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Abstract
Due to fast-evolving technology, the world is moving to the use of credit cards rather than money in their 

daily lives, giving rise to many new opportunities for fraudsters to use credit cards maliciously. Based on 
the Nilson report, losses related to global cards were estimated to be over $35 billion by 2020. In order to 
maintain the security of users of these cards, the credit card company must develop a service to ensure that 
users are protected from any risks they may be exposed to. For this reason, we introduce a fraud detection 
model, denoted ST-BPNN, which is based on machine and deep learning approaches to identify fraudulent 
transactions. ST-BPNN was applied on real fraud detection data provided by the European bank. Comparing 
the obtained results from ST-BPNN with a recent state-of-the-art approach shows that our proposed model 
demonstrates high predictive performance for detecting fraudulent transactions.
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I. IntroductIon

Since the introduction of credit cards and online 
payments, many scammers have found ways to ex-
ploit people and steal their credit card information 
for use in unauthorized purchases [1]. The result 
is a huge amount of fraudulent purchases every 
day [2]. Banks and e-commerce sites try to identi-
fy these fraudulent transactions and prevent them 
from happening again. Fig. 1 presents an example 
of a Credit Card Fraud Detection (CCFD) case.

Credit card fraud (CCF) involves the use of fal-
sified or stolen credit card information and causes 
financial harm to the account holders or merchants 
involved [3]. Fraud is known to be dynamic and has 

no pattern, so it is not easily identified. Fraudsters 
use recent technological advances to their advan-
tage. They somehow bypass security controls, 
resulting in the loss of billions of dollars. The total 
number of CCFs in the Single Euro Payments Area 
(SEPA)  in 2016 was 1.8 billion euros out of a total 
of 4.38 trillion euros in transactions, which is 0.4% 
less than the previous year [4]. In 2016, based on 
Nelson's report, global credit card losses amount-
ed to $21.84 billion and were estimated to reach 
$32 billion in 2020 [2]. Using machine learning and 
deep learning techniques to analyze and detect 
suspicious activity is one way to track fraudulent 
transactions to stop fraudsters before the transac-
tion is processed and validated [5].
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real-world data. We evaluate the effectiveness of 
ST-BPNN using different criteria such as Recall 
(sensitivity), AUC-ROC, AUPR, and F1 score, then 
compare the obtained results with a recent state-of-
the-art approach.

The rest of this paper is organized as follows: 
Section II summarizes the related works, Section III 
provides details on the proposed model, and Sec-
tion IV presents the experimental environment and 
ST-BPNN model implementation. The obtained re-
sults are discussed in Section V and findings and 
future work are summarized in Section VI.

II. related Work

A comprehensive understanding of fraud de-
tection technologies can be helpful for us to solve 
the problem of CCF. The work in [18] provides a 
comprehensive discussion on the challenges and 
problems of fraud detection research. Adewumi 
et.al. [19] discuss the most popular fraud types 
and current nature-inspired detection approaches 
that are used in the fraud detection system. Also, 
a significant number of research works have been 
done on CCFD. The techniques developed can be 
categorized into two sections, as discussed below:

Machine Learning-based approach: In [1], a 
survey of different data mining and machine learn-
ing techniques for CCFD was presented. The pa-
per summarized a list of challenges one might en-
counter during CCFD in [20]. In [21], a comparison 
study of logistic regression and NB was performed. 
Tax et al. [22] explored an intuitive approach 
that produces random outliers evenly distributed 
throughout the hypercube containing the target 
data to assist in the identification of appropriate hy-
perparameters, and further enhanced it into a hy-
persphere in order to match the target data better. 
Weston et al. [23] applied peer group analysis on 
transaction records to identify aberrant values and 
abnormal transactions. Genetic algorithms com-
bined with scatter search was used to minimize the 
number of wrongfully classified transactions [24]. 
Bahnsen et al. [25] suggested a cost-sensitive ap-
proach with minimal risk of bayes to identify cases 
of fraud.

Recently, we found many other approaches 
used in the field of Credit Card Fraud Identification 
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Deep Neural Networks (DNNs) are rapidly be-
coming one of the most popular machine learn-
ing (ML) tools, due to their ability to solve a wide 
range of problems, from language translation [6] 
[7], image recognition [8], atari gaming [9], and 
fraud detection [10]-[12]. Neural networks created 
through supervised learning are capable of dis-
covering subtle relationships between variables, 
making them well suited for creating an alternative 
model for complex physical systems[1] [13]. Nu-
merous ML algorithms can be employed to build 
surrogates, but neural networks have several dis-
tinct advantages; they can be scaled up to large 
volumes of high dimensional data, have low mem-
ory requirements, and can be easily updated when 
new data become available [14], [15].

Although it is possible to fit any function to a 
sufficiently large and shallow neural network [16], 
studies suggest that deep networks often work 
better than large networks with similar numbers of 
neurons [17]. The inclusion of more hidden layers 
allows higher levels of interaction between parame-
ters, so that deep networks can discover non-linear 
relationships that may be undetectable with only 
two hidden layers [17] [1] [13]. Based on this ob-
servation, we propose a new model based on deep 
neural networks technology and machine learning 
techniques to address the problem of CCF. The 
proposed model is called ST-BPNN and consists of 
a pre-processing of machine learning techniques 
which are Synthetic Minority Oversampling Tech-
nique (SMOTE) and Tomek Link to solve the prob-
lem of imbalanced data, and back-propagation 
neural networks (BPNN) to detect fraud. The ST-
BPNN is performed on a large set of imbalanced 
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Fig. 1 Credit Card Fraud Detection (CCFD) case. 
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(CCFI) processes. N. Robinson et al. [26] used an 
approach known as Store Model Divergence for 
Pre-paid Cards, which uses the HMM of a mer-
chant's terminals to capture fraudulent transactions 
in real-time. Salvatore Carta et al. [27] adopted new 
intelligence data technology using the PMC (Pru-
dential Multi-Consensus Model). Their method is 
designed to bring learners together with different 
scenarios where one class is much smaller than the 
other classes or where various classification errors 
are considered in unique ways. Salazar et al. [21] 
studied the performance of their proposed semi-su-
pervised machine learning algorithm to overcome 
the imbalanced classification problems. They aug-
ment the class of limited data to make the variance 
of the estimate lower by using a method of data 
subrogation. Then, they investigate the influence of 
this increase in many simulated and experimental 
scenarios of an application, for the automatic de-
tection of CCF.

Saia [28] introduced a Discrete Wavelet Trans-
formation (DWT) based approach for fraud detec-
tion, by developing an evaluative model with the 
ability to deal with imbalanced distribution and het-
erogeneous data. They detected fraudulent activity 
by exploiting only legitimate transactions through 
their model definition process, which is affected 
by less data variation. Furthermore, Saia and Car-
ta [29] employed the Linear Dependence Based 
(LDB) model and benchmarked its performance 
versus random forests, which is one of the better 
known state-of-the-art models. They validated their 
work by performing the model on two real-world 
data sets having a strong imbalanced data distri-
bution. In [30], they benefitted from the analysis of 
an evaluation criterion, in terms of domain frequen-
cy, of the spectral pattern of the data. Their method 
allows obtaining a more stable model to represent 
information and reduce problems of imbalance and 
heterogeneity of data.

Salazar et al. [31] discussed certain concep-
tual and empirical solutions after raising the main 
issues related to the problem of Automatic CCFD 
(ACCFD). They proposed a framework for ACCFD 
based on the aggregation of decisions as well as 
surrogate data. Then, they assessed its sensitivity 
using various fraud/legitimacy ratios and conclud-

ed the paper by suggesting a few areas for further 
research. Vergara et al. [32] has enhanced CCFD's 
performance with a number of algorithms using 
signal processing on graphics. They use three 
approaches: one is a version of standard Iterative 
Amplitude Adjusted Fourier Transform (IAAFT), and 
the remaining two are variants of  Iterative Surro-
gate Signals on Graph (ISSG) algorithms. By ap-
plying these methods to various scenarios where 
different proportions of transactions are legitimate 
and illegitimate, detection skills are enhanced and 
assessed by Receiver Operating Characteristics 
(ROC) curves and Key Performance Indicators 
(KPI), both widely used in the financial aspects of 
business. Zareapoor et al. [33] integrated a sam-
pling technique with a set of AdaBoost to enhance 
prediction performance on imbalanced data sets. 
More specifically, through an empirical experiment 
their technique shows more appropriate perfor-
mance measures for exploring skewed datasets. 
Also, in [34] Zareapoor et al. developed a balanc-
ing strategy to overcome the well-known issues of 
classification and collection in the CCFD field. They 
created a contrast vector based on a client’s histor-
ical behaviors and created a supervised learning 
model to classify clients. The model, tested on a set 
of real credit card data provided by FICO, shows 
significant performance compared to other lead-
ing classifiers. In other work, Zareapoor et al. [35] 
presented a hybrid model to handle datasets with 
a large number of classes, which substitute linear 
kernel for nonlinear ones without losing accuracy. It 
was performed on a real-world dataset with 20,000 
to 65,000 classes, and it gave significant gains 
compared to several approaches.

Deep Learning-based approach: Deep learn-
ing arises from the idea of a multi-type represen-
tation of the human brain that incorporates basic 
characteristics at low-level or high-level abstrac-
tions. People hierarchically arrange their ideas and 
concepts. People learn simple concepts first then 
transform them into more abstract concepts. The 
human brain consists of many layers of neurons 
that are feature detectors and sense more abstract 
characteristics when the levels rise, like the deep 
neural network. It is easier to generalize for com-
puters to interpret information more abstractly.
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Artificial Neural Networks (ANNs) for CCFD 
have been discussed in several pieces of literature 
[36], [12], [37]. Among the types of ANNs are deep 
learning and shallow learning; the former has a 
complex structure with more than one hidden layer 
and more nodes in each of them than the shallow 
model. Roy et al. [12] and Jurgovsky et al. [36] in-
troduced recurrent neural networks, which use a 
sequence of transactions as input to their model. 
Besides, Gupta et al. [37] compared different ma-
chine learning models based on a deep, feedfor-
ward neural network. Ogwueleka [38] employed an 
ANN with a rule-based component, whereas Pati-
dar and Sharma [39] applied an ANN regulated by 
Genetic Algorithms. Syeda et al. [40] implemented 
a Fuzzy Neuron Network (FNN) running on Paral-
lel Machines to speed up the production of rules 
for the CCFD's client. Srivastava et al. [41] used a 
Hidden Markov Model (HMM) initially performed on 
a CCT sequence of cardholders who behaved nor-
mally and indicated how the model can be useful 
for fraud detection. Kamaruddin and Ravi [42] pro-
posed a one-class classification approach to over-
come the imbalanced data problem. More specifi-
cally, they developed a hybrid system composed 
of Particle Swarm Optimization (PSO) and Auto 
Associative Neural Network (AANN) implemented 
within the Spark Computational Framework (SCF).

Some other studies have investigated the poten-
tial for mapping decision trees and randomized for-
ests using neural networks [43], [44]. A particularly 
useful approach is to map trees in neural networks 
with two equivalent hidden layers, with the num-
ber of neurons in each layer related to the number 
of leaves in the decision tree [43], [44]. Mapping 
"warm starts" the process of neural network train-
ing by launching the network in a state that works 
in the same way as the decision tree; after further 
training, neural networks obtain a higher accuracy 
than the original tree-based model. Although both 
hidden layer models work well for medium-sized 
datasets, the networks can become large enough 
for high dimensional nonlinear regression problems 
with complex decision trees, making it difficult for 
the subsequent training for small datasets. In [33], 
the back-propagation algorithm is integrated with 
NB and C4.5 to detect fraud in an imbalanced da-
ta-space, generated by minority oversampling with 

replacement. Padmaja et al. [45] presented a fraud 
detection method that combines backpropagation, 
naïve Bayes, and C4.5 tree algorithms, and ap-
plied them to derived data from oversampling with 
replacement.

III. the ProPosed aPProach

Through this section, we present the proposed 
approach’s steps for CCFD. In this approach, we 
used a fusion of machine and deep learning al-
gorithms to build a CCFD. More specifically, the 
proposed model is built from the Back-Propaga-
tion Neural Networks (BPNNs) to detect CCF and 
a combination of SMOTE with Tomek links to tackle 
the imbalanced data problem in order to enhance 
the model prediction performance of legitimate and 
fraudulent transactions. In the area of the CCFD, 
the concept of classifiers combination is proving to 
be an important new path for improving individual 
classifiers' performance in terms of accurate and 
precise results [46]-[48].

A. Credit card fraud detection workflow
Our proposed approach for CCFD, depicted in 

Fig. 2, is developed by using the Synthetic Minori-
ty Oversampling (SMOTE) and Tomek Links (TL) 
Techniques to tackle the problem of imbalanced 
data and by using BPNNs model to identify fraudu-
lent transactions. The proposed model is operated 
on a real-world dataset. It is denoted as ST-BPNN 
and is composed of the following steps illustrated 
in Fig. 2.

The ST-BPNN process is performed as follows:
- Preprocessing of imbalanced data using the 

SMOTE and Tomek links (TL) techniques.
- Fitting the ST-BPNN model using synthetic 

dataset generated by the SMOTE+TL tech-
niques to improve their classification abili-
ty to separate legitimate transactions from 
fraudulent ones.

- Predicting fraudulent cases by performing 
ST-BPNN on the original dataset using the 
K-fold Cross-validation method.

- Evaluating the ST-BPNN prediction perfor-
mance using AUPR, AUC-ROC, Sensitivity, 
and F1-scores metrics.

An Efficient Deep Learning Classification Model for Predicting Credit Card Fraud on Skewed Data 
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B. Data description
The used data set [49] to evaluate the perfor-

mance of the proposed model in detecting fraud-
ulent transactions comes from the European Bank, 
a dataset that provides transactions that occurred 
within two days, of which 492 were fraudulent 
from a total of 284,807 transactions. The data set 
is highly imbalanced, with positive classes (fraud) 
representing 0.172% of all transactions. In order to 
protect customer privacy, it contains only numer-
ic input variables, which are the result of the PCA 
transformation [50].

Features (or variables) [51] V1, V2, ... V28 are 
the principal features converted with the PCA, while 
the ones that are not converted using the PCA are 
"Time" and "Amount", wherein Time refers to the 
time interval (in seconds) between both the current 
and the previous transaction; Amount is the value 
of the transaction. The target variable (Class) is bi-
nary; 1 = fraud, 0 = genuine.

C. Data visualization
Fig. 3 shows that the data set used is very im-

balanced; the number of frauds (abnormal transac-
tions) is very low compared to the number of gen-
uine transactions (normal transactions) where the 
fraud rate is 0.17%. Therefore, this huge difference 
between the classes (legitimate and fraudulent) 
can lead to misclassification when detecting CCF.

D. The imbalanced data problem
Class imbalance, also known as the skewed dis-

tribution of classes, is a very common classification 
problem. Special data mining methods are applied 
along with standard clustering algorithms to deal 

with this issue. Class imbalance results if one class 
has a higher number of instances than another. It 
is more vulnerable when we consider the Big Data 
context. Indeed, the dataset that is used to train the 
model contains a very small percentage of the mi-
nority class, also known as positive points, versus 
the majority class, which is known as negative points. 
The correct classification of the minority class over 
the majority class is in most cases more challenging 
and crucial, such as the detection of fraud.

In this case, fraud is the minority class, and it is 
more critical to identify fraudulent transactions be-
cause they are more harmful than normal ones. As 
a result of these class data ratios, it is very hard for 
ML classifiers to learn the minority class features 
and models. Models such as neural networks, deci-
sion trees and support vector machines, faced with 
an unbalanced dataset to detect fraudulent trans-
actions, tend to maximize the overall prediction ac-
curacy at the expense of the minority class [15]. 
This is due to a strong bias towards the majority 
class while ignoring the smaller class [19].

Fig. 3 Transactions distribution based on the target variable 
(genuine=0, fraud=1).
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E. Synthetic minority oversampling technique
Several suggested approaches to the problem 

of class imbalance are provided at the data and 
algorithmic levels. The majority are designed for 
a two-class or binary problem where one class is 
strongly under-represented but associated with 
higher importance of identification. Data-level 
solutions attempt to rebalance the distribution of 
classes by resampling the data space, while at the 
algorithm level solutions essay to adjust the learn-
ing algorithm of the existing classifier to reinforce 
learning by relation to the minority class [17]. To 
tackle the problem of imbalanced data, we use 
SMOTE to generate synthetic examples by operat-
ing in the functionality space rather than in the data 
space. The minority class is oversampled by intro-
ducing synthetic samples along the line segments 
combining all or part of the k neighbors closest to 
the minority class. This technique overcomes the 
problem of over-sampling and widens the decision 
region of examples of the minority class, dealing 
with both a relative and absolute imbalance [52]. 
Fig. 4 illustrates how the SMOTE algorithm works.

Also, SMOTE as a method usable at the algorith-
mic level, has the capacity to increment the learn-
ing of the algorithm with regard to reducing both 
the FNR (False Negative Rate) and FPR (False Pos-
itive Rate). In the view of Kumari and Mishra [48], 
SMOTE is written in the following way:
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recommended in [54] [48] to exploit the advantag-
es of each approach for tackling the imbalanced 
data and improving the classification performances 
of a fraud identification model.

Tomek links, a data cleaning technique, was 
proposed by Ivan Tomek [54]. Tomek Links (TL) 
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by keeping only limit samples in the condensed 
subset and thus reduces the computational 
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or 〖d(S〗_j,S_1) <〖 d(S〗_i,S_j). The samples that 
can be considered as Tomek links are borderline 
or noisy observations and their removal could im-
prove the decision limit of the problem [55]. Fig. 5 
illustrates how Tomek Links algorithm works.

G. Deep neural network algorithm for CCFD
Deep Neural Network (DNN) plays an important 

role in the field of fraud detection with the advan-
tages of self- adaptation, self-organization, better 
fault-tolerance, and robustness [56].

DNN is developed to simulate the function of 
the human brain and is built from simple process-
ing units or neurons, which enable the network to 
learn sets of input-output mappings. It adjusts the 
weights of the connections in the neural network by 
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learning samples, aiming to solve nonlinear clas-
sification problems [39]. The processing unit or 
neuron is comprised of a set of synapses or con-
nection links that take input signals, an adder to 
add input signals, and an activation function that 
limits the output level of a neuron [39]. Multilay-
er feed-forward neural networks are a subtype of 
the neural network distinguished by the presence 
of hidden layers of neurons. They are particularly 
well adapted to addressing complex problems, en-
abling non-linear relationships between input and 
output layers to be extracted and modelled [57]. 
Fig. 6 presents a structure example of the Back-
propagation Neural Network Topology.

Typically, the backpropagation algorithm is 
composed of two parts: the forward transmission of 
information and the backpropagation [39] of error.  
In the forward transmission process, input informa-
tion is transmitted through the hidden layers from 
the layer input to the output one. If the output layer 
does not get the desired output,  calculate the error 
change value of the output layer, and then turn to 
reverse propagation and send the error signal back 
along the original connection path through the net-

work so as to modify each neuron layer's weight 
until it reaches the required target. Hidden layer 
output, output layer output, and error function are 
represented in formulas (1), (2), and (3), respec-
tively.

IV. exPerImental enVIronment 
This section provides the dataset characteris-

tics, the development environment, the performed 
strategy, the metrics used to evaluate the classifi-
cation performance, and the ST-BPNN model im-
plementation.

We combined two balancing techniques 
(SMOTE with Tomek links) to preprocess the used 
dataset before performing CCFD through BPNN. 
Also, we used 10-fold cross-validation in our exper-
iment, and the average prediction result is used for 
the ST-BPNN model evaluation. In our experiment, 
30% of the dataset was randomly dedicated to test-
ing, and the rest was used for training.

A. The development environment
The development environment used to imple-

ment the proposed approach presented in this 
paper is based on the python language where the 
Scikit-learn libraries [58] are used to implement our 
proposed model ST-BPNN.

B. Strategy
To respect the transaction chronology, instead 

of a canonical k-fold cross-validation criterion we 
used the TimeSeries Split Scikit-learn function [59] 
to perform a time series cross-validation criteri-
on. Such a function allows us to split our dataset 
in a series of training and test sets, respecting the 
transaction chronology. For the experiments, the 
TimeSeriesSplit method was used with n_splits = 
10. The data imbalance problem, previously de-
scribed in Section III, has been faced during the 
experiments using the combination of SMOTE+TL 
techniques.

C. Metrics
According to the considerations made in the im-

balanced data problem section, the performance 

Fig. 6 A structure example of the Backpropagation Neural 
Network Topology.
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error signal back along the original connection path 
through the network so as to modify each neuron layer's 
weight until it reaches the required target. Hidden layer 
output, output layer output, and error function are 
represented in formulas (1), (2), and (3), respectively. 

 
𝑧𝑧𝑗𝑗 = 𝑓𝑓1(∑ 𝑤𝑤1𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏1𝑗𝑗

𝑚𝑚
𝑖𝑖=1 )           (1) 

𝑦𝑦𝑘𝑘 = 𝑓𝑓2(∑ 𝑤𝑤2𝑗𝑗𝑘𝑘𝑧𝑧𝑗𝑗 + 𝑏𝑏2𝑘𝑘
𝑚𝑚
𝑖𝑖=1 )          (2) 

𝐸𝐸 = 1
2  ∑ (𝑦𝑦𝑘𝑘 − �̂�𝑦𝑘𝑘)𝑛𝑛

𝑘𝑘=1              (3) 
 

IV. EXPERIMENTAL ENVIRONMENT 
This section provides the dataset characteristics, the 

development environment, the performed strategy, the 
metrics used to evaluate the classification performance, 
and the ST-BPNN model implementation. 

 
TABLE I 

DATASETS CHARACTERISTICS 
 Features 

number 
Legitimate 
transactions 

Fraudulent 
transactions 

Size 
(Mo) 

Dataset 30 284,315 492 143 
 
We combined two balancing techniques (SMOTE with 

Tomek links) to preprocess the used dataset before 
performing CCFD through BPNN. Also, we used 10-fold 
cross-validation in our experiment, and the average 
prediction result is used for the ST-BPNN model 
evaluation. In our experiment, 30% of the dataset was 
randomly dedicated to testing, and the rest was used for 
training. 

 

A. The development environment 
The development environment used to implement the 

proposed approach presented in this paper is based on 
the python language where the Scikit-learn libraries [58] 
are used to implement our proposed model ST-BPNN. 

 

B. Strategy 
To respect the transaction chronology, instead of a 

canonical k-fold cross-validation criterion we used the 
TimeSeries Split Scikit-learn function [59] to perform a 
time series cross-validation criterion. Such a function 
allows us to split our dataset in a series of training and 
test sets, respecting the transaction chronology. For the 
experiments, the TimeSeriesSplit method was used with 
n_splits = 10. The data imbalance problem, previously 
described in Section 3, has been faced during the 
experiments using the combination of SMOTE+TL 
techniques. 

 

C.Metrics 
According to the considerations made in the 

imbalanced data problem section, the performance of the 
involved algorithms has been evaluated by using various 
metrics: the Sensitivity, the AUPR, F1-score, and the AUC 
(i.e., Area Under the ROC Curve). The latter metrics are 
chosen because they provide information about the 
performance in terms of fraudulent transactions correctly 
classified (Sensitivity), a crucial indicator in the context 
taken into account, and in terms of the effectiveness of 
the adopted evaluation model (AUC). To evaluate the 
algorithm performance in terms of correct and incorrect 
classification of the legitimate transactions, we took into 
account two additional metrics, which provide specular 
information concerning the Sensitivity and Precision: the 
Area under Precision-recall (AUPR). 

The formulation of all the aforementioned metrics is 
presented below: 

 
1) Precision 

Precision is a measure that calculates how many 
positive predictions are correctly identified as positive. It 
is formulated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 × (𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)           (1) 

 
2) Sensitivity 

Sensitivity (Recall) calculates how many positive 
instances (true labels) are correctly predicted as positive. 
It is also known as sensitivity or true positive rate. It is 
formulated as: 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑦𝑦 = 100 × (𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)           (2) 

 
3) F1-score 

F1-score is Precision and Recall's weighted average. It 
is defined as: 

F1- Score =2*(Recall * Precision)/(Recall+precision) (3) 
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error signal back along the original connection path 
through the network so as to modify each neuron layer's 
weight until it reaches the required target. Hidden layer 
output, output layer output, and error function are 
represented in formulas (1), (2), and (3), respectively. 
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IV. EXPERIMENTAL ENVIRONMENT 
This section provides the dataset characteristics, the 

development environment, the performed strategy, the 
metrics used to evaluate the classification performance, 
and the ST-BPNN model implementation. 
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DATASETS CHARACTERISTICS 
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Legitimate 
transactions 

Fraudulent 
transactions 
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(Mo) 

Dataset 30 284,315 492 143 
 
We combined two balancing techniques (SMOTE with 

Tomek links) to preprocess the used dataset before 
performing CCFD through BPNN. Also, we used 10-fold 
cross-validation in our experiment, and the average 
prediction result is used for the ST-BPNN model 
evaluation. In our experiment, 30% of the dataset was 
randomly dedicated to testing, and the rest was used for 
training. 

 

A. The development environment 
The development environment used to implement the 

proposed approach presented in this paper is based on 
the python language where the Scikit-learn libraries [58] 
are used to implement our proposed model ST-BPNN. 

 

B. Strategy 
To respect the transaction chronology, instead of a 

canonical k-fold cross-validation criterion we used the 
TimeSeries Split Scikit-learn function [59] to perform a 
time series cross-validation criterion. Such a function 
allows us to split our dataset in a series of training and 
test sets, respecting the transaction chronology. For the 
experiments, the TimeSeriesSplit method was used with 
n_splits = 10. The data imbalance problem, previously 
described in Section 3, has been faced during the 
experiments using the combination of SMOTE+TL 
techniques. 

 

C.Metrics 
According to the considerations made in the 

imbalanced data problem section, the performance of the 
involved algorithms has been evaluated by using various 
metrics: the Sensitivity, the AUPR, F1-score, and the AUC 
(i.e., Area Under the ROC Curve). The latter metrics are 
chosen because they provide information about the 
performance in terms of fraudulent transactions correctly 
classified (Sensitivity), a crucial indicator in the context 
taken into account, and in terms of the effectiveness of 
the adopted evaluation model (AUC). To evaluate the 
algorithm performance in terms of correct and incorrect 
classification of the legitimate transactions, we took into 
account two additional metrics, which provide specular 
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Area under Precision-recall (AUPR). 

The formulation of all the aforementioned metrics is 
presented below: 

 
1) Precision 

Precision is a measure that calculates how many 
positive predictions are correctly identified as positive. It 
is formulated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 × (𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)           (1) 

 
2) Sensitivity 

Sensitivity (Recall) calculates how many positive 
instances (true labels) are correctly predicted as positive. 
It is also known as sensitivity or true positive rate. It is 
formulated as: 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑦𝑦 = 100 × (𝑇𝑇𝑇𝑇)
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3) F1-score 

F1-score is Precision and Recall's weighted average. It 
is defined as: 

F1- Score =2*(Recall * Precision)/(Recall+precision) (3) 
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of the involved algorithms has been evaluated by 
using various metrics: the Sensitivity, the AUPR, 
F1-score, and the AUC (i.e., Area Under the ROC 
Curve). The latter metrics are chosen because they 
provide information about the performance in terms 
of fraudulent transactions correctly classified (Sen-
sitivity), a crucial indicator in the context taken into 
account, and in terms of the effectiveness of the ad-
opted evaluation model (AUC). To evaluate the algo-
rithm performance in terms of correct and incorrect 
classification of the legitimate transactions, we took 
into account two additional metrics, which provide 
specular information concerning the Sensitivity and 
Precision: the Area under Precision-recall (AUPR).

The formulation of all the aforementioned met-
rics is presented below:

1) Precision
Precision is a measure that calculates how 

many positive predictions are correctly identified 
as positive. It is formulated as follows:

Precision=100×
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(1)

2) Sensitivity
Sensitivity (Recall) calculates how many posi-

tive instances (true labels) are correctly predicted 
as positive. It is also known as sensitivity or true 
positive rate. It is formulated as:

Sensitivity=100×
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2) Sensitivity 

Sensitivity (Recall) calculates how many positive 
instances (true labels) are correctly predicted as positive. 
It is also known as sensitivity or true positive rate. It is 
formulated as: 
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3) F1-score 

F1-score is Precision and Recall's weighted average. It 
is defined as: 

F1- Score =2*(Recall * Precision)/(Recall+precision) (3) 
 

                 
 (2)

3) F-1score
F1-score is Precision and Recall's weighted av-

erage. It is defined as:

F1- Score =2*(Recall * Precision)/(Recall+precision)  (3)

4) The Curve of the Area Under the Receiver 
Operating Characteristic (AUC-ROC)

The AUC-ROC is obtained as a graph of the 
rate of true positives versus false-positive rates for 
different decision thresholds. It is mostly used to 

measure the performance of a classifier to show 
their capacity in classification in skewed and over-
lapping data sets. Fig. 7 presents an example of 
AUC-ROC.

D. ST-BPNN implementation
In this section, the ST-BPNN is built and imple-

mented in Scikit-learn [58], which is a commercial 
open-source machine learning library. The data-
set is divided into a training set and a test set. ST-
BPNN learning is performed on the training set and 
its performance is evaluated on the test set.

The design of the neural network topology is the 
critical factor affecting the accuracy of the classifi-
cation system [14], [12]. Adding hidden nodes can 
increase the accuracy of the network [12]; however, 
an excessive number of hidden nodes will cause an 
over-fitting problem, which has a negative impact 
on generalization, leading to prediction bias; there-
fore, improving accuracy and generalization re-
quires an adequate number of hidden nodes [60]. 
There has been no formal theory in determining the 
number of hidden nodes. The recommendation is 
based on previous and repeated experiments.

The most efficient network is the one with the 
same number of nodes in each hidden layer, ac-
cording to Larochelle et al. [60], [61]. In the exper-
iments, we test with a different number of nodes in 
the hidden layers, and we also get structures that 
work less well or the structure with an equal number 
of nodes in the hidden layers. Therefore, we adopt 
the same number of nodes, such as 4, 10, 16, 22, 
and 28, in the hidden layers, and we conduct ex-

An Efficient Deep Learning Classification Model for Predicting Credit Card Fraud on Skewed Data 

Fig. 7 Example of the AUC-ROC graph [69].
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In this section, the ST-BPNN is built and implemented 

in Scikit-learn [58], which is a commercial open-source 
machine learning library. The dataset is divided into a 
training set and a test set. ST-BPNN learning is performed 
on the training set and its performance is evaluated on the 
test set. 

The design of the neural network topology is the critical 
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[14][12]. Adding hidden nodes can increase the accuracy 

of the network [12]; however, an excessive number of 
hidden nodes will cause an over-fitting problem, which 
has a negative impact on generalization, leading to 
prediction bias; therefore, improving accuracy and 
generalization requires an adequate number of hidden 
nodes [60]. There has been no formal theory in 
determining the number of hidden nodes. The 
recommendation is based on previous and repeated 
experiments. 

The most efficient network is the one with the same 
number of nodes in each hidden layer, according to 
Larochelle et al. [60] [61]. In the experiments, we test with 
a different number of nodes in the hidden layers, and we 
also get structures that work less well or the structure with 
an equal number of nodes in the hidden layers. Therefore, 
we adopt the same number of nodes, such as 4, 10, 16, 
22, and 28, in the hidden layers, and we conduct 
experiments starting from a small network with one 
hidden layer and then we extend the network layer by 
layer up to 6 hidden layers. We performed a test and 
found that the network with 3 hidden layers with 28 nodes 
in each hidden layer gave a better result. The network 
was trained with a learning rate of 0.001 per 450 iterations 
and a regularization parameter L2 of 0.001. The network 
topology of ST-BPNN is as shown in Fig. 8. 

 

V. RESULTS AND DISCUSSION 
In this section, we review the results obtained after the 

experiments of our proposed approach on a real data set. 
To perform ST-BPNN, we divide the dataset used into two 
subsets of data: the first subset of data represents the 
training set (75% of the original dataset) for ST-BPNN 
training and a test set (25% of the original dataset) to 
evaluate its performance. We report the results of the 

Fig. 8 Network topology of the ST-BPNN model. 
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periments starting from a small network with one 
hidden layer and then we extend the network lay-
er by layer up to 6 hidden layers. We performed a 
test and found that the network with 3 hidden layers 
with 28 nodes in each hidden layer gave a better 
result. The network was trained with a learning rate 
of 0.001 per 450 iterations and a regularization pa-
rameter L2 of 0.001. The network topology of ST-
BPNN is as shown in Fig. 8.

V. results and dIscussIon

In this section, we review the results obtained 
after the experiments of our proposed approach 
on a real data set. To perform ST-BPNN, we di-
vide the dataset used into two subsets of data: 
the first subset of data represents the training 
set (75% of the original dataset) for ST-BPNN 
training and a test set (25% of the original data-
set) to evaluate its performance. We report the 
results of the experiments performed by com-
paring our solution to recent state-of-the-art ap-
proaches. Discussions on the results are also 
highlighted.

A. The results of our model with and without 
SMOTE+TL

As we have seen in the results presented in 
Table II, we found that the results of DNN devel-
oped using SMOTE+TL techniques (presented in 
section III) on the training data are better than the 
results without using SMOTE+TL. 

Fig. 9 and 10 present, respectively, the data 
distribution after using SMOTE+TL techniques and 
without them. As shown in Fig. 10, we can observe 
that the numbers of fraudulent transactions that 
present the minority class variable are multiplied 
using SMOTE+TL techniques (Explained in section 
III) as a solution to the imbalanced data problem, 
while in Fig. 10 the fraudulent transactions are not. 
After that, we train the developed BPNN model on 
the synthetic dataset (Fig. 9) where the fraudulent 
and genuine transactions are balanced in order to 
increment their learning rate concerning the dis-
tinct ability of the proposed model of the fraudulent 
transaction from the legitimate one.

Comparing two models based on DNN results, 
the ST-BPNN model (DNN based on SMOTE+TL) 

Fig. 8 Network topology of the ST-BPNN model.
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4) The Curve of the Area Under the Receiver 
Operating Characteristic (AUC-ROC) 

The AUC-ROC is obtained as a graph of the rate of true 
positives versus false-positive rates for different decision 
thresholds. It is mostly used to measure the performance 
of a classifier to show their capacity in classification in 
skewed and overlapping data sets. Fig. 7 presents an 
example of AUC-ROC. 

 

 
Fig. 7 Example of the AUC-ROC graph [69]. 
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scores higher in terms of all performance criteria on 
the test set, where ST-BPNN achieves 99% for AUPR 
and 100% for both Sensitivity and AUC. Whereas, 
BPNN (DNN without SMOTE+TL) scores 83% for 
AUPR, 97.8% for AUC, and 79% for Sensitivity.

As a result, it is concluded that pre-processing 
(e.g. the process of under-sampling or over-sam-
pling) using SMOTE+TL techniques on the im-
balanced training set improves the overall perfor-
mance of the proposed model to correctly detect 

fraud operations. Therefore, SMOTE+TL tech-
niques are adopted in this work.

B. Comparison with state-of-the-art approaches
The objective of this subsection is to compare 

the performance of ST-BPNN with recent studies 
[29], [30], [62]-[67] on CCFD using the same re-
al-world dataset. Fig. 11 summarizes this compar-
ison.

The results highlighted in Fig. 11, 12, 13, and 
14 indicate that the proposed ST-BPNN approach 
has the potential to improve the performance of a 
CCFD system in terms of the number of correctly 
classified fraudulent transactions. This awareness 
is associated with the sensitivity value (i.e., 100%) 
which indicates its ability to correctly classify fraud-
ulent transactions more than the best competing 
algorithm (GS-OCSVM [67], which has a sensi-
tivity value of 97.1%). Also, by following Fig. 12, 
it is apparent that the ST-BPNN has identified all 
fraudulent transactions (that are 492 frauds) where 
the number of Error type 2 (fraudulent transactions 
classified as legitimate) is 0. Moreover, the results 
obtained from the ST-BPNN in terms of F1-score is 
better than the recent related work [64]. ST-BPNN 
achieves 92% while [64] achieves 83%.

By analyzing Fig. 13, AUPR measurement re-
sults highlight the effectiveness of the ST-BPNN 
model which performs well with a highly imbal-
anced dataset and has a very good rate of preci-
sion and recall (sensitivity) measures; it has 99%, 
demonstrating its ability to classify new transac-
tions as legitimate or fraudulent. Also, we obtained 
the same result in terms of AUC (Fig. 11 and 14). 
Indeed, ST-BPNN reaches 100% as an AUC rate. 
It retains the high-performance value compared to 
other models.

An Efficient Deep Learning Classification Model for Predicting Credit Card Fraud on Skewed Data 
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experiments performed by comparing our solution to 
recent state-of-the-art approaches. Discussions on the 
results are also highlighted. 

 

A. The results of our model with and without SMOTE+TL 
As we have seen in the results presented in Table 2, 

we found that the results of DNN developed using 
SMOTE+TL techniques (presented in section 3) on the 
training data are better than the results without using 
SMOTE+TL.  

Fig. 9 and 10 present, respectively, the data distribution 
after using SMOTE+TL techniques and without them. As 
shown in Fig. 10, we can observe that the numbers of 
fraudulent transactions that present the minority class 
variable are multiplied using SMOTE+TL techniques 
(Explained in section 3.2 and Section 3.3) as a solution to 
the imbalanced data problem, while in Fig. 10 the 
fraudulent transactions are not. After that, we train the 
developed BPNN model on the synthetic dataset (Fig. 9) 
- where the fraudulent and genuine transactions are 
balanced - in order to increment their learning rate 
concerning the distinct ability of the proposed model of the 
fraudulent transaction from the legitimate one. 

 

 
Fig. 9 Transaction class distribution after using SMOTE+TL techniques 

(1=fraud, 0=genuine). 
 

 
Fig. 10 Transaction class distribution before using SMOTE+TL 

techniques (1=fraud, 0=genuine). 
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sensitivity value (i.e., 100%) which indicates its ability to 
correctly classify fraudulent transactions more than the 
best competing algorithm (GS-OCSVM [67], which has a 
sensitivity value of 97.1%). Also, by following Fig. 12, it is 
apparent that the ST-BPNN has identified all fraudulent 
transactions (that are 492 frauds) where the number of 
Error type 2 (fraudulent transactions classified as 
legitimate) is 0. Moreover, the results obtained from the 
ST-BPNN in terms of F1-score is better than the recent 
related work [64]. ST-BPNN achieves 92% while [64] 
achieves 83%. 

By analyzing Fig. 13, AUPR measurement results 
highlight the effectiveness of the ST-BPNN model which 
performs well with a highly imbalanced dataset and has a 
very good rate of precision and recall (sensitivity) 
measures; it has 99%, demonstrating its ability to classify 
new transactions as legitimate or fraudulent. Also, we 
obtained the same result in terms of AUC (Fig. 11 and 14). 
Indeed, ST-BPNN reaches 100% as an AUC rate. It 
retains the high-performance value compared to other 
models. 

In summary, we have proven that in real scenarios 
characterized by a high data imbalance, the proposed ST-
BPNN model can significantly improve a CCFD system, 
thus reducing losses due to the misclassification of 
fraudulent events.  

It may be noted that the rationale for the ST-BPNN 
approach, and the reason it works well in the CCFD field, 
is because legitimate transactions are much higher in 
number and generally share a similar pattern that is easy 
to recognize. As a result, several algorithms are able to 
more accurately assess whether a transaction is 
legitimate. On the other hand, when a sample is 
fraudulent, most algorithms give a lower degree of 
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taBle II
Performance results of the BPnn model after and

Before usIng smote+tl technIques.

Sensitivity AUC AUPR F1-score Legitimate Fraudulent Total transactions

DNN vbased on 
SMOTE+TL

DNN without 
SMOTE+TL

1 1 0.99 0.92
284,315 492 284.807

0.79 0.978 0.83 0.81



71

JISCR 2022; Volume 5 Issue (1)

In summary, we have proven that in real sce-
narios characterized by a high data imbalance, 
the proposed ST-BPNN model can significantly im-
prove a CCFD system, thus reducing losses due to 
the misclassification of fraudulent events. 

It may be noted that the rationale for the ST-
BPNN approach, and the reason it works well in 
the CCFD field, is because legitimate transactions 
are much higher in number and generally share 
a similar pattern that is easy to recognize. As a 
result, several algorithms are able to more accu-

rately assess whether a transaction is legitimate. 
On the other hand, when a sample is fraudulent, 
most algorithms give a lower degree of probabil-
ity on their classification, whether the transaction 
is legitimate or fraudulent. We have solved this 
problem in our proposed ST-BPNN algorithm by 
combining the strengths of SMOTE, Tomek Links 
techniques with the Back Propagation Neural Net-
works model, and it is the key to achieving high 
levels of performance.

Fig. 11 Comparison results of the ST-BPNN in terms of Sensitivity, AUC-ROC, and F1-score with the recent state-of-
the-art approaches.
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probability on their classification, whether the transaction 
is legitimate or fraudulent. We have solved this problem 
in our proposed ST-BPNN algorithm by combining the 

strengths of SMOTE, Tomek Links techniques with the 
Back Propagation Neural Networks model, and it is the 
key to achieving high levels of performance. 

 
 

TABLE II 
PERFORMANCE RESULTS OF THE BPNN MODEL AFTER AND 

BEFORE USING SMOTE+TL TECHNIQUES. 
 Sensitivity AUC AUPR F1-score Legitimate Fraudulent Total transactions 
DNN based 
on 
SMOTE+TL 

1 1 0.99 0.92 
284,315 492 284,807 

DNN without 
SMOTE+TL 0.79 0.978 0.83 0.81 
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VI. conclusIon

For over 20 years now, fraud detection research 
has been in existence and has used a variety 
of methods ranging from manual verification to 
end-client authentication. Models of machine learn-
ing have also been very successful in this area. 
Recently, deep learning models have been imple-
mented in many applications, made possible by 
growing computing power and cost. In this paper, 

we have built the ST-BPNN model that we propose 
from two classification methods. The first is a com-
bination of SMOTE with Tomek links techniques to 
solve the problem of data imbalance, as well as to 
increase the learning rate of the CCFD model. The 
second is a deep learning-based model using the 
backpropagation neural network approach to clas-
sify and identify fraudulent transactions from legit-
imate ones. The model was tested on more than 
280.000 transactions obtained from the European 
bank. The experiments demonstrated that the fu-
sion of machine and deep learning approaches 
improved the classification performance signifi-
cantly. Moreover, the findings show that the use 
of an imbalanced training set by resampling can 
enhance network performance on the test set. As 
future work, we expect to study an extended model 
on the scope of fraud detection in order to build an 
Adaptive Credit Card Fraud Detection System.
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Fig. 12 Confusion matrix for ST-BPNN for CCFD. 
 

 
Fig. 13 The precision-recall curve of the proposed model. 
 

 
Fig. 14 AUC-ROC of the proposed model. 

 

VI. CONCLUSION 
For over 20 years now, fraud detection research has 

been in existence and has used a variety of methods 
ranging from manual verification to end-client 
authentication. Models of machine learning have also 
been very successful in this area. Recently, deep learning 
models have been implemented in many applications, 
made possible by growing computing power and cost. In 
this paper, we have built the ST-BPNN model that we 
propose from two classification methods. The first is a 
combination of SMOTE with Tomek links techniques to 
solve the problem of data imbalance, as well as to 

increase the learning rate of the CCFD model. The 
second is a deep learning-based model using the 
backpropagation neural network approach to classify and 
identify fraudulent transactions from legitimate ones. The 
model was tested on more than 280,000 transactions 
obtained from the European bank. The experiments 
demonstrated that the fusion of machine and deep 
learning approaches improved the classification 
performance significantly. Moreover, the findings show 
that the use of an imbalanced training set by resampling 
can enhance network performance on the test set. As 
future work, we expect to study an extended model on the 
scope of fraud detection in order to build an Adaptive 
Credit Card Fraud Detection System. 
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