
159

Software Optimisation of Lightweight Klein Encryption in the Internet
of Things

Seyed R. Ghorashi1,2*, Tanveer Zia3, Yinhao Jiang1,2, and Michael Bewong1

1Charles Sturt University, NSW, Australia
2Cyber Security Cooperative Research Centre, Joondalup. WA, Australia
3 Center of Cybercrimes and Digital forensics, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia.

Received 12 Oct. 2021; Accepted 15 Dec. 2021; Available Online 30 Dec. 2021

Abstract
The Internet of Things (IoT) and Wireless Sensor Network (WSN) devices are prone to security vulnera-

bilities, especially when they are resource constrained. Lightweight cryptography is a promising encryption
concept for IoT and WSN devices, that can mitigate these vulnerabilities. For example, Klein encryption is a
lightweight block cipher, which has achieved popularity for the trade-off between performance and security. In
this paper, we propose one novel method to enhance the efficiency of the Klein block cipher and the effects on
the Central Processing Unit (CPU), memory usage, and processing time. Furthermore, we evaluated another
approach on the performance of the Klein encryption iterations. These approaches were implemented in the Py-
thon language and ran on the Raspberry PI 3. We evaluated and analysed the results of two modified encryption
algorithms and confirm that two enhancing techniques lead to significantly improved performance compared to
the original algorithm.

* Corresponding Author: Seyed Ramin Ghorashi
Email: sghorashi@csu.edu.au
doi: 10.26735/PXAE9280

Keywords: Information security, Internet of Things (IoT), Klein block cipher, Wireless Sensor Networks (WSN),
Lightweight cryptography, Software optimisation.

Production and hosting by NAUSS

1658-7782© 2021. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security & Cybercrimes Research 2021; Volume 4 Issue (2), 159-172 Original Article

Naif Arab University for Security Sciences
Journal of Information Security & Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. IntroductIon

The fast development of wireless communication
technologies calls for smarter devices such as Wire-
less Sensor Network (WSN) and embedded systems
with lower power consumption [1]. These technol-
ogies enable sensors to communicate and transfer
data over short distances. As the development of
WSN devices improves, these sensors' applications
and reliability grow. For example, Radio Frequen-
cy Identification (RFID) tags can operate at longer
ranges, temperature and motion sensors have high-

er accuracy readings. [2]. The applications of these
technologies are highly valued and are used in fields
such as agriculture, the military, and healthcare. A
big advantage of the sensors is the low-cost budget
required for implementation and maintenance. How-
ever, these advantages have drawn much attention
to the sensor’s security and vulnerabilities. Generally
speaking, the components of WSN devices can only
offer constrained resources such as limited Central
Processing Units (CPU), low memory, and small
battery packs [3]. Thus, sensor devices have been

https://doi.org/10.26735/PXAE9280
https://crossmark.crossref.org/dialog/?doi=10.26735/LQEZ4186&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/PXAE9280
https://crossmark.crossref.org/dialog/?doi=10.26735/PXAE9280&domain=pdf

160

JISCR 2021; Volume 4 Issue (2)

background of the Klein block cipher and current
attacks; Section III describes our approaches and
the experiments relating to the optimisation of the
Klein block cipher; Section IV presents the results
of our experiments followed by discussion and fu-
ture work in Section V and the conclusion is out-
lined in Section VI.

II. Background

In this section, we examine the development of
the Klein encryption scheme and the cryptanalysis
on the Klein block cipher.

A. Related Work
With the advanced usage of WSN devices,

many lightweight cryptography schemes have
been developed and implemented on constrained
devices. However, it is widely important to consid-
er the effect of the lightweight cryptography on the
devices as they are limited to processing, memory,
and power resource. It is then important to eval-
uate the footprint of the lightweight cryptography
schemes to analyse the burden of each cycle and
their effect on the devices.

The authors of [12] proposed a new lightweight
block cipher, TWINE which aims to achieve hardware
and software efficiency. Their experiments involved
software performance of TWINE encryption and de-
cryption. The results show significant performance
used either on micro controllers or high-end CPUs.

In another study, the authors of [13] described
an ultra-lightweight block cipher, PRESENT. Their
contribution was to explain the operation of the
block cipher and its efficiency on security and
hardware. They conducted hardware experiments
on PRESENT and compared the results with other
lightweight block ciphers.

The operation of PRESENT is slightly different to
other lightweight block ciphers such as Advance
Encryption Standard (AES), Light Encryption De-
vice (LED) or Klein [14]. This is because AES, LED
and Klein use diffusion on their last algorithm in the
cycle where PRESENT uses confusion. This also
can be true for TWINE [15].

As many lightweight block ciphers were devel-
oped for constrained devices, not enough block

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

challenged by malicious adversaries exploiting se-
curity vulnerabilities. The hardware constraints put
limitations on the approaches for security protection.
This problem has prompted academics and industry
players to develop security schemes for these de-
vices [4], [5], [6].

A well-known security approach for protecting
the WSN devices is called cryptography. Many
cryptography schemes have been developed to
protect data [7], [8]. Lightweight cryptography
comprises a family of cryptography schemes that
offer strong security metrics but with less compu-
tation complexity, making it suitable for devices
with limited resources [9]. The new proposed Klein
block cipher is targeted for the Internet of Things
(IoT) and WSN. The Klein encryption is a symmet-
ric cryptography that has three versions, Klein-64,
Klein-80, and Klein-96 [10], [11]. In this study, we
focus on improving the performance of Klein-64.
However, we expect that our approaches can be
performed on other versions of Klein and produce
consistent results. Our work evaluates an imple-
mentation of Klein-64 with different methodologies
and tries to optimise it with novel modification.

The Klein block cipher is optimised for WSN
devices which contain less hardware resources.
For security vulnerabilities, this becomes a trade-
off between security and performance. In our work
we analyse the Klein block cipher and propose two
approaches which improve the performance of the
Klein. The contribution of this study are as follows:

• The first approach is to replace the algorithm
with most resource consumption with an alter-
native algorithm that uses less resources of
the hardware.

• The second approach analyses different itera-
tions of the Klein block cipher to investigate the
efficient iteration for performance and security.
Next, we demonstrate the effectiveness of our
approach by conducting extensive empirical
evaluation on 3 S-box and increased iteration.

The rest of the paper is structured as follows.
Section II discusses related work and explains the

161

JISCR 2021; Volume 4 Issue (2)

ciphers were analysed for their performance effi-
ciencies on limited resource devices. As Klein’s
scheme is similar to the AES’s scheme and for its
unique advantage of hardware and software capa-
bilities on constrained devices, there has been a
limited research on each algorithm of Klein block
cipher. A summary of the related work gap analysis
is discussed in Table I.

B. Related Work and Our Contribution
As some lightweight cryptography schemes are

developed and experimented for their hardware,
software and security features, many cryptographic
schemes developed for microcontrollers are not
studied for their software or hardware performances.

In the related work section, lightweight and ul-
tra-lightweight block ciphers were designed for mi-
crocontrollers, and in their respected studies, the
block ciphers were analysed for their performance.
These block ciphers were usually from a FPN family
or have different structure of operation that allows
them to perform better. Our contribution is to ex-
periment a block cipher that is also designed for
microcontrollers that has higher throughput in their
operation such as AES. Klein block cipher as light-
weight cryptography scheme shows similar struc-
ture of operation in its scheme. The last operation
of Klein block cipher is a diffusion operation which
uses higher performance to achieve its task.

As PRESENT is ultra-lightweight, it is a Substi-
tution-permutation Network (SPN) cipher that has
opted a higher number of rounds. The authors
of [13] describe that with such higher number of
rounds, the cipher becomes more secure against
round differential characteristics attack. Our contri-
bution is to experiment Klein block cipher because
it is from SPN family, has a lower number of rounds
per cycle and it is not immune to differential char-
acteristics attack. Our study will experiment the in-
crease of Klein block cipher rounds for the effect of
its software performance on constraint device.

C. Klein Block Cipher Overview
The Klein encryption scheme was proposed by

Gong et al. [6] in 2011. The Klein block cipher is
a family of Substitution Permutation Network (SPN)

ciphers with variable key sizes of 64, 80, 96-bits,
and 12, 16, and 20 iterations, respectively. Since
then, much cryptanalysis has been performed.
There have been reports that the keys have been
successfully exploited via iterative differential char-
acteristics analysis and the parallel cut meet-in-the-
middle attack [16]. The structure of the Klein block
cipher is very similar to AES. This is because the
original authors of Klein encryption acquired the
algorithms from AES [17]. Some specifications of
Klein, however, are different to AES, for example,
the secret key size and the block size. The oper-
ation of Klein and AES are therefore, the same.
However, their performance has a huge impact on
their operations with their slight differences. The
Klein block cipher has four algorithms per round
AddRoundKey, SubNibble, RotateNibble, and Mix-
Nibble, which are briefly described as follows:

Ghorashi et al.

taBLE I
rEsEarch gap anaLysIs

Ref Contribution Gap Analysis

[12] Software perfor-
mance

 The experiment was
 conducted on type-2
generalised Feistel-per-

 mutation networks (FPN)
 whilst many algorithms
 are also designed on
 Substitution-permutation
networks.

[13] Security and
hardware

The design of algo-
 rithm’s operation and
 schemes can impact the
 experiment results. The
 hardware performance
of PRESENT on a micro-

 controller was significant
however, similar exper-

 iments are required for
 software performance for
 both the operation and
the design of the scheme.

[13],[14] Diffusion and
Confusion

The diffusion opera-
 tion shown to be more
impactful on the resourc-

 es than the diffusion,
 nonetheless further study
 is required on algorithms
with diffusion operation.

162

JISCR 2021; Volume 4 Issue (2)

• AddRoundKey - The first set of data encryp-
tion is offered with a combination of plaintext
and the key using XOR operation.

• SubNibble - Using the non-linear 4-bit S-box,
the linear data array is transformed by the bit-
wise operation. A difference between AES as
it uses byte-wise operation.

• RotateNibble - In the RotateNibble algorithm,
the state is rotated four nibbles, (two bytes) to
the left per each round.

• MixNibble - MixNibble algorithm multiplies the
columns of the data array by a modular poly-
nomial equation.

The last algorithm is an adaptation of the Ad-
vanced Encryption System’s (AES) MixColumn al-
gorithm. The involutive 4 bit S-box and Rijndael’s
MixColumn allow the Klein block cipher to operate
with a low memory requirement. This is an improve-
ment in efficiency that can affect both software and
hardware implementations. A representation of one
round of the Klein block cipher is shown in Fig. 1.

C. Threats to Klein
Security analysis is important for cryptographic

schemes, especially in the case of lightweight en-
cryptions, which aim to achieve security with less
computational overload, such as the Klein block ci-
pher [18]. This section provides an overview of two
security vulnerabilities in the Klein encryption and
brief analysis of the application of the threats to the
Klein block cipher.

Parallel-Cut Meet-In-The-Middle (PCMITM) At-
tack: Security analyses are critically important for
cryptography algorithms to observe and analyse
any security holes in the algorithms. The PCMITM
attack application to the Klein block cipher could
succeed if AddRoundKey, SubNibble, and Rotat-
eNibble have diffusion between the higher and
lower nibbles within the bytes of the state. Also, in
order to perform a PCMITM attack, there must be
a nibble separation. In the MixNibble algorithm, the
higher and lower nibbles are mixed, and when it is
done, it produces a diffusion rate. Therefore, for a
PCMITM attack to be performed, it must compute
the higher and lower nibbles [18], [19], [20], [21].
The results of a PCMITM attack on the Klein block

cipher are given in the following form: The attack
for Klein-64 was achieved in 10 rounds out of 12.
The parameter of the attack is k = 64, the number
of rounds is r = 10, and the time is t = 0 seconds.
The attack that was performed in 10 rounds was
achieved in T(64,10,0) = 262 seconds and used
M(64,10,0) = 260 of memory [18].

Differential Characteristics Attack: A differential
characteristics attack is another popular cryptan-
alysis, which exploits the algorithm's key, first by
identifying the input and output differences of a
round. One technique that differential characteris-
tics use is to identify the differences by condition-
ing the input and output and the path it followed to
reach them. Once the differential of six rounds is
satisfied, then the exploitation of the last MixNibble
and RotateNibble can be determined after the last
SubNibble. This is usually at the seventh round, at
which point the differences should be zero for high-
er nibbles.

The attack performs on lower nibbles and shifts
them through the S-box. The outcome will be re-
versed through the MixColumn. Once the results
are produced, the attack can be considered fea-
sible if the lower nibbles are active. To reduce the
key recovery costs, the trials can be reduced 258
times; the attacks always appear to work within the
number of trials [5], [22], [23], [24]. Key recovery in
six rounds was achieved in 10 seconds. In seven
rounds, it was 296 seconds, and in eight rounds,
it was 1,344 seconds. Although the first test was

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

Fig. 1 One Cycle of Klein Block Cipher.

Fig. 1 One Cycle of Klein Block Cipher.

163

JISCR 2021; Volume 4 Issue (2)

quick, the authors state that the first test was mainly
by brute force using neutral bits. They also speci-
fied that their program was sped up due to using an
Athlon64 X2 Dual-Core 4400+ microprocessor and
an 8-bit lookup table for SubNibble

III. optImIsatIon approachEs and ExpErImEnts

This section is divided into three parts. The first
part explains the details of the experiment envi-
ronments, the second and the third part explains
the details of the approaches. Similar approaches
have been reported before for other symmetric en-
cryption ciphers; however, these approaches have
not been experimented with on the Klein block ci-
pher [14], [25], [26]. In this study, two approaches
were selected to optimise the performance of Klein
encryption. It is important to note that Klein encryp-
tion is a lightweight block cipher and must remain
lightweight throughout the experiments.

A. Experiment Environment
In this study, the Klein block cipher is mainly

used and tested on two devices. The first device
was a Windows 10 laptop environment with an Intel
i7, dual-core CPU with a clock rate of 2.4 Gigahertz
(GHz) and 8 Gigabyte (GB) of memory with 1600
MHz memory speed. The second device was a
Raspberry Pi Model 3 with a Broad-com BCM2711
quad-core CPU with a clock speed of 1.5 GHz and
1 GB of memory with 900 MHz of memory speed.
The information of the technologies used in this
study can also be found in Table II. The purpose
of using these two devices was to evaluate the out-
come and the consistency of the Klein block cipher
in two different environments. Since no reference
code of the Klein block cipher implementation has
been published by its designers, an implementa-
tion of Klein-64 has been written in the Python 3 pro-
gramming language. To make sure that the integri-
ty and consistency of the application were met, the
implementation of the program was followed Gong
et al. [6]. In the initial design of Klein encryption, the
program was divided into 4 individual scripts. Each
script contained the implementation of the steps in
the Klein block cipher. Since the four steps in the
Klein block cipher present one iteration, we imple-
mented the application to iterate twelve rounds.

The application is written in Python language for
its simplicity and use [27], although it could have
been implemented in other languages such as C,
but regardless of the platform, we expect to find
consistent results.

Raspberry Pi 3 (RPI3) is a small and inexpensive
computer device that is used in network computing,
remote monitoring and with sensor networks [28].
In this paper, a RPI3 is chosen for the experiments
because of the accessibility of the device and the
current usage of RPI3 in the IoT. Due to limitations
of the research the Windows 10 computer is used
as a different environment to observe the consis-
tency and continuity of different experiments. The
authors of [12], have also conducted similar exper-
iment with microcontrollers as well as higher-end
CPUs. Nonetheless, the results of our experiments
from this device would show a realistic outcome if
performed on a WSN device.

B. Alternative Algorithm
Alternative algorithm is the replacement of an

algorithm of the Klein block cipher that has poor
performance with an algorithm that can provide an
improvement to the performance. The main objec-
tive of this approach is to replace the last algorithm
(MixNibble) of the Klein block cipher with 3-stage
S-box. On the other hand, an evaluation of the
overall resource benchmark of each algorithm of
the Klein block cipher will be measured. Although

taBLE II
taBLE of dEvELopmEnt EnvIronmEnt

 Constrained
Device

 Non-constrained
device

Resources Raspberry Pi 3 Windows 10

 CPU Broad-com
BCM2711 i7 Dual Core

 CPU clock
 speed
(GHz)

1.5 2.4

Memory 1 8

 Memory
 speed
(MHz)

900 1600

Ghorashi et al.

164

JISCR 2021; Volume 4 Issue (2)

the round after the third S-box. This can be written
as shown in Algorithm 1.

C. Increase Iteration
Unlike the SIMON and the SPECK block ciphers

that are part of the Feistel-Permutation family, the
Klein block cipher is from the SPN family [3], [32].
SPN ciphers provide more equilibrium between
linear and non-linear permutations. The software
is critically important to consider in bit permutation
because implementing non-linear bit permutation
can cause complexity in operation. Furthermore,
SPN block ciphers such as PRESENT are cheaper
in hardware and software. Therefore, they are more
likely to have more rounds to satisfy permutation.

Regarding the current attacks on the Klein
block cipher, such as the differential characteris-
tics attack and the PCMITM attack, both attacks
have been successful in key recovery within 8 and
10 rounds, respectively. Regarding the Klein block
cipher with key exploitation at lower rounds, this
study proposes to take an approach against key
recovery by increasing the iteration of the Klein
block cipher. The implementation would include
four different configurations. They are 12, 16, 20,
and 32 rounds. Each configuration is executed with
the same key and has the same block size. In the
execution of each configuration there will be some
gradual delay. Nonetheless, this optimisation is
more targeted on the effectiveness of attacks on
the Klein block cipher. However, we would note
each configuration's time to complete the itera-
tions.

Given SPN ciphers are likely to be balanced in
software, the permutation of bits is more efficient.
Also, the fact that there has been successful crypt-
analysis of block ciphers such as Klein-64 means
it is beneficial to construct a program like the Klein
block cipher with more iterations. In implement-
ing increased rounds, the program was divided
into four scripts consisting of different iterations.
The four programs consist of 12, 16, 20, and 32
rounds. Each round had the same key and plain-
text applied, but it ran in different configurations.
The evaluation of the programs would be based on
the CPU rate, the ratio of the memory, the memory
used, and the time each took.

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

the overall software performance of Klein-64 has
been evaluated [4], the software performance of
each algorithm in the Klein block cipher is unknown
[4], [29]. The construction of the Klein block cipher
is to purposely measure the CPU percentage, the
memory in bytes that the algorithm used, the overall
time the program was executed, and the amount
of data for the specific algorithm of the Klein block
cipher. Finally, both algorithms will be compared
for efficiency [30].

The MixNibble: In the last round of the Klein
block cipher, the state is processed by Rijndael’s
MixColumn (MixNibble). This step works on a 4
bytes element of the Galois Field, and the equation
can be written as:

(28)=x8+x4+x2+1
The output is composed of 4 bytes and is multi-

plied by the matrix below [19].

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

The evaluation of the Klein block cipher has
been achieved by executing and analysing the
MixNibble algorithm. The execution of this algo-
rithm was done once in Windows 10 and once in
the RPI3 environment. The implementation is done
by acquiring four different scripts with necessary
information given, as mentioned above, to evalu-
ate the data, CPU speed, memory usage, and time
it took [31]. Once the results for the normal Klein
block cipher algorithm are achieved, the 3 Substi-
tute Box (3 S-box) algorithm will be tested. The 3
S-box implementation is a 4-bit permutation that
applies to 16 nibbles after the RotateNibble algo-
rithm. Table II represents the values of 3 S-box.
Also, to ensure the message’s integrity, before the
3 S-box, the result from the RotateNibble is XORed
with the key. The first algorithm of the S-box ap-
plies, and the result is again XORed with the key. It
proceeds with the second S-box and, the result of
the second S-box is XORed with the key. It finishes

165

JISCR 2021; Volume 4 Issue (2)

taBLE III
suBstItutE BoxEs usEd In aLgorIthm trIpLE nIBBLE

Su
bs

ti-
 tu

te
 B

ox
1

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 1(X

)

B F 8 C 9 E 7 6 2 4 D 0 3 A 5 1

Su
bs

ti-
 tu

te
 B

ox
2

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 2(X

)

8 3 F 1 6 B 4 E 0 C D 5 9 A 7 2

Su
bs

ti-
 tu

te
 B

ox
3

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

Su
b 3(X

)

9 B 4 7 2 C E 3 F 0 D 1 5 A 6 8

Algorithm 1 Triple Nibble Substitutes

Input: 64-bit binary state STATE RotateNibble

Output: 64-bit ciphertext CT

1: for i = 1 to 3 do:

2: STATE STATE subkeyi

3: STATE subi (STATE);

4:

5: end for

6: return CT

Ghorashi et al.

166

JISCR 2021; Volume 4 Issue (2)

Iv. rEsuLts

In this section, we present the results of the two
approaches described in section III.

A. Alternative Algorithm
The four scripts that consisted of each algo-

rithm of the Klein block cipher were evaluated for
CPU speed, usage of memory, the time executed,
and the data each process. Each round was test-
ed on two different devices to show the software
performance. The first experiment was tested us-
ing Windows 10. When the Python program was
executed in the Windows environment, it showed
how much CPU was used for the specific process.
The first algorithm had a higher percentage rate
than the second and third algorithms; however, in
the fourth algorithm, a bigger percentage rate was
shown. The usage of the memory for all programs
remained similar, but in terms of the execution time,
the first and the fourth programs had longer times
compared to the second and third programs. The
results are shown in Table IV.

The evaluation of the Klein block cipher using
RPI3 showed results with slightly different percent-
ages for each algorithm. In this implementation, the
CPU percentage of the first and second algorithms
was reasonably low compared to the third algo-
rithm, which slightly increased. Finally, the last al-
gorithm had the highest percentage of all. In terms
of the memory ratio, the results were similar to the
results in the Windows 10 environment. The mem-
ory percentage slightly increased towards the last
algorithm; however, the time for each algorithm to
execute was different. Again, the results were sim-
ilar to the results for the Windows 10 environment.
The second and third algorithms took the same
time to execute. The results of the algorithms run on
the Raspberry Pi environment are shown in Table V.

The results for 3 S-box in Windows 10 showed
a higher CPU rating when conducted initially. The
memory usage was at 8352 bytes, the execution
took almost 0.05 seconds, and the data processed
was 267 bytes. The results are shown in Table VI.

The results for 3 S-box in RPI 3 showed a high
CPU percentage. The memory usage was at 17076
bytes, the execution took almost 0.09 seconds, and
the data processed was 267 bytes. The results are
shown in Table VII.

Given the individual results of Klein encryption
algorithms, it is important to evaluate the optimised
block cipher (3 S-box) within a full iteration (12
rounds) of Klein block cipher and then compare the
results with the original Klein block cipher within a full
iteration. The evaluation of the original and 3 S-box

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

taBLE Iv
EvaLuatIon of kLEIn BLock cIphEr In WIn 10

Algorithm CPU (%) RAM (KB) Time (s) Data (Byte)

AddroundKey 35.0 8500 0.078095 289

SubNibble 25.0 8500 0.0156.22 89

RotateNibble 25.0 8468 0.015626 178

MixNibble 58.3 8624 0.0781302 264

taBLE v
EvaLuatIon of kLEIn BLock cIphEr on rpI 3

Algorithm
 CPU
(%)

 Memory
(%)

 RAM
(KB)

Time (s)
 Data
(Byte)

AddroundKey 7.0 1.8 17268 0.141437 289

SubNibble 7.0 1.8 17292 0.065789 89

RotateNibble 9.7 1.8 17244 0.065367 178

MixNibble 16.0 1.8 17324 0.260921 264

taBLE vI
EvaLuatIon of 3 s-Box In WIn 10

Algorithm CPU (%) RAM (KB) Time (s)

AddroundKey 35.0 7908 0.079

SubNibble 25.0 8008 0.0157

RotateNibble 25.0 8048 0.0161

3 S-box 25.0 8352 0.0468

taBLE vII
EvaLuatIon of 3 s-Box In rpI 3

Algorithm CPU (%) Memory (%) RAM (KB) Time (s)

AddroundKey 7.0 1.8 17265 0.142

SubNibble 7.1 1.8 17292 0.072

RotateNibble 8.9 1.8 17248 0.065

3 S-box 27.0 1.8 17076 0.088

167

JISCR 2021; Volume 4 Issue (2)

is performed both on Windows 10 and Raspberry
Pi. Each test consisted of a full iteration and ran four
times. Their average values are recorded in Table VIII.

The results show a relatively high CPU per-
centage compared to the time taken. Similarly, the
results of the 3 S-box in both platforms showed a
higher percentage with a lower execution time. A
study [33] has found that Klein encryption has a
lower degree of diffusion and a higher degree of
confusion. In our first experiment, we examined the
performance of each algorithm in the Klein block
cipher. The results showed that MixNibble and
RotateNibble had a higher CPU percentage than
other algorithms when performed on the Raspber-
ry Pi device. In a related paper [33], the authors
also compared the program memory and data
memory usages of Klein encryption with the Tiny
Encryption Algorithm (TEA), the High Security and
Light Weight (HIGHT), and the KATAN encryption
systems. The program memory usage of Klein is
higher than the rest of the block ciphers, and the
reason is the weight of the program code. Despite
MixNibble having a diffusion property, it has man-
aged to consume higher CPU power and take more
time for encryption. Another performance analysis
concluded that RC6 provides greater security than
RC5 with the extra (four) registers [34]. Although
this increases the throughput and diffusion, the en-
cryption will be achieved in fewer rounds.

B. Increased Iteration
The results of the four configurations construct-

ed to evaluate the performance of the resources
and the time each took are shown in Table IX. Each
configuration has been executed four times for data
accuracy. The results showed a high clock speed
CPU for the (12) rounds, but this gradually came
down by the fourth attempt. The memory usage
average showed 17.31KB. The next configuration
was 16 rounds which showed a high clock speed
at the first execution, but it halved by the fourth at-
tempt. The memory usage was similar to the aver-
age of the 20 rounds configuration. In the 20 and
32 rounds configuration, the clock speed was simi-
lar, however, the memory usage increased from the
20 rounds configuration. Regardless of the memory
usages in all configurations, the CPU speed and
the execution time were highly noticeable for their
effect on the hardware resources.

v. dIscussIon

In this section, we discuss the results of the
approaches to the modified Klein encryption. The
Klein block cipher with 64-bit key size was tested
and evaluated with two different approaches. As we
recall, Klein encryption is a lightweight cipher suit-
ed for WSN devices. The two approaches conduct-
ed on Klein encryption were performed previously
on other encryption ciphers such as AES, Blowfish,
and a lightweight block cipher. We proposed to en-
hance the performance of Klein encryption using
these two approaches. Although the performance
enhancement experiments similar to our approach-
es have been tested on other encryption schemes,
no studies have tested these approaches on the
Klein encryption. Our study aimed to enhance the
performance of the Klein block cipher. However,
since Klein encryption is a lightweight cipher, it
must remain lightweight regardless of the proposed
idea. Therefore, we developed the two approaches
on the Klein block cipher to evaluate the software
performance first. By evaluating the effect of each
approach, we expect to have a better understand-
ing of the performance of the modified Klein block
cipher.

taBLE vIII
 fuLL ItEratIon of orIgInaL and 3 s-Box kLEIn

BLock cIphEr In rpI 3 and WIn 10
Platform Algorithm CPU (%) Memory (%) RAM (KB) Time (s)

RPI 3 Original 21.9 1.8 17076 0.381

RPI 3 3 S-box 29.1 1.775 17076 0.052

Win 10 Original 15.92 NA 8352 0.149

Win 10 3 S-box 15.53 NA 8352 0.057

taBLE Ix
 fuLL ItEratIon of orIgInaL and 3 s-Box kLEIn

BLock cIphEr In rpI 3 and WIn 10
Iteration CPU (%) Memory (%) RSS (KB) Time (s)

12 19.1 1.8 17315 0.043

16 10.9 1.8 17394 0.54

20 7.9 1.8 17919 0.7

32 7.55 1.875 18081 1.26

Ghorashi et al.

168

JISCR 2021; Volume 4 Issue (2)

A. Optimisation Alternative Algorithm
The four scripts constructed to test the Klein

block cipher were the AddRoundKey, SubNibble,
RotateNibble, and MixNibble algorithms. Each al-
gorithm had similar results when performed on Win-
dows 10 and RPI3 devices. The recorded results
between the two devices show some information
related to their hardware. It is known that the Win-
dows 10 device has 8 GB of memory. However, not
all the memory is available for use. For example,
the computer that ran the first set of results had
4.3 GB used for processes and 3.6 GB of memory
available. This is a total of 7.9 GB available for the
whole computer hardware to use. And it had 0.08
GB reserved for other hardware purposes.

On the other hand, the RPI3 device was sup-
plied with 1 GB of memory. However, the official
website of RPI3 and its configuration files states
that it only uses 0.88 GB of memory for the process-
es. The configuration files show 0.128 GB of mem-
ory usage by the Graphical Processing Unit (GPU).
The total amount shows 1.008 GB of physical mem-
ory. It is important to consider that other processes
are also running. But in this regard, the Windows
device has more available memory to spare than
the Raspberry Pi device. Therefore, the results
show a higher rate of the memory. The memory
management of these two devices is entirely un-
predictable, as many processes could be running
at the time of the implementation and evaluation.
However, to make sure the results of the programs
were consistent, the same Python libraries were
used to measure the resources and the time of the
programs. As discussed above, each device has
different hardware, and they output different read-
ings in terms of the results. Nonetheless, they have
produced similar outcomes. With the first program
tested, the initial run showed a higher rating within
CPU percentage in the Windows device compared
to the RPI3 device. For the Windows device, 35% of
CPU time (0.84 GHz out of 2.4 GHz) was spent ex-
ecuting the program, compared to 7% of CPU time
for the RPI3 device. The RPI3 device has a max-
imum of 1.5 GHz, which means only 0.0105 GHz
was used for this run. The high CPU percentage of
the first algorithm in the Windows device is due to
the operation that is being handled. As mentioned

previously, the XOR operation can have a higher
transistor than other logic gates. The memory per-
centage is the ratio of the Resident Set Size (RSS)
set to the physical memory of the device. The ratio
of the memory was not an option available on the
Windows device. The actual memory size recorded
in the Windows device was relatively smaller than
the memory used in the RPI3 device. Again, this
could be related to the distribution of resources
across the processors of each device. However,
the memory results show a stable reading for both
devices. In this regard, the amount of the used data
was the same. However, there was a slight delay of
0.063 seconds (44.7% slower) when the program
was executed in Raspberry Pi. In the Windows de-
vice, the SubNibble and RotateNibble algorithms
showed similar results, considering that the Rotat-
eNibble has a higher amount of data to process.
Nevertheless, the SubNibble algorithm had a lon-
ger script to process. The process of SubNibble
is to identify each nibble from the list and perform
nibble permutation. On the other hand, RotateNib-
ble is swapping the bytes in the list. The difference
between the two is the data that is being manip-
ulated and the number of codes within the script.
The important information about the results is the
memory used, and the time each took to complete.
The memory difference is 32 Kilobytes (KB), and
the time is 0.000004 seconds. In the Raspberry Pi
device, the SubNibble algorithm took 2.7% less
CPU time. The CPU usage of algorithms run in
Windows, and Raspberry Pi are shown in Figures
2 and 3, respectively. As shown, the CPU usage in
both devices was high for MixNibble while the low-
est CPU usage was SubNibble and RotateNibble in
Windows and AddRoundKey and SubNibble in the
Raspberry Pi environment.

The memory difference between RotateNibble
and SubNibble is 48 KB and 0.000422 seconds.
This shows RotateNibble takes 9% more time to
execute than SubNibble. The RAM usage of algo-
rithms run in Windows, and Raspberry Pi is shown
in Figures 4 and 5, respectively. The RAM usage
in both devices was high for MixNibble, while the
lowest RAM usage was for RotateNibble.

The last algorithm, MixNibble, shows a signifi-
cant amount of resources both in the Raspberry Pi

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

169

JISCR 2021; Volume 4 Issue (2)

and Windows devices. This is due to the amount of
data processed. This section used the XOR logical
gate and multiplication, which increased the need
for more resources due to the long operation. The 3
S-box in the Windows 10 and Raspberry Pi environ-
ments showed a high execution of CPU. This was
because the program had 3 XOR operations plus
three sets of SubNibble algorithms [35]. The oper-
ation consumes a higher CPU at the initial point;
however, the memory usage for both has stayed
reasonably low. The time that each took for execu-
tion is 0.05 and 0.09 seconds, respectively. When
3 S-box is compared with the MixNibble algorithm
run in the Windows 10 environment, MixNibble
used twice as much CPU. The amount of memory
MixNibble used was 8,624 KB, and the amount of
memory 3 S-box used was 8,352 KB, a difference
of 272 KB. In terms of the time difference, there
was a delay in the MixNibble algorithm of 0.0313
seconds. In the Raspberry Pi environment, the Mix-
Nibble algorithm was executed 1.68% faster than 3
Sbox. The difference in memory usage between 3
S-box and MixNibble is 248 KB. Also, 3 S-box exe-
cuted 0.0172 seconds faster than MixNibble.

The 3 S-box showed a higher CPU percentage
when executed. However, in relation to other re-
source consumption, the 3 S-box was analysed to
have optimised performance for memory, time, and
implementation of cost. Despite the advantages of
software performance, security may not be guar-
anteed, and the results of this study are based on
factual argumentation. Enhanced S-box, compared
to the original AES encryption, replaces the Rijn-
dael function [25]. The authors performed a NIST
statistical test and cryptanalysis attack on the AES
block cipher with enhanced S-box. The results of
the experiments showing the original security of
AES was not modified rather added confusion to
the property of this algorithm which is diffusion.

B. Optimisation of Increased Iteration
Evaluation of the four programs with different

iteration lengths was done using the RPI3 device,
an environment closest to a wireless sensor device.
The replication of this environment gave several dif-
ferent yet interesting results on the effect of each

iteration. The four tested programs on the device
had four configurations: 12, 16, 20, and 32 itera-
tions. The size of the plaintext and keys were con-
sistent across all configurations. Since the software
performance of Klein-64 has been evaluated with
3,689 iterations per byte, this study focused on the
iterations with the above configurations with only 8
bytes (64-bits).

For better results, each iteration was performed
four times. The average time of the execution of
each configuration was recorded. The results for
the first configuration show higher resource usage.
The CPU usage of the first run had a high rate of
27%. Then after the fourth run, it had a rating of 7%.
There was a delay of 10 seconds between each run.

Nonetheless, the amount of CPU usage for the
first until the third run was high in the first configu-
ration. The memory usage was stable, with a mean
of 17,315 KB. The average time that it took to com-
plete was 0.043 seconds.

The second configuration had 16 iterations. The
results for this configuration show a high CPU us-
age rate for the first run, but from the second to the
fourth run, the percentage halved. Consequently,
the difference between the first and last run mem-
ory usage was 1.41%. Compared to the average
memory usage of the first configuration, only 0.45%
extra memory was used.

In the third configuration, the 20 iterations, the
CPU usage seemed to be low when initiated but
gradually increased by the end of the fourth run.
However, the memory increased in usage by
2.25%. The average time that it took to perform the
full iteration was 0.7 seconds, 25% and 176% slow-
er when compared to second and first configura-
tions, respectively. The final configuration, which
had 32 iterations, resulted in a lower CPU usage
time (mean of 7.55%); however, the memory usage
ratio towards the program increased during the last
run. A rating of 1.9% showed 18,200 KB of memo-
ry usage. The average time it took to complete the
whole iteration was 1.26 seconds. The memory us-
age difference between 12 iterations and 32 itera-
tions increased 5.4%. In terms of average delays, it
was 1.217 seconds slower to perform 32 iterations
than 12 iterations (that is 186%).

Ghorashi et al.

170

JISCR 2021; Volume 4 Issue (2)

Nonetheless, the CPU usage of the first config-
uration was higher than the last configuration (that
is 86% slower) when the 12 iterations were execut-
ed. Usually, increasing the iteration of an encryp-
tion system does not make the encryption scheme
optimised; however, it is possible to infer that the
encryption operations could be more efficient. A re-
cent study [36] on the power consumption of Rasp-
berry Pi 2 GPU rendering between software and
hardware was done, and the results showed hard-
ware rendering is more efficient than software ren-
dering. Although hardware uses more power, soft-
ware rendering takes more time. We can assume
the same behaviour occurred with the experiments
done. However, it is worth mentioning that this ex-
periment was mainly affected the CPU and memory
from the software perspective. Introducing higher
iterations can cause a delay in implementation
and more resource consumption, and using lower
rounds such as 12 iterations could cause very high
resource consumption. In the real-world scenario,
16 iteration configurations seem to be ideal when
considered for a sensor device. Since the 16 itera-
tion configuration encrypted 64 bits of information
(8 characters), if the message had to be longer,
e.g., 25 (32 characters), the time to run would be
2.16 seconds. In terms of resource usage, it would
consume 43.6% of the CPU and use 69,576 KB of
memory. When compared to other configurations,
the size of the memory usage would be higher. In
the first configuration, although it had a lower mem-
ory usage, more CPU was used.

 In the differential characteristics attack, for 8
rounds of key recovery, it was recorded that the
program would take 1,344 seconds to achieve the
round key. This attack was done on Klein-64 with
12 rounds. In the 16 rounds of Klein encryption,
this would mean 1,792 seconds to key recovery
or 28% more delay [5], [18]. Kumar and Rana [14]
increased the number of rounds from 10 to 16 for
encryption and decryption. The authors stated that
a higher number of rounds resulted in higher secu-
rity for intruders to breach. For this case they have
modified the AES block cipher with 320 bits key size
for 16 rounds. The operation of the modified AES
block cipher is dependent on the initial key, which

is generated by the Polybius square with a 6 by 6
matrix, that includes both numbers and letters. The
values are arranged with no repetition from left to
right. In this paper, DES, TDES, AES and modified
AES have been implemented based on Through-
put on various sizes of files. The results of the mod-
ified AES block cipher showed the highest time to
encrypt was for the 16 rounds. With the implemen-
tation of increased rounds, the Polybius square au-
thors claim it contains higher security and is less
prone to intruders. Ahmed et al. [34] have sug-
gested that with increased rounds, the change of
one-pixel is possible in image encryption; howev-
er, the rate of one-pixel change is small. Therefore,
they concluded that by increasing the number of
rounds, a higher security is achieved.

C. Future Work
Although the need for WSN devices is highly sig-

nificant, the secrecy of the data that they transmit is
important too. With this requirement, performance
of the encryption must be suitable for constrained
devices to run effectively. In future work, we are
determined to implement different logical gates op-
erations such as AND gate and OR gate for their
lower resource consumption. This study performed
software optimisation of Klein block cipher; howev-
er, security optimisation of Klein block cipher is yet
required to be evaluated in further studies.

vI. concLusIon

This study evaluated the software performance
of the Klein block cipher. The analysed approach-
es were a modified algorithm (3 S-box) and in-
creased iteration of the original Klein block cipher.
The 3 S-box had a greater effect on software per-
formance with a small limitation when compared
with the MixNibble algorithm. Improvements were
observed with the average CPU, memory and time
when 16 iterations were used compared to default
iteration of Klein-64. Results from repeating exper-
iments confirmed the initial findings. The results of
suggestive approaches (3 S-box and increased
iterations) showed more efficiency in performance
than the original algorithm.

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

171

JISCR 2021; Volume 4 Issue (2)

acknoWLEdgmEnt

This work has been supported by the Cyber
Security Research Centre Limited, whose activities
are partially funded by the Australian Government’s
Cooperative Research Centres Programme.

rEfErEncEs

[1] I. Lee and K. Lee, “The internet of things (iot): Applica-
tions, investments, and challenges for enterprises,” Bus.
Horiz., vol. 58, no. 4, pp. 431–440, 2015, doi: 10.1016/j.
bushor.2015.03.008.

[2] E. Leloglu, “A review of security concerns in internet of
things,” J. Comput. Commun., vol. 5, no. 1, pp. 121–136,
2016, doi: 10.4236/jcc.2017.51010.

[3] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B.
Weeks, and L. Wingers, “The simon and speck light-
weight block ciphers,” in 2015 52nd Annu. Des. Autom.
Conf., CA, USA, pp. 1–6, doi: 10.1145/2744769.2747946.

[4] M. Cazorla, K. Marquet, and M. Minier, “Survey and
benchmark of lightweight block ciphers for wireless sen-
sor networks,” in 2013 Int. Conf. Secur. Cryptography
(SECRYPT), Iceland, pp. 1–6.

[5] J.-P. Aumasson, M. Naya-Plasencia, and M.-J. O.
Saarinen, “Practical attack on 8 rounds of the lightweight
block cipher klein,” in Int. Conf. Cryptology India., in
Progress in Cryptology-INDOCRYPY 2011, vol. 1 2011,
pp. 134–145, doi: 10.1007/978-3-642-25578-6_11.

[6] Z. Gong, S. Nikova, and Y. W. Law, “Klein: a new family
of lightweight block ciphers,” in REID. Scurity and Pri-
vacy (RFIDSec 2011), A. Juels and C. Paar, Ed., 2011,
pp. 1–18.

[7] D. Luciano and G. Prichett, “Cryptology: From caesar
ciphers to publickey cryptosystems,” Coll. Math. J., vol.
18, no. 1, pp. 2–17, 1987, doi: 10.2307/2686311.

[8] P. Dixit, A. K. Gupta, M. C. Trivedi, and V. K. Yadav,
“Traditional and hybrid encryption techniques: a survey,”
in Networking communication and data knowledge en-
gineering, G. M. Perez, K. K. Mishra, S. Tiwari, and M.
C. Trivedi, Eds., Singapore: Springer, 2018, ch. 22, pp.
239–248.

[9] S. B. Sadkhan and A. O. Salman, “A survey on light-
weight-cryptography status and future challenges,” in
2018 Int. Conf. Adv. Sustain. Eng. Appl. (ICASEA), Iraq,
pp. 105–108, doi: 10.1109/ICASEA.2018.8370965.

[10] B. Coskun and N. Memon, “Confusion/diffusion capabil-
ities of some robust hash functions,” in 2006 40th Annu.
Conf. Inf. Sci. Syst., Princeton, NJ, USA, pp. 1188–1193,
doi: 10.1109/CISS.2006.286645.

[11] M. Hellman, “A cryptanalytic time-memory trade-off,”
IEEE trans. Inf. Theory, vol. 26, no. 4, pp. 401–406, July
1980, doi: 10.1109/TIT.1980.1056220.

[12] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi,
“TWINE: A Lightweight, Versatile Block Cipher,” in Proc.
ECRYPT Workshop Lightweight Cryptography, Belgium,
Nov. 2011, pp. 146-169.

[13] A. Bogdanov, et al., “PRESENT: An Ultra-Lightweight
Block Cipher,” in Proc. Int. Workshop Cryptogr. Hardw.
Embed., P. Paillier and I. Verbauwhede, Eds., in Lecture
Notes in Computer Sciense, vol. 4727, 2017, pp. 450-
466.

[14] P. Kumar and S. B. Rana, “Development of modified aes
algorithm for data security,” Optik, vol. 127, no. 4, pp.
2341–2345, 2016, doi: 10.1016/j.ijleo.2015.11.188.

[15] P. Kushwaha, M. P. Singh, and P. Kumar, “A Survey on
Lightweight Block Ciphers,” Int. J. Comput. Appl., vol.
96, no. 17, pp. 1-7, June 2014, doi: 10.5120/16883-6923.

[16] F. Abed, E. List, S. Lucks, and J. Wenzel, “Cryptanaly-
sis of the speck family of block ciphers.” IACR Cryptol.
ePrint Arch., Report 2013/568, 2013. [Online]. Available:
https://eprint.iacr.org/2013/568

[17] A. Heuser, S. Picek, S. Guilley, and N. Mentens,
“Side-channel analysis of lightweight ciphers: Does
lightweight equal easy?” in 12th International Workshop
RFIDSec 2016, in Radio Frequency Identification and IoT
Security, G. P. Hanche and K. Markantonakis, Eds., in
Lecture Note in Computer Science, vol. 10155, 2016, pp.
91–104, doi: 10.1007/978-3-319-62024-4_7.

[18] I. Nikolic, L. Wang, and S. Wu, “The parallel-cut meet-
in-the-middle´ attack,” Cryptogr. Commun., vol. 7, no. 3,
pp. 331–345, 2015, doi: 10.1007/s12095-014-0118-1.

[19] V. Lallemand and M. Naya-Plasencia, “Cryptanalysis of
klein,” in International Workshop on Fast Software En-
cryption, in Fast Software Encryption, C. Cid and C. Re-
chberger, Eds., in Lecture Notes in Computer Science,
vol. 8540, 2014, pp. 451–470, doi: 10.1007/978-3-662-
46706-0_23.

[20] R. S. Romaniuk, “Iot–review of critical issues,” Int. J.
Electron. Telecommun., vol. 64, no. 1, pp. 95–102, 2018,
doi: 10.24425/118153.

[21] A. R. Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, “A
roadmap for security challenges in the internet of things,”
Digit. Commun. Netw., vol. 4, no. 2, pp. 118–137, 2018,
doi: 10.1016/j.dcan.2017.04.003.

[22] A. Biryukov and D. Khovratovich, “Related-key cryptan-
alysis of the full aes-192 and aes-256,” in 15th Int. Conf.
Theory Appl. Cryptology Inf. Secur., in Advances in
Cryptology – ASIACRYPT 2009, M. Matsui, Ed., in Lec-

Ghorashi et al.

172

JISCR 2021; Volume 4 Issue (2)

ture Notes in Computer Science, vol. 5912, 2009, pp.
1–18, doi: 10.1007/978-3-642-10366-7_1.

[23] M. C¸oban, F. Karakoc¸, and O. Boztas¸, “Biclique crypt-
analysis of twine,” in 11th Int. Conf. Cryptology Netw.
Secur., in Cryptology and Network Security, J. Pieprzyk,
A.-R. Sadeghi, and M. Manulis, Eds., in Lecture Notes
in Computer Science, vol. 7712, 2012, pp. 43–55, doi:
10.1007/978-3-642-35404-5_5s.

[24] A. Gupta and S. Kaushik, “A review: Rsa and aes algo-
rithm,” IITM J. Manag. IT, vol. 8, no. 1, pp. 82–85, 2017.

[25] J. Juremi, R. Mahmod, S. Sulaiman, and J. Ramli, “En-
hancing advanced encryption standard s-box genera-
tion based on round key,” Int. J. Cyber-Secur. Digit. Fo-
rensics (IJCSDF), vol. 1, no. 3, pp. 183–188, 2012.

[26] E. Tena-Sanchez, J. Castro, and A. J. Acosta, “A meth-
odology for´ optimized design of secure differential log-
ic gates for DPA resistant circuits,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 4, no. 2, pp. 203–215, 2014,
doi: 10.1109/JETCAS.2014.2315878.

[27] J. Wainer and E. C. Xavier, “A controlled experiment on
python vs c for an introductory programming course:
Students’ outcomes,” ACM Trans. Comput. Educ., vol.
18, no. 3, pp. 1–16, 2018, doi: 10.1145/3152894.

[28] S. Jain, A. Vaibhav, and L. Goyal, “Raspberry pi based
interactive home automation system through e-mail,” in
2014 Int. Conf. Reliability Optim. Inf. Technol. (ICROIT),
India, pp. 277–280, doi: 10.1109/ICROIT.2014.6798330.

[29] D. Irwin, P. Liu, S. Chaudhry, M. Collier, and X. Wang, “A
performance comparison of the present lightweight cryp-
tography algorithm on different hardware platforms,” in
29th Irish Signals Syst. Conf. (ISSC), UK, 2018, pp. 1–5,
doi: 10.1109/ISSC.2018.8585341.

[30] J. Hosseinzadeh and A. G. Bafghi, “Software implemen-
tation and evaluation of lightweight symmetric block

ciphers of the energy perspectives and memory,” arX-
iv:1706.03909, 2017. [Online]. Available: https://arxiv.
org/abs/1706.03909.

[31] J. Grossschadl, S. Tillich, C. Rechberger, M. Hofmann,
and M. Medwed, “Energy evaluation of software imple-
mentations of block ciphers under memory constraints,”
in 2007 Design, Automation & Test in Europe Confer-
ence & Exhibition, France, 2007, pp. 1–6, doi: 10.1109/
DATE.2007.364443.

[32] H. AlKhzaimi and M. M. Lauridsen, “Cryptanalysis of
the simon family of block ciphers.” IACR Cryptol. ePrint
Arch., Report 2013/543, p. 543, 2013. [Online]. Avail-
able: https://eprint.iacr.org/2013/543.pdf

[33] M. Alizadeh, M. Salleh, M. Zamani, J. Shayan, and S.
Karamizadeh, “Security and performance evaluation of
lightweight cryptographic algorithms in rfid,” in Proc.
16th WSEAS Int. Conf. Comput., Kos Island, Greece,
2012, pp. 45-50.

[34] H. E.-d. H. Ahmed, H. M. Kalash, and O. F. Allah, “En-
cryption efficiency analysis and security evaluation of
rc6 block cipher for digital images,” in 2007 Int. Conf.
Electr. Eng., Pakistan, 2007, pp. 1–7, doi: 10.1109/
ICEE.2007.4287293.

[35] D. Hong, et al., “Hight: A new block cipher suitable for
lower source device,” in Proc. Int. Workshop Cryptogr.
Hardw. Embed. Syst., L. Goubin, and M. Matsui, Eds.,
in Lecture Notes on Computer Science, vol. 4249, 2006,
pp. 46–59, doi: 10.1007/11894063_4.

[36] Q. He, B. Segee, and V. Weaver, “Raspberry pi 2 b+
gpu power, performance, and energy implications,” in
2016 Int. Conf. Comput. Sci. Comput. Intell. (CSCI).,
Las Vegas, NV, USA, 2016, pp. 163–167, doi: 10.1109/
CSCI.2016.0038.

Software Optimisation of Lightweight Klein Encryption in the Internet of Things

