Algorithm
 CPU
(%)

 Memory
(%)

 RAM
(KB)

Time (s)
 Data
(Byte)

AddroundKey 7.0 1.8 17268 0.141437 289

SubNibble 7.0 1.8 17292 0.065789 89

RotateNibble 9.7 1.8 17244 0.065367 178

MixNibble 16.0 1.8 17324 0.260921 264

taBLE vI
EvaLuatIon of 3 s-Box In WIn 10

Algorithm CPU (%) RAM (KB) Time (s)

AddroundKey 35.0 7908 0.079

SubNibble 25.0 8008 0.0157

RotateNibble 25.0 8048 0.0161

3 S-box 25.0 8352 0.0468

taBLE vII
EvaLuatIon of 3 s-Box In rpI 3

Algorithm CPU (%) Memory (%) RAM (KB) Time (s)

AddroundKey 7.0 1.8 17265 0.142

SubNibble 7.1 1.8 17292 0.072

RotateNibble 8.9 1.8 17248 0.065

3 S-box 27.0 1.8 17076 0.088
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is performed both on Windows 10 and Raspberry 
Pi. Each test consisted of a full iteration and ran four 
times. Their average values are recorded in Table VIII.

The results show a relatively high CPU per-
centage compared to the time taken. Similarly, the 
results of the 3 S-box in both platforms showed a 
higher percentage with a lower execution time. A 
study [33] has found that Klein encryption has a 
lower degree of diffusion and a higher degree of 
confusion. In our first experiment, we examined the 
performance of each algorithm in the Klein block 
cipher. The results showed that MixNibble and 
RotateNibble had a higher CPU percentage than 
other algorithms when performed on the Raspber-
ry Pi device. In a related paper [33], the authors 
also compared the program memory and data 
memory usages of Klein encryption with the Tiny 
Encryption Algorithm (TEA), the High Security and 
Light Weight (HIGHT), and the KATAN encryption 
systems. The program memory usage of Klein is 
higher than the rest of the block ciphers, and the 
reason is the weight of the program code. Despite 
MixNibble having a diffusion property, it has man-
aged to consume higher CPU power and take more 
time for encryption. Another performance analysis 
concluded that RC6 provides greater security than 
RC5 with the extra (four) registers [34]. Although 
this increases the throughput and diffusion, the en-
cryption will be achieved in fewer rounds.

B. Increased Iteration
The results of the four configurations construct-

ed to evaluate the performance of the resources 
and the time each took are shown in Table IX. Each 
configuration has been executed four times for data 
accuracy. The results showed a high clock speed 
CPU for the (12) rounds, but this gradually came 
down by the fourth attempt. The memory usage 
average showed 17.31KB. The next configuration 
was 16 rounds which showed a high clock speed 
at the first execution, but it halved by the fourth at-
tempt. The memory usage was similar to the aver-
age of the 20 rounds configuration. In the 20 and 
32 rounds configuration, the clock speed was simi-
lar, however, the memory usage increased from the 
20 rounds configuration. Regardless of the memory 
usages in all configurations, the CPU speed and 
the execution time were highly noticeable for their 
effect on the hardware resources.

v. dIscussIon

In this section, we discuss the results of the 
approaches to the modified Klein encryption. The 
Klein block cipher with 64-bit key size was tested 
and evaluated with two different approaches. As we 
recall, Klein encryption is a lightweight cipher suit-
ed for WSN devices. The two approaches conduct-
ed on Klein encryption were performed previously 
on other encryption ciphers such as AES, Blowfish, 
and a lightweight block cipher. We proposed to en-
hance the performance of Klein encryption using 
these two approaches. Although the performance 
enhancement experiments similar to our approach-
es have been tested on other encryption schemes, 
no studies have tested these approaches on the 
Klein encryption. Our study aimed to enhance the 
performance of the Klein block cipher. However, 
since Klein encryption is a lightweight cipher, it 
must remain lightweight regardless of the proposed 
idea. Therefore, we developed the two approaches 
on the Klein block cipher to evaluate the software 
performance first. By evaluating the effect of each 
approach, we expect to have a better understand-
ing of the performance of the modified Klein block 
cipher.

taBLE vIII
 fuLL ItEratIon of orIgInaL and 3 s-Box kLEIn

BLock cIphEr In rpI 3 and WIn 10
Platform Algorithm CPU (%) Memory (%) RAM (KB) Time (s)

RPI 3 Original 21.9 1.8 17076 0.381

RPI 3 3 S-box 29.1 1.775 17076 0.052

Win 10 Original 15.92 NA 8352 0.149

Win 10 3 S-box 15.53 NA 8352 0.057

taBLE Ix
 fuLL ItEratIon of orIgInaL and 3 s-Box kLEIn

BLock cIphEr In rpI 3 and WIn 10
Iteration CPU (%) Memory (%) RSS (KB) Time (s)

12 19.1 1.8 17315 0.043

16 10.9 1.8 17394 0.54

20 7.9 1.8 17919 0.7

32 7.55 1.875 18081 1.26
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A. Optimisation Alternative Algorithm
The four scripts constructed to test the Klein 

block cipher were the AddRoundKey, SubNibble, 
RotateNibble, and MixNibble algorithms. Each al-
gorithm had similar results when performed on Win-
dows 10 and RPI3 devices. The recorded results 
between the two devices show some information 
related to their hardware. It is known that the Win-
dows 10 device has 8 GB of memory. However, not 
all the memory is available for use. For example, 
the computer that ran the first set of results had 
4.3 GB used for processes and 3.6 GB of memory 
available. This is a total of 7.9 GB available for the 
whole computer hardware to use. And it had 0.08 
GB reserved for other hardware purposes.

On the other hand, the RPI3 device was sup-
plied with 1 GB of memory. However, the official 
website of RPI3 and its configuration files states 
that it only uses 0.88 GB of memory for the process-
es. The configuration files show 0.128 GB of mem-
ory usage by the Graphical Processing Unit (GPU). 
The total amount shows 1.008 GB of physical mem-
ory. It is important to consider that other processes 
are also running. But in this regard, the Windows 
device has more available memory to spare than 
the Raspberry Pi device. Therefore, the results 
show a higher rate of the memory. The memory 
management of these two devices is entirely un-
predictable, as many processes could be running 
at the time of the implementation and evaluation. 
However, to make sure the results of the programs 
were consistent, the same Python libraries were 
used to measure the resources and the time of the 
programs. As discussed above, each device has 
different hardware, and they output different read-
ings in terms of the results. Nonetheless, they have 
produced similar outcomes. With the first program 
tested, the initial run showed a higher rating within 
CPU percentage in the Windows device compared 
to the RPI3 device. For the Windows device, 35% of 
CPU time (0.84 GHz out of 2.4 GHz) was spent ex-
ecuting the program, compared to 7% of CPU time 
for the RPI3 device. The RPI3 device has a max-
imum of 1.5 GHz, which means only 0.0105 GHz 
was used for this run. The high CPU percentage of 
the first algorithm in the Windows device is due to 
the operation that is being handled. As mentioned 

previously, the XOR operation can have a higher 
transistor than other logic gates. The memory per-
centage is the ratio of the Resident Set Size (RSS) 
set to the physical memory of the device. The ratio 
of the memory was not an option available on the 
Windows device. The actual memory size recorded 
in the Windows device was relatively smaller than 
the memory used in the RPI3 device. Again, this 
could be related to the distribution of resources 
across the processors of each device. However, 
the memory results show a stable reading for both 
devices. In this regard, the amount of the used data 
was the same. However, there was a slight delay of 
0.063 seconds (44.7% slower) when the program 
was executed in Raspberry Pi. In the Windows de-
vice, the SubNibble and RotateNibble algorithms 
showed similar results, considering that the Rotat-
eNibble has a higher amount of data to process. 
Nevertheless, the SubNibble algorithm had a lon-
ger script to process. The process of SubNibble 
is to identify each nibble from the list and perform 
nibble permutation. On the other hand, RotateNib-
ble is swapping the bytes in the list. The difference 
between the two is the data that is being manip-
ulated and the number of codes within the script. 
The important information about the results is the 
memory used, and the time each took to complete. 
The memory difference is 32 Kilobytes (KB), and 
the time is 0.000004 seconds. In the Raspberry Pi 
device, the SubNibble algorithm took 2.7% less 
CPU time. The CPU usage of algorithms run in 
Windows, and Raspberry Pi are shown in Figures 
2 and 3, respectively. As shown, the CPU usage in 
both devices was high for MixNibble while the low-
est CPU usage was SubNibble and RotateNibble in 
Windows and AddRoundKey and SubNibble in the 
Raspberry Pi environment.

The memory difference between RotateNibble 
and SubNibble is 48 KB and 0.000422 seconds. 
This shows RotateNibble takes 9% more time to 
execute than SubNibble. The RAM usage of algo-
rithms run in Windows, and Raspberry Pi is shown 
in Figures 4 and 5, respectively. The RAM usage 
in both devices was high for MixNibble, while the 
lowest RAM usage was for RotateNibble.

The last algorithm, MixNibble, shows a signifi-
cant amount of resources both in the Raspberry Pi 
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and Windows devices. This is due to the amount of 
data processed. This section used the XOR logical 
gate and multiplication, which increased the need 
for more resources due to the long operation. The 3 
S-box in the Windows 10 and Raspberry Pi environ-
ments showed a high execution of CPU. This was 
because the program had 3 XOR operations plus 
three sets of SubNibble algorithms [35]. The oper-
ation consumes a higher CPU at the initial point; 
however, the memory usage for both has stayed 
reasonably low. The time that each took for execu-
tion is 0.05 and 0.09 seconds, respectively. When 
3 S-box is compared with the MixNibble algorithm 
run in the Windows 10 environment, MixNibble 
used twice as much CPU. The amount of memory 
MixNibble used was 8,624 KB, and the amount of 
memory 3 S-box used was 8,352 KB, a difference 
of 272 KB. In terms of the time difference, there 
was a delay in the MixNibble algorithm of 0.0313 
seconds. In the Raspberry Pi environment, the Mix-
Nibble algorithm was executed 1.68% faster than 3 
Sbox. The difference in memory usage between 3 
S-box and MixNibble is 248 KB. Also, 3 S-box exe-
cuted 0.0172 seconds faster than MixNibble.

The 3 S-box showed a higher CPU percentage 
when executed. However, in relation to other re-
source consumption, the 3 S-box was analysed to 
have optimised performance for memory, time, and 
implementation of cost. Despite the advantages of 
software performance, security may not be guar-
anteed, and the results of this study are based on 
factual argumentation. Enhanced S-box, compared 
to the original AES encryption, replaces the Rijn-
dael function [25]. The authors performed a NIST 
statistical test and cryptanalysis attack on the AES 
block cipher with enhanced S-box. The results of 
the experiments showing the original security of 
AES was not modified rather added confusion to 
the property of this algorithm which is diffusion.

B. Optimisation of Increased Iteration
Evaluation of the four programs with different 

iteration lengths was done using the RPI3 device, 
an environment closest to a wireless sensor device. 
The replication of this environment gave several dif-
ferent yet interesting results on the effect of each 

iteration. The four tested programs on the device 
had four configurations: 12, 16, 20, and 32 itera-
tions. The size of the plaintext and keys were con-
sistent across all configurations. Since the software 
performance of Klein-64 has been evaluated with 
3,689 iterations per byte, this study focused on the 
iterations with the above configurations with only 8 
bytes (64-bits).

For better results, each iteration was performed 
four times. The average time of the execution of 
each configuration was recorded. The results for 
the first configuration show higher resource usage. 
The CPU usage of the first run had a high rate of 
27%. Then after the fourth run, it had a rating of 7%. 
There was a delay of 10 seconds between each run.

Nonetheless, the amount of CPU usage for the 
first until the third run was high in the first configu-
ration. The memory usage was stable, with a mean 
of 17,315 KB. The average time that it took to com-
plete was 0.043 seconds.

The second configuration had 16 iterations. The 
results for this configuration show a high CPU us-
age rate for the first run, but from the second to the 
fourth run, the percentage halved. Consequently, 
the difference between the first and last run mem-
ory usage was 1.41%. Compared to the average 
memory usage of the first configuration, only 0.45% 
extra memory was used.

In the third configuration, the 20 iterations, the 
CPU usage seemed to be low when initiated but 
gradually increased by the end of the fourth run. 
However, the memory increased in usage by 
2.25%. The average time that it took to perform the 
full iteration was 0.7 seconds, 25% and 176% slow-
er when compared to second and first configura-
tions, respectively. The final configuration, which 
had 32 iterations, resulted in a lower CPU usage 
time (mean of 7.55%); however, the memory usage 
ratio towards the program increased during the last 
run. A rating of 1.9% showed 18,200 KB of memo-
ry usage. The average time it took to complete the 
whole iteration was 1.26 seconds. The memory us-
age difference between 12 iterations and 32 itera-
tions increased 5.4%. In terms of average delays, it 
was 1.217 seconds slower to perform 32 iterations 
than 12 iterations (that is 186%).
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Nonetheless, the CPU usage of the first config-
uration was higher than the last configuration (that 
is 86% slower) when the 12 iterations were execut-
ed. Usually, increasing the iteration of an encryp-
tion system does not make the encryption scheme 
optimised; however, it is possible to infer that the 
encryption operations could be more efficient. A re-
cent study [36] on the power consumption of Rasp-
berry Pi 2 GPU rendering between software and 
hardware was done, and the results showed hard-
ware rendering is more efficient than software ren-
dering. Although hardware uses more power, soft-
ware rendering takes more time. We can assume 
the same behaviour occurred with the experiments 
done. However, it is worth mentioning that this ex-
periment was mainly affected the CPU and memory 
from the software perspective. Introducing higher 
iterations can cause a delay in implementation 
and more resource consumption, and using lower 
rounds such as 12 iterations could cause very high 
resource consumption. In the real-world scenario, 
16 iteration configurations seem to be ideal when 
considered for a sensor device. Since the 16 itera-
tion configuration encrypted 64 bits of information 
(8 characters), if the message had to be longer, 
e.g., 25 (32 characters), the time to run would be 
2.16 seconds. In terms of resource usage, it would 
consume 43.6% of the CPU and use 69,576 KB of 
memory. When compared to other configurations, 
the size of the memory usage would be higher. In 
the first configuration, although it had a lower mem-
ory usage, more CPU was used.

 In the differential characteristics attack, for 8 
rounds of key recovery, it was recorded that the 
program would take 1,344 seconds to achieve the 
round key. This attack was done on Klein-64 with 
12 rounds. In the 16 rounds of Klein encryption, 
this would mean 1,792 seconds to key recovery 
or 28% more delay [5], [18]. Kumar and Rana [14] 
increased the number of rounds from 10 to 16 for 
encryption and decryption. The authors stated that 
a higher number of rounds resulted in higher secu-
rity for intruders to breach. For this case they have 
modified the AES block cipher with 320 bits key size 
for 16 rounds. The operation of the modified AES 
block cipher is dependent on the initial key, which 

is generated by the Polybius square with a 6 by 6 
matrix, that includes both numbers and letters. The 
values are arranged with no repetition from left to 
right. In this paper, DES, TDES, AES and modified 
AES have been implemented based on Through-
put on various sizes of files. The results of the mod-
ified AES block cipher showed the highest time to 
encrypt was for the 16 rounds. With the implemen-
tation of increased rounds, the Polybius square au-
thors claim it contains higher security and is less 
prone to intruders. Ahmed et al. [34] have sug-
gested that with increased rounds, the change of 
one-pixel is possible in image encryption; howev-
er, the rate of one-pixel change is small. Therefore, 
they concluded that by increasing the number of 
rounds, a higher security is achieved.

C. Future Work
Although the need for WSN devices is highly sig-

nificant, the secrecy of the data that they transmit is 
important too. With this requirement, performance 
of the encryption must be suitable for constrained 
devices to run effectively. In future work, we are 
determined to implement different logical gates op-
erations such as AND gate and OR gate for their 
lower resource consumption. This study performed 
software optimisation of Klein block cipher; howev-
er, security optimisation of Klein block cipher is yet 
required to be evaluated in further studies.

vI. concLusIon

This study evaluated the software performance 
of the Klein block cipher. The analysed approach-
es were a modified algorithm (3 S-box) and in-
creased iteration of the original Klein block cipher. 
The 3 S-box had a greater effect on software per-
formance with a small limitation when compared 
with the MixNibble algorithm. Improvements were 
observed with the average CPU, memory and time 
when 16 iterations were used compared to default 
iteration of Klein-64. Results from repeating exper-
iments confirmed the initial findings. The results of 
suggestive approaches (3 S-box and increased 
iterations) showed more efficiency in performance 
than the original algorithm. 
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