
135

Trusted Microservices: A Security Framework for Users' Interaction
with Microservices Applications
Mohamed Elkholy1*, and Marwa A. Marzok2

1 Department of Computer Engineering, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt.
2 Information Technology Department Faculty of Specific Education, Matroh University, Matroh, Egypt.

Received 06 Oct. 2022; Accepted 19 Dec. 2022; Available Online 28 Dec. 2022

Abstract
Microservices architecture emerges as a promising software design approach that provides large scale soft-

ware systems with flexibility, scalability and fault tolerance. Moreover, it is considered a suitable design to be
implemented using software containers provided with several cloud providers. However, microservices suffer
from several security challenges that hinder its progress. The concept of microservices is to break down the
system functionality to a number of small coherent services. Hence, using microservices as a design approach
increases the security risks by expanding the risk surface. In contrast to microservices, monolithic applica-
tions are implemented as a bulk of codes using single programming language. Such environment has several
drawbacks related to flexibility and maintainability, but limits security issues. On the other hand, microservices
implementation uses several programming languages and frameworks to implement small units of system func-
tionality. Such environment opens the door to new critical security issues. The proposed work introduces the
problem of securing microservices and provides a novel approach to protect microservices applications from
masquerade attacks. The proposed framework also provides high protection to users from malicious services.
The framework was implemented using 150 software containers to define users' HTTP requests and a set of 20
microservices were tested to proof its applicability and benefits.

* Corresponding Author: Mohamed Elkholy
Email: eng_mikholy@alexu.edu.eg
doi: 10.26735/QOPM9166

Keywords: Cybersecurity, Microservices Architecture, Monolithic Applications, Malicious Services, Masquerade
Attacks.

Production and hosting by NAUSS

1658-7782© 2022. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security and Cybercrimes Research 2022; Volume 5 Issue (2), 135-143 Original Article

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. IntroductIon

Security and trust are considered elementary
requirements in software design. Any new design
technique (such as microservices) cannot gain its
popularity without solving any related security is-
sues [1]. Microservices provide designers with an
important design aim which is separation of con-
cerns [2]. This aim is satisfied by breaking down
huge systems into a set of coherent software units.

Using microservices, system functionalities are di-
vided into a set of major tasks [3, 4]. Then each
task is divided into a number of sub tasks which
is further divided into a set of atomic services from
the perspective of business logic [5]. Each atomic
service is considered the building block of a micro-
services system [6]. Microservices bring about a
number of benefits in terms of flexibility and scal-
ability. However, handling security in such an open

mailto:eng_mikholy%40alexu.edu.eg?subject=Fig.%204%20Proposed%20Role%20Authentication%20Definition%20Algorithm.
https://crossmark.crossref.org/dialog/?doi=10.26735/QOPM9166&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/QOPM9166
https://doi.org/10.26735/QOPM9166

136

JISCR 2022; Volume 5 Issue (2)

using microservices [11]. A significant number of
microservices applications use individual services
to accept user requests acting as a gateway for
the application [6]. These gateway services fur-
ther route the user request to the required service.
Thus, gateway approach is considered an orches-
tration system with a node manager that could facil-
itate security implementation. Other microservices
applications use chirography approach without any
managing nodes [10].

Heterogeneous and open environment of
microservices deployment bring up several security
challenges. In such environment, traditional
mechanisms of user authentication are not sufficient
[12]. For instance, each user should be identified
and protected against masquerade attacks.
Moreover, the role of each user and his authorization
to access database and use queries should be
defined and protected against any malicious attacks
[13]. In addition, securing microservices should
protect users from malicious services [14]. A security
mechanism should be able to check the running
services and monitor their interactions with different

Trusted Microservices: A Security Framework for Users' Interaction with Microservices Applications

environment poses several challenging issue. Mi-
croservices security should support all microser-
vices interactions [7]. Interactions in microservices
applications can be divided into three categories.
First category is the messages exchange during
interaction among services. While the second cat-
egory is concerned with the interaction between
the users and the application. The third one is the
communication between the services and the data-
base [8]. The three proposed categories of micros-
ervices interactions are clarified in Fig. 1.

Microservices have several implementation
approaches. Such approaches include physical
and virtual machines and even software contain-
ers [9]. A single system could be implemented
using several languages and different underlying
platforms [10]. Moreover, to get the full benefit of
microservices, each service should have an inde-
pendent access to different databases which may
vary in structure and model [3, 5]. Microservices
applications have different access and deployment
pattern. Such heterogeneous environment is full
of security gaps that could have a bad impact of

Microservice 1

Microservice 2

Microservice 3

Microservice n

Security service

User
1. user
request

Gateway

2. D
ire

ctio
n

3.Send Hash4.Check hash 5. Verified

6. Allow

interaction

Figure 1 Different Interactions in Microservices application

Fig. 1 Different Interactions in Microservices Applications.

137

JISCR 2022; Volume 5 Issue (2)

users. The proposed work introduces a security
framework that supports microservices with the
required security needs and closes different security
gaps during the interaction of users with services.
The proposed research defines security gaps in
microservices and analyzes the reasons of each
gap. Hence, the proposed framework is designed
and implemented and the experimental result proofs
it enhancement and efficiency. The remaining of the
paper is organized as follows; section two clarifies
the microservices architecture. Section three
introduces related works. Section four defines and
analyzes the security risk assessment associated
with microservices and problem definition. Section
five illustrates the proposed framework which
is implemented in section six. Section seven
incorporates the conclusion and the future work.
·	 To analyze how using information technology

highlights the risks and threats to high school
students resulting from its use in the university
youth category of cyber security risks.

·	 To determine the risks that threaten the
information security of high school students.

·	 To determine the degree of knowledge of a
sample of high school students about the
dangers of using modern technology.

II. MIcroservIces and MonolIthIc

archItecture

A monolithic application is a bulk of huge size
codes most probably written using a single lan-
guage [5, 7]. The most vastly used programming
languages to build are Java, C#, C/C++, Ruby and
Python. The code may be divided into a group of
components which are classes, methods, or func-
tions. However, all these components are deployed
together and even stopped together. Such situation
provides higher security, however it lacks flexibili-
ty and fault tolerance [15]. A single failure or even
a single change in a part of the system requires
stopping the whole system and apply the required
maintenance and then deploy the system again to
be available online. Moreover, monolithic applica-
tions restrict developers from using a single set of
related programming languages for the whole sys-
tem functionality.

Microservices architecture rose in the last de-
cade as a promising approach to design and im-
plement large software systems as a set of coher-
ent services [2, 10]. The system is broken down to
a set of activities [16]. Then each activity is divided
into tasks and subtasks until the whole function-
ality is presented as a set of independent tasks.
Each task is assigned to a microservice which ful-
fills its functionality. Microservices inherit the basic
concept of service-oriented architecture (SOA) in
building a large system from integrating small reus-
able components [17]. Several organizations found
in microservices the desired environment to design
large scale systems [8]. Moreover, several imple-
mentation techniques are aligned with the con-
cept of microservices. Software containers offered
by cloud providers allow developers to focus on
writing the code by offering Platform as a Service
(PaaS). Such cloud service provides a developing
workable environment containing the programming
language compiler and all required dependencies
[18]. Thus, the developer can use several languag-
es to develop their applications without paying a
large budget to install different frameworks, there-
by complete the concept of microservices by en-
abling each task to be implemented by different
languages suiting its functionality.

Microservices architecture is not considered a
concrete design, as it allows several models un-
der its umbrella [12]. For instance, microservices
applications can define several roles of interaction
between microservices and their databases. One
model restricts database access to a single ser-
vice; thus, this service acts as the database own-
er. When any other database wants to access this
database, it communicates with its service owner
[19]. Another approach allows several services to
access the same database. Thus, microservices
need a general framework that defines and secures
each interaction between the scattered compo-
nents of the application.

III. related Work

Securing microservices is a challenge that has
been largely researched in the literature and the in-
dustry. In [20], the authors provided a secure and
privacy-preserving mutual authentication solution

Elkholy and Marzok

138

JISCR 2022; Volume 5 Issue (2)

using Elliptic Curve Cryptography (ECC). Their
solution ensures mutual authentication between
subscribers and brokers, and between brokers and
service publishers. They tried to ensure mutual au-
thentication, confidentiality, and message integrity,
and used ECC to provide the same level of secu-
rity with a key and message size lower than other
public-key cryptography methods, such as RSA.
Their solution was limited to using microservices
for edge computing only.

In [21], Soldani et al. conducted a systematic
mapping on securing microservices. Their study fo-
cused on the pains and gains of the microservices
architectural style. They defined security as a de-
sign concern which provides gains as fine-grained
policies, and isolation. They also defined access
control, and centralized support as triggers of pain.
Their work focused only on securing invocation of
microservices through Application Programming
Interfaces (APIs).

The authors in [22] defined an approach for
monitoring and analyzing IoT service behavior us-
ing machine learning-based technique. Their ap-
proach detects any unusual service behavior by
observing communication packets. They defined
a mechanism to intercept the malicious traffic that
may result in security or safety risks. Their approach
utilized two different types of clustering algorithms,
which are grid-based algorithms and k-means. The
combination of microservices models and machine
learning algorithms was established to enable the
implementation of access control.

In [23], the authors introduced a method to clas-
sify the communication traffic between microser-
vices using a graph-based access control model.
They implemented their model with a traffic monitor-
ing service on each communication node. The role
of the monitor service is to perform Deep Packet In-
spection (DPI) by intercepting each service-to-ser-
vice communication. The authors enhanced traffic
monitor services by a firewall mechanism to enable
dropping the malicious communication packets.
However, their work focused only on the inter-ser-
vice communication.

In [24], Aselböck et al. defined a model that
helps developers to select suitable patterns for
different block chain-based applications. Their

work was tested regarding its correctness and use-
fulness in guiding the architecture design and in
understanding the rationale of various design deci-
sions. They focused on selecting the suitable mod-
el that secures the interaction between the users
and the protected system; however, they did not
discuss the possibility of finding malicious services.

By analyzing different related work, we con-
cluded that up till now there is no defined general
framework that supports microservices with its se-
curity and privacy needs.

Iv. MIcroservIces securIty analyses

Microservices applications are spread across
several heterogeneous services and platforms [25].
Such heterogeneity inherits difficulties while using
traditional security mechanisms [26]. To provide
a security mechanism, different vulnerability gaps
should be analyzed.

A. Vulnerability Points and Possible Attacks
·	 The first security gap exists when a HTTP

request is received from a user to get access
to the system. Stolen credentials should be
used by an intruder to get access to the system
masqueraded as an authenticated user.

·	 Second attack may be launched by an
authenticated user to access data or perform
queries on a database which is not authorized
to his role.

·	 Third attack is DoS, where an attacker sends
several requests to the front end of the
microservices application or to a specific
service to make it go down for a period of time.

·	 Forth attack is done by a malicious service
to steal user data during user interaction with
database.

·	 Fifth attack takes place by a malicious service
during inter-service interaction to steal user
data from databases associated with the
victim service.

·	 Sixth attack is done by an intruder how
intercepts the communication links between
services and listens or even changes data
transferred from one service to another.

Trusted Microservices: A Security Framework for Users' Interaction with Microservices Applications

139

JISCR 2022; Volume 5 Issue (2)

B. Research Problems
Microservices work in an open heterogeneous

environment in which user authentication is essen-
tial to interact with different services. Each individu-
al service often needs to verify that the requester is
authorized to perform a certain operation. Such sit-
uation faces problem in defining the suitable mech-
anism to provide the user identity to each service so
that to make be sure that the user has the rights to
perform the required operation. One solution of such
a problem is to insert a user authentication mecha-
nism in each service. However, the security will be
scattered among services and the application will
suffer from different security gaps.

Moreover, in large scale applications, different
users have different roles to deal with data and
these roles are almost dynamic [27]. Thus, another
problem will arise when dealing with modern micro-
services design which includes a database for each
service. A user may request to access a database
which is not associated with the interacting service.
Hence crosscutting security aspects through ser-
vices will suffer from bad performance as the user
should send his credentials each time when dealing
with a new service or a new database.

Another significant problem is associated with
user credentials. Sending user credentials frequent-
ly to different services in the microservices appli-
cation poses a threat of stealing user credentials.
Afterwards, the stolen credentials might be used in
a masquerade attack causing significant damage to
the application.

v. ProPosed MIcroservIces securIty
MechanIsM

The proposed framework inherits the concept
of separation of concern from microservices archi-
tecture itself. Security is associated with a Micros-
ervice with acts like a guard for the other service.
Thus, the security concerns are not distributed as
a cross-cutting concern along all services, which
may lead to degrading the performance. The pro-
posed framework has an advantage over the pre-
viously discussed work, as it ensures the integrity
of user credentials, user role, and services mes-
sages. A ticket distribution mechanism is used to

identify the user and his role to access different
databases. The proposed framework tracks all the
security vulnerabilities that are listed in the securi-
ty analyses to close all the security gaps in micro-
services systems.

Each user will be assigned a public and private
key. The public key is distributed over all services
in the application. All users registered to the ap-
plication should prove their identity according to
the following mechanism. On receiving the user
request by the gateway services, the request is
directed first to the security service. The security
service is responsible of authenticating the user
credentials via username and password. User
credentials describe his authority to access differ-
ent databases. Moreover, the security service is
responsible to determine the actions the user can
perform and the queries he can request. The se-
curity service issues a ticket for each user. A copy
of the ticket is saved at the security service as a
plain text and another copy is sent to the user.
The user has to encrypt this key using his private
key and to return it to the security service. User
public key is used to decrypt the encrypted key
and compare it with the saved plain text ticket. Af-
ter matching, the user is authenticated, and the
ticket becomes valid. Such process ensures the
user authentication and also protects the micro-
services applications from masquerade attacks.

Hence, the security service responds to the
gateway with a message that allows the user to be
connected to the system and request the desired
functionality. Thus, the user is defined and authen-
ticated, and his role is determined. The ticket al-
lows the user to access only the databases that
are allowed to his role. Fig. 2 represents user au-
thentication mechanism.

The gateway then directs the user request to
the microservice that will fulfill the request. How-
ever, user request may be passed to several ser-
vices to complete a single request. The user de-
livers his ticket to each service to verify his role
and his kind of authorization. To close the gap
of finding malicious microservices in the system,
each service is required to send a hash of its code

Elkholy and Marzok

140

JISCR 2022; Volume 5 Issue (2)

to the security service before interacting with the
user. Microservices are considered as stateless
software components that should not get any
change in code after user interaction. Hence, the
security service compares the hash value sent
from the service with the original hash saved in
the security service database. If the two hashes
are identical this indicates no change in the code
and the service is allowed to interact with the user.
Fig. 3 clarifies the individual service check before
user interaction.

Thus, the proposed framework design covers
two main issues in securing microservices sys-
tems. The first is identifying users, proving au-
thentication and defining the role of each user.
The second is securing user request from any ma-
licious service by checking each service before
user interaction.

vI. IMPleMentatIon

The system was implemented using JavaScript
language on Node.js. The criteria behind using
Node.js is its ability to provide unblocking

threads to enhance the overall performance while
communicating between different components of
the microservices system. The proposed system
includes several checks of user ticket as well as
services check. The unblocking threads features
allow accepting new threads while another request
is directed to check the database. The system
was built on a virtual machine offered by AWS and
with Linux operating system. The system used 150
software containers to define users' HTTP requests
and a set of 20 Microservices. The first step is
user authentication by sending username and
password. Fig. 4 presents the algorithm used in
authenticating and defining user role. An Apache
server was used to perform the authentication
using ".htaccess" and ".htpasswd" files. The
username and password are stored in hash format
.htaccess file references a .htpasswd file. Each line
in the file consists of a username and a password
separated with colon (:). Then the HTTP redirection
was implemented to transfer any user request to
the security service. Redirection is triggered by
sending a HTTP redirect response to every user
request. The individual microservices check is
done by implementing MongoDB including all the

Trusted Microservices: A Security Framework for Users' Interaction with Microservices Applications

user

Gateway service

Security service

1. user request

2. redirection to
security service

3. ticket for the user

4. ticket encrypted by user private key

5. Accept or
reject request

Figure 2 User Authentication MechanismFig. 2 User Authentication Mechanism.

141

JISCR 2022; Volume 5 Issue (2)

Elkholy and Marzok

User1

Service 2

DB1

User2

Service 1

User3

Service n

Service 3

DB2

DB3

DB n

Gateway

Figure 3 individual service checkFig. 3 Individual Service Check.

Fig. 4 Proposed Role Authentication Definition Algorithm.

142

JISCR 2022; Volume 5 Issue (2)

hash values of different microservices. Listing1
includes the coding concept of the proposed
framework implementation.

AuthType Basic
AuthName "Access to the staging site"
AuthUserFile secureMicroservice/userrequest/

to/.htpasswd
Require valid-user

VirtualHost *:443>
 Redirect / https://www.serviceservice.com
</VirtualHost>

const Mongoose = require("mongoose")
const localDB = ̀ mongodb:// secureMicroservice

/servicehash`
const connectDB = async () => {
await Mongoose.connect(localDB, {
useNewUrlParser: true,
useUnifiedTopology: true, })
console.log("MongoDB Connected")}
module.exports = connectDB
const connectDB = require("./db");
connectDB();

Listing1: Part of Framework Implementation Using
JavaScript

vI. conclusIon and Future Work

The proposed work demonstrates a framework
that provides microservices applications with
several security needs. The framework protects
microservices applications from masquerade
attacks and ensures user authentication. A
dedicated security service is responsible for user
authentication and role identification rather than
scattering security between different services. The
proposed work ensures the user credentials and user
role using distributed tickets. Each user is identified,
and his authorization is defined according to a ticket
encrypted by his private key. The security service
decrypts the ticket using user public key to ensure
authentication and user role. The framework also
protects microservices against malicious services

by checking each service before user interaction.
Our future work will include securing the interaction
among individual services. Several microservices
applications include large size of messaging
between services. Thus, it is a challenging issue to
protect these messages from different attacks.

FundIng

This article did not receive any specific grant
from funding agencies in the public, commercial,
or not-for-profit sectors.

conFlIct oF Interest

Authors declare that they have no conflict of in-
terest.

reFerences

[1] A. Chatterjee, M. W. Gerdes, P. Khatiwada and A. Prinz,
"SFTSDH: Applying Spring Security Framework With
TSD-Based OAuth2 to Protect Microservice Architecture
APIs," IEEE Access, vol. 10, pp. 41914-41934, 2022, doi:
10.1109/ACCESS.2022.3165548.

[2] P. Billawa, A. B. Tukaram, N. E. D. Ferreyra, J.-P.
Steghöfer, R. Scandariato, and G. Simhandl, “SoK:
Security of Microservice Applications: A Practitioners’
Perspective on Challenges and Best Practices,” in
Proc. 17th Int. Conf. Availab. Reliab. Secur. (ARES '22),
Austria, 2022, pp. 1-10, doi: 10.1145/3538969.3538986.

[3] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari and A.
Zomaya, “AI-enabled Secure Microservices in Edge
Computing: Opportunities and Challenges,” IEEE Trans.
Serv. Comput., doi: 10.1109/TSC.2022.3155447.

[4] Y. Zhang, C. Li, N. Chen and P. Zhang, “Intelligent
Requests Orchestration for Microservice Management
Based on Blockchain in Software Defined Networking: a
Security Guarantee,” in 2022 IEEE Int. Conf. Commun.
Workshops (ICC Workshops), Korea, 2022, pp. 254-259,
doi: 10.1109/ICCWorkshops53468.2022.9814536.

[5] A. Hannousse and S. Yahiouche, “Securing microservices
and microservice architectures: A systematic mapping
study,” Comput. Sci. Rev., vol. 41, p. 100415, Aug. 2021,
doi: 10.1016/j.cosrev.2021.100415.

[6] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey
on security issues in services communication of
Microservices-enabled fog applications,” Concurr.
Comput. Pract. Exp., vol. 31, no. 22, e4436, 2018, doi:
10.1002/cpe.4436.

Trusted Microservices: A Security Framework for Users' Interaction with Microservices Applications

143

JISCR 2022; Volume 5 Issue (2)

[7] R. Santos, P. Soares, E. Rodrigues, P. H. M. Maia and
A. Silveira, “How Blockchain and Microservices are
Being Used Together: a Systematic Mapping Study,” in
2022 IEEE/ACM 5th Int. Workshop Emerg. Trends Softw.
Eng. Blockchain (WETSEB), USA, 2022, pp. 39-46, doi:
10.1145/3528226.3528371.

[8] R. S. de O. Júnior, R. C. A. da Silva, M. S. Santos, D.
W. Albuquerque, H. O. Almeida and D. F. S. Santos,
“An Extensible and Secure Architecture based on
Microservices,” in 2022 IEEE Int. Conf. Consum.
Electron. (ICCE), 2022, pp. 01-02, doi: 10.1109/
ICCE53296.2022.9730757.

[9] A. Chatterjee and A. Prinz, “Applying Spring Security
Framework with KeyCloak-Based OAuth2 to Protect
Microservice Architecture APIs: A Case Study,” Sensors,
vol. 22, no. 5, 1703, 2022, doi: 10.3390/s22051703.

[10] M. E. Kholy and A. E. Fatatry, “Framework for Interaction
Between Databases and Microservice Architecture,” IT
Prof., vol. 21, no. 5, pp. 57-63, 1 Sept.-Oct. 2019, doi:
10.1109/MITP.2018.2889268.

[11] D. Li, L. Deng, Z. Cai, and A. Souri, “Blockchain as a
service models in the Internet of Things management:
Systematic review,” Trans. Emerg. Telecommun.
Technol., vol. 33, no. 4, e4139, 2020, doi: 10.1002/
ett.4139.

[12] X. Sun, S. Boranbaev, S. Han, H. Wang, D. Yu, “Expert
system for automatic microservices identification using
API similarity graph,” Expert Syst., e12158, 2022, doi:
10.1111/exsy.13158.

[13] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf and
D. Taibi, “Microservice Architecture Reconstruction and
Visualization Techniques: A Review,” in 2022 IEEE Int.
Conf. on Serv. Oriented Syst. Eng. (SOSE), 2022, pp. 39-
48, doi: 10.1109/SOSE55356.2022.00011.

[14] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Should
Microservice Security Smells Stay or be Refactored?
Towards a Trade-off Analysis,” in Softw. Archit. 16th
Eur. Conf., Czech Republic, 2022, pp. 19-23, doi:
10.1007/978-3-031-16697-6_9.

[15] B. Butzin, F. Golatowski and D. Timmermann,
"Microservices approach for the internet of things," in
2016 IEEE 21st Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), 2016, pp. 1-6, doi: 10.1109/ETFA.2016.7733707.

[16] T. Yarygina and A. H. Bagge, “Overcoming Security
Challenges in Microservice Architectures,” in 2022 IEEE
Int. Conf. on Serv. Oriented Syst. Eng. (SOSE), Germany,
2018, pp. 11-20, doi: 10.1109/SOSE.2018.00011.

[17] M. Elkholy, Y. Baghdadi, and M. Marzouk, “Snowball

Framework for Web Service Composition in SOA
Applications,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no.
1, 2022, doi: 10.14569/IJACSA.2022.0130143.

[18] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik,
“Survey on IoT security: Challenges and solution using
machine learning, artificial intelligence and blockchain
technology,” Internet of Things, vol. 11, 100227, 2020,
doi: 10.1016/j.iot.2020.100227.

[19] A. Pereira-Vale, G. Márquez, H. Astudillo and E. B.
Fernandez, "Security Mechanisms Used in Microservices-
Based Systems: A Systematic Mapping," in 2019 XLV
Latin Am. Comput. Conf. (CLEI), 2019, pp. 01-10, doi:
10.1109/CLEI47609.2019.235060.

[20] A. Botta, W. de Donato, V. Persico, and A. Pescapé,
“Integration of Cloud computing and Internet of Things:
A survey,” Future Gener. Comput. Syst., vol. 56, pp. 684-
700, 2016, doi: 10.1016/j.future.2015.09.021.

[21] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel,
“The pains and gains of microservices: A Systematic
grey literature review,” J. Syst. Softw., vol. 146, pp. 215-
232, 2018, doi: 10.1016/j.jss.2018.09.082.

[22] M. -O. Pahl and F. -X. Aubet, “All Eyes on You: Distributed
Multi-Dimensional IoT Microservice Anomaly Detection,”
in 2018 14th Int. Conf. Netw. Serv. Manag. (CNSM), Italy,
2018, pp. 72-80.

[23] M. -O. Pahl, F. -X. Aubet, and S. Liebald, "Graph-based
IoT microservice security," in NOMS 2018 - 2018 IEEE/
IFIP Netw. Oper. Manag. Symp., Taiwan, 2018, pp. 1-3,
doi: 10.1109/NOMS.2018.8406118.

[24] S. Haselböck, R. Weinreich and G. Buchgeher, “An
Expert Interview Study on Areas of Microservice
Design,” in 2018 IEEE 11th Conf. Serv. -Oriented
Comput. Appl. (SOCA), 2018, pp. 137-144, doi: 10.1109/
SOCA.2018.00028.

[25] X. Zhou, et al. “Revisiting the practices and pains of
microservice architecture in reality: An industrial inquiry,”
J. Syst. Softw., vol. 195, 111521, 2023, doi: 10.1016/j.
jss.2022.111521.

[26] A. K. Chitturi and P. Swarnalatha, “Exploration of Various
Cloud Security Challenges and Threats,” in Soft Comput.
Probl. Solving, K. N. Das, J. C. Bansal, K. Deep, A. K.
Nagar, P. Pathipooranam, and R. C. Naidu, Eds., in
Advances in Intelligent Systems and Computing, vol.
1057, 2019, doi: 10.1007/978-981-15-0184-5_76.

[27] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira,
“Security in Microservices Architectures,” Procedia
Comput. Sci., vol. 181, pp. 1225-1236, 2021, doi:
10.1016/j.procs.2021.01.320.

Elkholy and Marzok

