
105

Analyzing Autoencoder-Based Intrusion Detection System Perfor-
mance: Impact of Hidden Layers
Seiba Alhassan1,2,*, Gaddafi Abdul-Salaam1, Michael Asante1, Yaw Missah1, Ernest Ganaa2

1Department of Computer Science, Kwame Nkrumah University of Science and Technology, Ghana.
2Department of ICT, Dr Hilla Limann Technical University, Ghana.
Received 31 Aug. 2023; Accepted 10 Dec. 2023; Available Online 17 Dec. 2023.

Abstract
The rise in cyberattacks targeting critical network infrastructure has spurred an increased emphasis on

the development of robust cybersecurity measures. In this context, there is a growing exploration of effective
Intrusion Detection Systems (IDS) that leverage Machine Learning (ML) and Deep Learning (DL), with a particular
emphasis on autoencoders. Recognizing the pressing need to mitigate cyber threats, our study underscores
the crucial importance of advancing these methodologies. Our study aims to identify the optimal architecture for
an Intrusion Detection System (IDS) based on autoencoders, with a specific focus on configuring the number
of hidden layers. To achieve this objective, we designed four distinct sub-models, each featuring a different
number of hidden layers: Test 1 (one hidden layer), Test 2 (two hidden layers), Test 3 (three hidden layers), and
Test 4 (four hidden layers).We subjected our models to rigorous training and testing, maintaining consistent
neuron counts of 30 and 60. The outcomes of our experimental study reveal that the model with a single
hidden layer consistently outperformed its counterparts, achieving an accuracy of 95.11% for NSL-KDD and an
impressive 98.6% for CIC-IDS2017. The findings of our study indicate that our proposed system is viable for
implementation on critical network infrastructure as a proactive measure against cyber-attacks.

* Corresponding Author: Seiba Alhassan
Email: alhseiba@gmail.com
doi: 10.26735/YLXB6430

Keywords: Cybercrime, Autoencoder, Decode, Encode, Bottleneck, Neurons, IDS.

Production and hosting by NAUSS

1658-7782© 2023. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security and Cybercrimes Research 2023; Volume 6 Issue (2), 105-115 Original Article

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. IntroductIon

The rapid growth of computer network users
has resulted in individuals, organizations, and
businesses storing and transmitting sensitive
information on these networks. These sensitive
data have witnessed increased cyber-attacks,
leading to data breaches, financial loss, intellectual
property theft, reputational damage, identity theft,
and other security issues. There is a need for
countermeasures to minimize the spate of these
attacks. Academia and industry have proposed

measures such as Cryptography, Access control,
firewalls, anti-virus, and Intrusion Detection
Systems (IDS). IDS is the only technique that
can be deployed to prevent insider and external
attacks. Insider attacks emanate from people within
an organization, while external attacks are those
from outside the organization. According to [1],
intrusion detection system is a crucial component
of cybersecurity.

The intrusion detection system is hardware or
software implemented to monitor a network or a

https://doi.org/10.26735/YLXB6430
https://crossmark.crossref.org/dialog/?doi=10.26735/YLXB6430&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/YLXB6430

106

JISCR 2023; Volume 6 Issue (2)

Additionally, host-based intrusion detection has
the benefit of detecting encrypted attacks, but
NIDS cannot detect encrypted attacks.

Depending on how they are implemented,
intrusion detection systems (IDS) can also be divided
into anomaly-based and signature-based categories.
Any incoming traffic with a signature that differs from
those in the database is regarded as an attack by
signature-based intrusion detection systems, which
keep a database of all known attack signatures.

There are some disadvantages associated
with this type of IDS. Signature-based IDS is not
capable of detecting unknown types of attacks.
Besides, maintaining a database of all known
attacks increases the computational cost. One
major advantage of this type of IDS is the minimal
number of false alarms rate. Anomaly-based
intrusion detection, on the other hand, maintains
a normal profile, and any incoming data packets
that deviate from this normal profile are considered
an attack. This type of IDS has the advantage of
detecting new attacks, but its weakness is the high
level of false alarms associated with it [22].

The industrial application of IDS is mostly
achieved through signature-based IDS because
of the false alarm associated with anomaly-based
IDS. However, the inability of signature-based IDS
to detect novel or new types of attacks makes it
unsuitable for the current dynamic nature of network
attacks. Anomaly-based intrusion detection
system has become a hot research area[23]. The
advantages of anomaly-based intrusion detection
system call for improving the detection accuracy of
existing anomaly-based IDS to reduce false alarm
rates. Previous studies on IDS using autoencoders,
according to [24], always report on manual and
random turning of parameters, making them
inconvenient for practical application.

In [24], a study was conducted to determine the
possibility of the number of layers and bottlenecks
affecting the performance of the autoencoder
algorithm for IDS. They concluded that these
parameters indeed affect the autoencoder
performance. Their study, therefore, creates
the need for effective ways of optimizing these
parameters to improve the autoencoder algorithm
to increase detection accuracy and reduce the
false alarm rate.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

host for unauthorized access and report for action
to be taken. The importance of IDS has led to
several researchers proposing various methods
to improve the performance of existing IDS. [2]
stated that Artificial Intelligence methods with data
science have been proposed to solve the issue of
network security.

[3], [4] Proposed Decision Trees classifier
for NIDS. [5]–[8] proposed Naïve Bayes as a
NIDS classifier. The aforementioned researchers
recorded a significant improvement in their
respective machine learning models. However,
machine learning algorithms have weaknesses
that make them unsuitable for NIDS research. The
classical machine learning algorithm cannot handle
the high dimensional data traffic witnessed by the
current network[7]. This weakness has prompted
researchers to focus on deep learning techniques.
According to [9], deep learning algorithms can
handle labeled and unlabeled data. The issues
of false positive and false negatives associated
with anomaly-based intrusion detection can be
significantly reduced with deep learning[10]. The
advantages of deep learning and the growing
interest in its application in NIDS are evident from
the increasing studies rate. [11]–[13] All applied
Long Short-Term Memory (LSTM) to design
intrusion detection systems. Deep neural networks
have also been explored by [9], [14]–[16] to
enhance the functionality of the intrusion detection
systems in place. The autoencoder is another deep
learning technique that has drawn a lot of interest.
[2], [17]–[21] All mentioned the exceptional
functioning of the systems they provided and
offered various recommendations for improving the
autoencoder algorithm's performance for NIDS.
Depending on where the implementation is done,
intrusion detection systems that use machine
learning and deep learning techniques can be
divided into two categories: host-based intrusion
detection systems and network intrusion detection
systems. A network intrusion detection system
tracks data packets as they enter a computer
network segment and uses data point analysis
to report on any intrusions or attacks. While host-
based intrusion detection requires installation on
each host, NIDS has the benefit of just requiring
one workstation to monitor the whole network.

107

JISCR 2023; Volume 6 Issue (2)

A. Purposes of the study
This study aims to address the increasing

frequency of cyberattacks targeting critical network
infrastructure. We delved into the exploration of
effective and accurate Intrusion Detection Systems
(IDS) utilizing the capabilities of machine learning
and deep learning, specifically emphasizing
the use of autoencoders. The pressing need to
mitigate cyber threats highlights the importance of
advancing methodologies in the field of IDS.

The contributions of this paper include:
1) The experimental design of the autoencoder

networking, consisting of the number of neurons
and the number of hidden layers, specifically
starting from layer one.

2) Results from this experimental study will provide
an optimized number of autoencoder layers for
improved NIDS based on a constant number of
neurons.

II. LIterature revIew

A. The autoencoder algorithm
Autoencoders represent a category of artificial

neural networks employed in unsupervised
learning—a type of learning algorithm focused
on analyzing and clustering unlabeled datasets.
This class of algorithms is commonly known as
unsupervised learning algorithms.

There are several advantages associated with
using autoencoder as an IDS system learning
algorithm. The most important one is its ability
to learn useful representations of data in an
unsupervised manner, making it very important
when labelled training data is expensive. Its major
components consist of an encoder and a decoder.

The autoencoder's dimensionality reduction
feature enables it to learn a concise representation
of input data, effectively reducing computational
complexity. By focusing solely on relevant features,
the use of an autoencoder diminishes the risk of
overfitting. Additionally, autoencoders offer benefits
such as facilitating transfer learning and adapting
to various data types.

The specifics of the autoencoder's architecture
are detailed in Fig. 1.

1) Encoder:
a) Input layer: This layer holds the input

data.
b) Hidden layers: The layers between the

bottleneck and the input layer.
c) Activation functions: ReLu (Rectified

Linear Unit) and Sigmoid are commonly
applied in an autoencoder.

2) Latent Space:
a) It is the layer where the compressed

version of the input data is stored.
b) The size of the latent space is determined

by the type of problem that has been
solved.

3) Decoder:
a) This layer progressively reconstructs the

output layer, which is similar to the size of
the input data.

b) The nature of the input data determines the
activation function used for the decoding
phase. Binary data requires a sigmoid
activation function, while continuous
data is better represented using a linear
activation function.

Fig. 1 below shows the architecture of an
autoencoder consisting of one hidden layer.

B. Related works
Numerous studies have applied the autoencoder

algorithm to enhance network intrusion detection
systems. This section provides an overview of these
studies.

Alhassan et al.facilitating transfer learning and adapting to various
data types.
The specifics of the autoencoder's architecture are
detailed below.

1) Encoder:

a) Input layer: This layer holds the input data.

b) Hidden layers: The layers between the bottleneck and
the input layer.

c) Activation functions: ReLu (Rectified Linear Unit)
and Sigmoid are commonly applied in an
autoencoder.

2) Latent Space:

a) It is the layer where the compressed version of the
input data is stored.

b) The size of the latent space is determined by the type
of problem that has been solved.

3) Decoder:

a) This layer progressively reconstructs the output
layer, which is similar to the size of the input data.

b) The nature of the input data determines the activation
function used for the decoding phase. Binary data
requires a sigmoid activation function, while
continuous data is better represented using a linear
activation function.

Figure 1 below shows the architecture of an
autoencoder consisting of one hidden layer.

B. Related works
Numerous studies have applied the autoencoder
algorithm to enhance network intrusion detection
systems. This section provides an overview of these
studies.
[25] Illustrates the development of an efficient
intrusion detection system for 5G and IoT networks

based on deep learning. The authors introduce a
hybrid system combining deep learning and data
mining techniques. The system employs a deep
autoencoder to perform unsupervised pre-training on
the data, generating a concise and less noisy
representation of the input space. The final
component is a dense neural network acting as a
supervised classifier for intrusion detection. The
study provides insights into configuring and
optimizing the hybrid intrusion detection system,
including specific details on the parameter values of
the applied model.
In [17], an effective deep learning method based on
autoencoders is employed. The study underscores the
challenges posed by the vast volume of data
generated across networks and emphasizes the
critical need for swift intrusion detection to prevent
cyberattacks. It compares the superior intrusion
detection capabilities of deep learning algorithms to
traditional machine learning methods. To tackle class
imbalance in intrusion detection datasets, the
research utilizes the SMOTE approach. The deep
autoencoder model is developed using the latest
benchmark dataset, "CSE-CIC-IDS 2018",
representing contemporary assaults. The study
showcases promising results, considering all records
and assault types in the dataset, claiming an average
accuracy of 97.79%. Overall, it highlights the
escalating demand for effective intrusion detection
systems in response to the extensive network-
generated data and emphasizes the potential of deep
learning methods, particularly autoencoders, in
enhancing intrusion detection precision. The
application of SMOTE addresses class imbalance
issues, preventing overfitting and ensuring reliable
model performance.
While the above study provides valuable insights, it
lacks specific technical details, including the
architecture of the deep autoencoder model,
evaluation measures, and a more in-depth analysis of
experimental findings. The absence of references
supporting the assertions made in the
aforementioned paper makes it challenging to verify
the accuracy of the research and the details of the
dataset.
In [24], extracting features using a non-symmetric
deep autoencoder is recommended. The essay
discusses the challenges created by the exponential
growth of network size and data, which has led to an
increase in novel network attacks and called for the

Fig 1: Architecture of an Autoencoder

Fig. 1. Architecture of an Autoencoder.

108

JISCR 2023; Volume 6 Issue (2)

[25] Illustrates the development of an efficient
intrusion detection system for 5G and IoT networks
based on deep learning. The authors introduce
a hybrid system combining deep learning and
data mining techniques. The system employs a
deep autoencoder to perform unsupervised pre-
training on the data, generating a concise and
less noisy representation of the input space. The
final component is a dense neural network acting
as a supervised classifier for intrusion detection.
The study provides insights into configuring and
optimizing the hybrid intrusion detection system,
including specific details on the parameter values
of the applied model.

In [17], an effective deep learning method based
on autoencoders is employed. The study underscores
the challenges posed by the vast volume of data
generated across networks and emphasizes the
critical need for swift intrusion detection to prevent
cyberattacks. It compares the superior intrusion
detection capabilities of deep learning algorithms
to traditional machine learning methods. To tackle
class imbalance in intrusion detection datasets,
the research utilizes the SMOTE approach. The
deep autoencoder model is developed using the
latest benchmark dataset, "CSE-CIC-IDS 2018",
representing contemporary assaults. The study
showcases promising results, considering all records
and assault types in the dataset, claiming an average
accuracy of 97.79%. Overall, it highlights the
escalating demand for effective intrusion detection
systems in response to the extensive network-
generated data and emphasizes the potential of
deep learning methods, particularly autoencoders,
in enhancing intrusion detection precision. The
application of SMOTE addresses class imbalance
issues, preventing overfitting and ensuring reliable
model performance.

While the above study provides valuable
insights, it lacks specific technical details, including
the architecture of the deep autoencoder model,
evaluation measures, and a more in-depth
analysis of experimental findings. The absence of
references supporting the assertions made in the
aforementioned paper makes it challenging to verify
the accuracy of the research and the details of the
dataset.

In [24], extracting features using a non-symmetric
deep autoencoder is recommended. The essay
discusses the challenges created by the exponential
growth of network size and data, which has led to
an increase in novel network attacks and called for
the creation of accurate intrusion detection systems
(IDS). The study emphasizes the importance
of monitoring network traffic to thwart potential
intrusions, highlight the value of IDS, and ensure
network confidentiality, integrity, and availability.
Despite extensive research efforts, IDS still needs
to work on detecting new intrusions, reducing the
number of false alarms, and increasing detection
accuracy. To overcome these difficulties, machine
learning (ML) and deep learning (DL) are emerging
as viable methods for efficient intrusion detection
across the network.

In [25], a novel IDS, termed AutoIDS, is
introduced, utilizing an autoencoder-based
approach within a semi-supervised machine learning
framework. This IDS effectively discerns abnormal
packet flows from normal ones by employing two
efficient detectors, both constructed as encoder-
decoder neural networks. These networks are
trained to generate compressed and sparse
representations of normal flows. During the testing
phase, an intrusion is identified if the networks fail
to produce the anticipated compressed or sparse
representation from an incoming packet flow. To
optimize computational costs while preserving
accuracy, the first detector processes numerous
flows, and the second detector is exclusively
employed for challenging samples where the first
detector exhibits uncertainty. The proposed AutoIDS
undergoes evaluation on the widely-used NSL-
KDD benchmark dataset, achieving an impressive
accuracy of 90.17%, thereby demonstrating its
superiority over alternative approaches.

III. MethodoLogy

A. Overview
This section describes the use of autoencoders

in the context of intrusion detection systems and
presents a proposed system architecture. The key
components of this section include the autoencoder
model, datasets used, and metrics for evaluating
the performance of the intrusion detection system.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

109

JISCR 2023; Volume 6 Issue (2)

B. Autoencoder
A deep autoencoder is an autoencoder with

more than one hidden layer.
Autoencoder is a deep learning algorithm used

to take input data (X) and compress it to a lower
dimensional space known as a bottleneck (Z), and
this whole process is known as encoding. Fig. 2 shows
an autoencoder architecture showing the encoding
and decoding phases. Equation (1) below shows the
mathematical representation of the encoder.
 Z = encoder(X) (1)

The bottleneck is then converted back to
approximately the original data size, known
as decoding. Equation (2) below shows the
mathematical representation of the decoder.
 (Ŷ) ̂ = decoder (Z) (2)

An error exists between the data fed as input(Y)
and the output ((Y)) ̂ in training the autoencoder.
The error is known as the reconstruction error. This
error is an objective that needs to be optimized
during training using loss functions. Common loss
functions include Binary Cross Entropy (BCE) and
the Mean Square Error (MSE). Equation (3) shows
the mathematical representation of the Mean
Square Error used in this study.
 MSE = 1/n *∑(Y-Ŷ ̂) (3)

This work's main objective is to minimize this
reconstruction error and increase the detection
accuracy for IDS.

C. Proposed system
The proposed system consists of a constant input

neuron of size 30, and several varied hidden layers
starting from layers one, two, three, and four, as shown
in Fig. 3. The model is trained with two main datasets:
the NSL-KDD dataset and the CIC-IDS2017 dataset.
The performance of each layer in terms of detection
accuracy is recorded. The process continues until
the best possible accuracy is obtained.

D. Datasets
The datasets used to train, test, and validate our

proposed system are the CIC-IDS2017 and NSL-
KDD datasets. These datasets, in their raw form,
cannot be run on deep learning algorithms such as

Autoencoders. Therefore, both datasets were first
prepared using the following steps:
1) Data cleaning, which involves removing duplicate

data and handling missing values.
2) Normalization. The datasets are first normalized to

enhance the performance and reliability of our
model by converting all numeric columns to a
common scale in the form of 1s or 0s. Equation
(4) shows how the min-max technique performs
the normalization task.

 y = x-min/max-min (4)
Where y = new value of each entry
min = minimum value for each data point
max = maximum value for each data point

Alhassan et al.

creation of accurate intrusion detection systems
(IDS). The study emphasizes the importance of
monitoring network traffic to thwart potential
intrusions, highlight the value of IDS, and ensure
network confidentiality, integrity, and availability.
Despite extensive research efforts, IDS still needs to
work on detecting new intrusions, reducing the
number of false alarms, and increasing detection
accuracy. To overcome these difficulties, machine
learning (ML) and deep learning (DL) are emerging
as viable methods for efficient intrusion detection
across the network.
In [25], a novel IDS, termed AutoIDS, is introduced,
utilizing an autoencoder-based approach within a
semi-supervised machine learning framework. This
IDS effectively discerns abnormal packet flows from
normal ones by employing two efficient detectors,
both constructed as encoder-decoder neural
networks. These networks are trained to generate
compressed and sparse representations of normal
flows. During the testing phase, an intrusion is
identified if the networks fail to produce the
anticipated compressed or sparse representation from
an incoming packet flow. To optimize computational
costs while preserving accuracy, the first detector
processes numerous flows, and the second detector is
exclusively employed for challenging samples where
the first detector exhibits uncertainty. The proposed
AutoIDS undergoes evaluation on the widely-used
NSL-KDD benchmark dataset, achieving an
impressive accuracy of 90.17%, thereby
demonstrating its superiority over alternative
approaches.

III. METHODOLOGY

A. Overview
This section describes the use of autoencoders in the
context of intrusion detection systems and presents a
proposed system architecture. The key components
of this section include the autoencoder model,
datasets used, and metrics for evaluating the
performance of the intrusion detection system.
B. Autoencoder
A deep autoencoder is an autoencoder with more
than one hidden layer.

Autoencoder is a deep learning algorithm used to
take input data (X) and compress it to a lower
dimensional space known as a bottleneck (Z), and
this whole process is known as encoding. Figure 2
shows an autoencoder architecture showing the
encoding and decoding phases. Equation 1 below
shows the mathematical representation of the
encoder.

Z = encoder(X)……………………………… (l)

The bottleneck is then converted back to
approximately the original data size, known as
decoding. Equation 2 below shows the mathematical
representation of the decoder.

(𝑌𝑌)̂ = decoder(Z)……………………………(2)

An error exists between the data fed as input(Y) and
the output (Y)̂ in training the autoencoder. The error
is known as the reconstruction error. This error is an
objective that needs to be optimized during training
using loss functions. Common loss functions include
Binary Cross Entropy (BCE) and the Mean Square
Error (MSE). Equation 3 shows the mathematical
representation of the Mean Square Error used in this
study.

MSE = 1/n *∑(Y-�̂�𝑌)…………………………(3)

This work's main objective is to minimize this
reconstruction error and increase the detection
accuracy for IDS.

Fig. 2. Deep Autoencoder.

C. Proposed system
The proposed system consists of a constant input
neuron of size 30, and several varied hidden layers
starting from layers one, two, three, and four, as
shown in Figure 3 below. The model is trained with
two main datasets: the NSL-KDD dataset and the
CIC-IDS2017 dataset. The performance of each
layer in terms of detection accuracy is recorded. The
process continues until the best possible accuracy is
obtained.

D. Datasets
The datasets used to train, test, and validate our
proposed system are the CIC-IDS2017 and NSL-
KDD datasets. These datasets, in their raw form,
cannot be run on deep learning algorithms such as
Autoencoders. Therefore, both datasets were first
prepared using the following steps:

1) Data cleaning, which involves removing duplicate data
and handling missing values.

2) Normalization. The datasets are first normalized to
enhance the performance and reliability of our model by
converting all numeric columns to a common scale in the form

of 1s or 0s. Equation 4 shows how the min-max technique
performs the normalization task.

 y = x-min/max-min……….………..(4)
Where y = new value of each entry
min = minimum value for each data point
max = maximum value for each data point
3) Data Splitting. The data that has been transformed is then
split into the ratio 75:25 for training and testing, respectively.

E. 3.5 Rationale for the use of NSL-KDD and CIC-IDS2017
The study used the NSL-KDD dataset because it is
the most used dataset, providing an opportunity to
compare our study with similar studies. This
assertion is backed by [26], where a study was
conducted on IDS and concluded that the most used
datasets are KDDCup99 and NSL-KDD. However,
according to [27], KDDCup99 contains redundant
and duplicate records, which tends to make the result
biased. Given the limitations of KDDCup99, NSL-
KDD was selected for this study.
The NSL-KDD stated above is good for comparison,
but it is an old dataset that does contain new attack
types. An effective intrusion detection system
requires that researchers in IDS use updated datasets
such as CIC-IDS2017 [26]. The updated nature of
CIC-IDS2017 is the main reason for this study.

F. Metrics of evaluation
The performance of intrusion detection systems is
assessed using a variety of metrics,
including accuracy, precision, F1-score, and recall.
The others include:
True positive: Accurately categorized in a sample of
data.
True negative: Normal traffic in an appropriately
classified normal data sample.
False positive: A data sample's normal traffic was
incorrectly categorized as an anomaly.
False negative: Malicious traffic mistakenly
categorized as normal in a sample of data.
Mathematical representation of metrics of
evaluation
Accuracy is the total number of data samples that
were correctly identified. Equation 5 shows how the
accuracy is calculated.

Accuracy (ACC) = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇 ………………(5)

Recall, also called true positive rate, is the proportion
of correctly predicted positive instances of a class to

Fig 3: Proposed system
Fig. 3. Proposed system.

110

JISCR 2023; Volume 6 Issue (2)

3) Data Splitting. The data that has been
transformed is then split into the ratio 75:25 for
training and testing, respectively.

E. Rationale for the use of NSL-KDD and CIC-
IDS2017

The study used the NSL-KDD dataset because
it is the most used dataset, providing an opportunity
to compare our study with similar studies. This
assertion is backed by [26], where a study was
conducted on IDS and concluded that the most
used datasets are KDDCup99 and NSL-KDD.
However, according to [27], KDDCup99 contains
redundant and duplicate records, which tends to
make the result biased. Given the limitations of
KDDCup99, NSL-KDD was selected for this study.

The NSL-KDD stated above is good for
comparison, but it is an old dataset that does
contain new attack types. An effective intrusion
detection system requires that researchers in IDS
use updated datasets such as CIC-IDS2017 [26].
The updated nature of CIC-IDS2017 is the main
reason for this study.

F. Metrics of evaluation
The performance of intrusion detection systems

is assessed using a variety of metrics, including
accuracy, precision, F1-score, and recall. The
others include:
True positive: Accurately categorized in a sample
of data.
True negative: Normal traffic in an appropriately
classified normal data sample.
False positive: A data sample's normal traffic was
incorrectly categorized as an anomaly.
False negative: Malicious traffic mistakenly
categorized as normal in a sample of data.
Mathematical representation of metrics of evaluation
Accuracy is the total number of data samples that
were correctly identified. Equation (5) shows how
the accuracy is calculated.

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
 (5)

Recall, also called true positive rate, is the
proportion of correctly predicted positive instances
of a class to the overall instance of the same class.
A higher recall rate that ranges from 0 to 1 indicates
a better model performance. Equation (6) below
shows how the Recall is calculated.

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
 (6)

Precision is the ratio of positive instances correctly
predicted to the ratio of all predicted samples for a
class. Recall and Precision are always paired when
evaluating model performance. Equation (7) shows
how the Precision is calculated.

Precision =
TP

TP+FN
(7)

F1-score is computed by taking the harmonic
mean of precision and recall. F1-score normally
calculates the tradeoff between precision and recall.
F1-score is calculated as shown in equation (8).

F1-score = 2*
Precision*Recall

Precision*Recall
(8)

Iv. resuLts and dIscussIon

A. Analyzing the performance of our proposed system
Four independent sub-experiments-Test 1, Test

2, Test 3, and Test 4-were set up as separate models
to examine the performance of the autoencoder
based on the number of hidden layers. NSL-
KDD and CICIDS2017 preprocessed datasets
were used to train the models. Our investigation
maintained a consistent bottleneck size of X, X+2,
X+4, and X+6, where X = 3 for the 30 and 60
neurons. This is because [1] conducted a similar
study and found that the bottleneck impacts the
model performance. In addition, our study kept the
total number of neurons for each of the four sub-
models at 30. In the next subsection we present
the results depicting the loss versus the training
and testing data for each deployed model. Fig. 4,
5, and 6 collectively illustrate a consistent reduction
in the training and test data error rate across all
models. This decline persists until the models have
completed the learning process.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

111

JISCR 2023; Volume 6 Issue (2)

B. Results from NSL-KDD for 30 and 60 neurons
The output of the suggested system using

the NSL-KDD dataset is shown in this section.
The configuration was tested once, and the
outcomes were recorded because this study aims
to determine the model's performance based on
various autoencoder hidden layers. The accuracy,
precision, recall, and F1-Score of each model
were noted throughout training and testing. The
effectiveness of the suggested system based on
the 30 neurons is displayed in Table I. According
to Table I, Test 4, the model's performance was as
follows: detection accuracy = 70.00%, precision
= 65.55%, and recall = 75.00%. Furthermore,
F-Score = 89.11% indicates the four models in
the experimental configuration with the poorest
performance. Accuracy, precision, recall, and
F1-Score for Test 3 are 80.00%, 75.80%, 91.12%,
and 93.33%, respectively. Test 2 also recorded an
accuracy of 90.36, a precision of 88.49, a recall of
95.45, and an F1-Score of 96.82. Test 1, the model
with only bottleneck or one-layer autoencoder,
recorded the best performance with an accuracy
of 92.45%, precision of 91%, recall of 96.02%, and
F1-Score of 97.45%.

In addition to these metrics, the mean
reconstruction error measured throughout training
and testing was 0.104567 for Test 1, 0.104854 for
Test 2, 0.104854 for Test 3, and 0.106460 for Test
4. The mean reconstruction error for each model is
displayed in Fig. 7. The biggest reconstruction error
was reported by Test 4, followed by Test 3, Test 2, and
Test 1, which had the lowest reconstruction errors.

Similar results are shown in Table II for the
proposed system utilizing the NSL-KDD dataset and
60 neurons. The suggested system obtained the
following results from Table II for Test 4: accuracy
= 80.91%, precision = 78.22, recall = 85.00%, and
F1-Score of 92.50. Accuracy = 85.54%, precision =
80.77%, recall = 91.12%, and F1-Score = 97.00%
were also recorded for Test 3. The best sub-model,
Test 1, outperformed all other sub-models with an
accuracy of 96.45%, precision of 93.00%, recall of
98.01%, and F1-Score of 98.63%. Test 2 maintained
the second highest performing sub-model with an
accuracy of 94.92%, precision of 91.00%, recall of
97.45, and F1-Score of 98.01.

Alhassan et al.

Fig. 4. Loss vs epoch for train and test dataset for two hidden
layers autoencoder.

the overall instance of the same class. A higher recall
rate that ranges from 0 to 1 indicates a better model
performance. Equation 6 below shows how the
Recall is calculated.

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 ……………………………………(6) (5)

Precision is the ratio of positive instances correctly
predicted to the ratio of all predicted samples for a
class. Recall and Precision are always paired when
evaluating model performance. Equation 7 shows
how the Precision is calculated.

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ……….………………………(7) (6)

F1-score is computed by taking the harmonic mean
of precision and recall. F1-score normally calculates
the tradeoff between precision and recall. F1-score is
calculated as shown in equation 8.

F1-score = 2 ∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅…………………….(8) (7)

IV. RESULTS AND DISCUSSION

In terms of optimizing the hidden layers of our
proposed system, this part covers the experimental
design of our system. As a result, the suggested
system is separated into four designs: Test 1
represents a single hidden layer autoencoder, Test 2
represents two hidden layers autoencoder, Test 3
represents three hidden layers autoencoder, and Test
4 represents four hidden layers autoencoder.

These four models were run in two stages, phase 1
involving 30 neurons and phase 2 including 60
neurons. These experimental designs are trained and
tested using the reference datasets NSL-KDD and
CIC-IDS2017. We trained and tested these sub-
models, and the accuracy, recall, precision, and
F1_Score outcomes are recorded. This investigation
aims to determine how having various hidden layers
affects performance.

A. Analyzing the performance of our proposed system
Four independent sub-experiments—Test 1, Test 2,
Test 3, and Test 4—were set up as separate models
to examine the performance of the autoencoder based
on the number of hidden layers. NSL-KDD and
CICIDS2017 preprocessed datasets were used to
train the models. Our investigation maintained a
consistent bottleneck size of X, X+2, X+4, and X+6,

where X = 3 for the 30 and 60 neurons. This is
because [1] conducted a similar study and found that
the bottleneck impacts the model performance. In
addition, our study kept the total number of neurons
for each of the four sub-models at 30. Below, we
present the results depicting the loss versus the
training and testing data for each deployed model.
Figures 4, 5, and 6 collectively illustrate a consistent
reduction in the training and test data error rate
across all models. This decline persists until the
models have completed the learning process.

a
Fig 4: Loss vs epoch for train and test dataset for

two hidden layers autoencoder

Fig 5: Loss vs epoch for train and test dataset for

three hidden layers autoencoder
Fig. 5. Loss vs epoch for train and test dataset for three
hidden layers autoencoder.

Fig. 6. Loss vs epoch for train and test dataset for four
hidden layers autoencoder.

the overall instance of the same class. A higher recall
rate that ranges from 0 to 1 indicates a better model
performance. Equation 6 below shows how the
Recall is calculated.

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 ……………………………………(6) (5)

Precision is the ratio of positive instances correctly
predicted to the ratio of all predicted samples for a
class. Recall and Precision are always paired when
evaluating model performance. Equation 7 shows
how the Precision is calculated.

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ……….………………………(7) (6)

F1-score is computed by taking the harmonic mean
of precision and recall. F1-score normally calculates
the tradeoff between precision and recall. F1-score is
calculated as shown in equation 8.

F1-score = 2 ∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅…………………….(8) (7)

IV. RESULTS AND DISCUSSION

In terms of optimizing the hidden layers of our
proposed system, this part covers the experimental
design of our system. As a result, the suggested
system is separated into four designs: Test 1
represents a single hidden layer autoencoder, Test 2
represents two hidden layers autoencoder, Test 3
represents three hidden layers autoencoder, and Test
4 represents four hidden layers autoencoder.

These four models were run in two stages, phase 1
involving 30 neurons and phase 2 including 60
neurons. These experimental designs are trained and
tested using the reference datasets NSL-KDD and
CIC-IDS2017. We trained and tested these sub-
models, and the accuracy, recall, precision, and
F1_Score outcomes are recorded. This investigation
aims to determine how having various hidden layers
affects performance.

A. Analyzing the performance of our proposed system
Four independent sub-experiments—Test 1, Test 2,
Test 3, and Test 4—were set up as separate models
to examine the performance of the autoencoder based
on the number of hidden layers. NSL-KDD and
CICIDS2017 preprocessed datasets were used to
train the models. Our investigation maintained a
consistent bottleneck size of X, X+2, X+4, and X+6,

where X = 3 for the 30 and 60 neurons. This is
because [1] conducted a similar study and found that
the bottleneck impacts the model performance. In
addition, our study kept the total number of neurons
for each of the four sub-models at 30. Below, we
present the results depicting the loss versus the
training and testing data for each deployed model.
Figures 4, 5, and 6 collectively illustrate a consistent
reduction in the training and test data error rate
across all models. This decline persists until the
models have completed the learning process.

a
Fig 4: Loss vs epoch for train and test dataset for

two hidden layers autoencoder

Fig 5: Loss vs epoch for train and test dataset for

three hidden layers autoencoder
fuy

Fig 6: Loss vs epoch for train and test dataset for

four hidden layers autoencoder

B. Results from NSL-KDD for 30 and 60 neurons
The output of the suggested system using the NSL-
KDD dataset is shown in this section. The
configuration was tested once, and the outcomes
were recorded because this study aims to determine
the model's performance based on various
autoencoder hidden layers. The accuracy, precision,
recall, and F1-Score of each model were noted
throughout training and testing. The effectiveness of
the suggested system based on the 30 neurons is
displayed in Table 1 below. According to Table 1,
Test 4, the model's performance was as follows:
detection accuracy = 70.00%, precision = 65.55%,
and recall = 75.00%. Furthermore, F-Score = 89.11%
indicates the four models in the experimental
configuration with the poorest performance.
Accuracy, precision, recall, and F1-Score for Test 3
are 80.00%, 75.80%, 91.12%, and 93.33%,
respectively. Test 2 also recorded an accuracy of
90.36, a precision of 88.49, a recall of 95.45, and an
F1-Score of 96.82. Test 1, the model with only
bottleneck or one-layer autoencoder, recorded the
best performance with an accuracy of 92.45%,
precision of 91%, recall of 96.02%, and F1-Score of
97.45%.
In addition to these metrics, the mean reconstruction
error measured throughout training and testing was
0.104567 for Test 1, 0.104854 for Test 2, 0.104854

for Test 3, and 0.106460 for Test 4. The mean
reconstruction error for each model is displayed in
Figure 7 below. The biggest reconstruction error was
reported by Test 4, followed by Test 3, Test 2, and
Test 1, which had the lowest reconstruction errors.
Similar results are shown in Table 2 for the proposed
system utilizing the NSL-KDD dataset and 60
neurons. The suggested system obtained the
following results from Table 2 for Test 4: accuracy =
80.91%, precision = 78.22, recall = 85.00%, and F1-
Score of 92.50. Accuracy = 85.54%, precision =
80.77%, recall = 91.12%, and F1-Score = 97.00%
were also recorded for Test 3. The best sub-model,
Test 1, outperformed all other sub-models with an
accuracy of 96.45%, precision of 93.00%, recall of
98.01%, and F1-Score of 98.63%. Test 2 maintained
the second highest performing sub-model with an
accuracy of 94.92%, precision of 91.00%, recall of
97.45, and F1-Score of 98.01.

C. Results from CIC-IDS2017
This section also shows the outcomes of the proposed
system's training and testing using the CIC-IDS2017
dataset. The various models, including Tests 1, 2, 3,
and 4, were each run once, with the results being
recorded. Again, the study kept the number of
neurons at 30 as a constant. The results achieved with
the NSL-KDD dataset were comparable to those
observed for this dataset—however, the performance
of the measured metrics improved in the CIC-
IDS2017. For instance, the Test 1 score increased
slightly from 96.45 for the NSL-KDD dataset to
97.11 for the CIC-IDS2017 dataset. The accuracy of
Test 2 increased from 92.15 to 94.65, Test 3 from
92.15% to 92.45%, and Test 4 improved, going from
70.0% to 90.70%, as shown in Table 3.

The autoencoder's performance using the CIC-
IDS2017 dataset with 60 neurons is shown in Table
4 below. Based on the CIC-IDS2017 datasets, we
evaluate the effect of the various layers on the
functionality of our suggested system. We tested the
performance of our suggested system using the sub-
models, and we noted a similar pattern to that seen in
phases 1 and 2 of the NSL-KDD and the CIC-
IDS2017. Test 1 was the sub-model that performed

112

JISCR 2023; Volume 6 Issue (2)

C. Results from CIC-IDS2017
This section also shows the outcomes of the

proposed system's training and testing using
the CIC-IDS2017 dataset. The various models,
including Tests 1, 2, 3, and 4, were each run once,
with the results being recorded. Again, the study
kept the number of neurons at 30 as a constant.
The results achieved with the NSL-KDD dataset
were comparable to those observed for this dataset
however, the performance of the measured metrics
improved in the CIC-IDS2017. For instance, the
Test 1 score increased slightly from 96.45 for the
NSL-KDD dataset to 97.11 for the CIC-IDS2017
dataset. The accuracy of Test 2 increased from
92.15 to 94.65, Test 3 from 92.15% to 92.45%, and
Test 4 improved, going from 70.0% to 90.70%, as
shown in Table III.

The autoencoder's performance using the
CIC-IDS2017 dataset with 60 neurons is shown
in Table IV. Based on the CIC-IDS2017 datasets,
we evaluate the effect of the various layers on the
functionality of our suggested system. We tested
the performance of our suggested system using
the sub-models, and we noted a similar pattern
to that seen in phases 1 and 2 of the NSL-KDD
and the CIC-IDS2017. Test 1 was the sub-model
that performed the best, and Test 4 was the one
that performed the worst. From Test 1 to Test 4,
the reconstruction error increases by the prior
pattern.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

taBLe I
resuLts of ae usIng 30 neurons wIth nsL-Kdd dataset

Model Accuracy Precision Recall F1-Score

Test 4 70.00% 65.55 75.00% 89.11

Test 3 80.00% 75.80 91.12% 93.33

Test 2 90.36% 88.49 95.45% 96.82

Test 1 92.45% 91.00% 96.02% 97.45%

taBLe II
resuLts of ae usIng 60 neurons wIth nsL-Kdd dataset

Model Accuracy Precision Recall F1-Score

Test 4 %.80.91 78.22% 85.00% 92.50%

Test 3 85.54% 80.77% 91.12% 97.00%

Test 2 94.92.36% 90.00% 97.45% 98.01

Test 1 96.54% .93.00% 98.97% 98.63%

the best, and Test 4 was the one that performed the
worst. From Test 1 to Test 4, the reconstruction error
increases by the prior pattern.

Table 1: Results of AE using 30 neurons with
NSL-KDD dataset

Model Accuracy Precision Recall F1-
Score

Test 4 70.00% 65.55 75.00% 89.11
Test 3 80.00% 75.80 91.12% 93.33
Test 2 90.36% 88.49 95.45% 96.82
Test 1 92.45% 91.00% 96.02% 97.45%

Table 2: Results of AE using 60 neurons with
NSL-KDD dataset

Mode
l

Accuracy Precisio
n

Recall F1-
Score

Test 4 80.91.% 78.22% 85.00
%

92.50
%

Test 3 85.54% 80.77% 91.12
%

97.00
%

Test 2 94.92.36
%

90.00% 97.45
%

98.01

Test 1 96.54% 93.00%. 98.97
%

98.63
%

Table 3: The performance of AE based on the
CIC-IDS2017 dataset for 30 neurons

Model Accuracy Precision Recall F1-
Score

Test 4 90.70% 84.55 86.00% 92.11
Test 3 92.60% 89.80 82.12% 90.33
Test 2 92.95% 82.49 93.45% 94.82
Test 1 95.11% 94.00% 98.88% 98.85%

Table 4: The performance of AE based on CIC-
IDS2017 dataset for 60 neurons

Model Accuracy Precision Recall F1-
Score

Test 4 95.70% 90.00% 91.00% 92.11

Test 3 97.30% 94.40% 92.12% 90.33
Test 2 97.95% 95.11% 93.45% 94.82
Test 1 98.61% 97.00% 98.88% 98.15%

Fig 7: Test vs mean reconstruction error

D. Discussion
According to the study's findings, given the same
number of neurons, a single hidden-layer
autoencoder performs better than a multi-layer
autoencoder. In this work, 30 neurons, for example,
were fed into the model for a single hidden layer
autoencoder and the same number for the remaining
multi-layer autoencoder layers. The single-layer
autoencoder demonstrated excellent performance for
every assessment parameter mentioned in this study,
including recording the lowest reconstruction error.
Given that single-layer autoencoders and multi-layer
autoencoders use the same number of neurons, the
maximum detection accuracy of 98.61% of Test 1
suggests that a single-layer autoencoder can detect
intrusion more effectively than a multi-layer
autoencoder. The results also demonstrate that, with
the same number of neurons, the model's
performance decreases as the number of layers
increases.
For instance, the autoencoder with two hidden layers
is recording the second-best performance, followed
by the autoencoder with three hidden layers, and the
autoencoder with four hidden layers is the least
performing. The obtained reconstruction error
verifies the proposed system's effectiveness.
The result from our study suggests that lesser
reconstruction error will lead to improved model
performance, while higher reconstruction error will
lead to decreased model performance. The worst

Fig. 7. Test vs mean reconstruction error.

taBLe III
the PerforMance of ae Based on the cIc-Ids2017

dataset for 30 neurons

Model Accuracy Precision Recall F1-Score

Test 4 90.70% 84.55 86.00% 92.11

Test 3 92.60% 89.80 82.12% 90.33

Test 2 92.95% 82.49 93.45% 94.82

Test 1 95.11% 94.00% 98.88% 98.85%

taBLe Iv
the PerforMance of ae Based on cIc-Ids2017

dataset for 60 neurons

Model Accuracy Precision Recall F1-Score

Test 4 95.70% 90.00% 91.00% 92.11

Test 3 97.30% 94.40% 92.12% 90.33

Test 2 97.95% 95.11% 93.45% 94.82

Test 1 98.61% 97.00% 98.88% 98.15%

113

JISCR 2023; Volume 6 Issue (2)

D. Discussion
According to the study's findings, given the

same number of neurons, a single hidden-layer
autoencoder performs better than a multi-layer
autoencoder. In this work, 30 neurons, for example,
were fed into the model for a single hidden layer
autoencoder and the same number for the
remaining multi-layer autoencoder layers. The
single-layer autoencoder demonstrated excellent
performance for every assessment parameter
mentioned in this study, including recording the
lowest reconstruction error. Given that single-
layer autoencoders and multi-layer autoencoders
use the same number of neurons, the maximum
detection accuracy of 98.61% of Test 1 suggests
that a single-layer autoencoder can detect intrusion
more effectively than a multi-layer autoencoder.
The results also demonstrate that, with the same
number of neurons, the model's performance
decreases as the number of layers increases.

For instance, the autoencoder with two hidden
layers is recording the second-best performance,
followed by the autoencoder with three hidden
layers, and the autoencoder with four hidden layers
is the least performing. The obtained reconstruction
error verifies the proposed system's effectiveness.

The result from our study suggests that lesser
reconstruction error will lead to improved model
performance, while higher reconstruction error will
lead to decreased model performance. The worst
reconstruction error was achieved by Test 4, with
Test 1 maintaining the lowest reconstruction error.
We can, therefore, conclude with the following key
findings:

1. The reconstruction error increases as the
number of layers increases, given the same
number of input neurons.

2. As reconstruction error increases, model
performance will decline.

E. Methods comparison
A very good performance was registered when

comparing the suggested system to another state-
of-the-art research applying autoencoder with NSL-
KDD and CIC-IDS2017 dataset. The performance of
our suggested solution utilizing the NSL-KDD dataset
and the CIC-IDS2017 dataset is shown in Table V.

v. concLusIon

In summary, the outcomes of this study strongly
indicate that a single hidden-layer autoencoder
surpasses multi-layer counterparts when utilizing
the same number of neurons. The single-
layer autoencoder consistently demonstrated
remarkable performance across all evaluation
metrics, particularly by attaining the lowest
reconstruction error. Notably, the high detection
accuracy of 98.6% in Test 1 further underscores
the superiority of the single-layer autoencoder
in intrusion detection compared to its multi-layer
counterparts. Furthermore, the results suggest
that as the number of layers in the autoencoder
increases, the model's performance declines, even
when maintaining an identical number of neurons.
The configuration with a single hidden layer proved
the most effective, achieving a reconstruction error
of 0.106460 in Test 1, thereby confirming that a
lower reconstruction error correlates with improved
model performance.

fundIng

This article did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

confLIct of Interest

Authors declare that they have no conflict of interest.

Alhassan et al.

taBLe v
coMParIng our ProPosed systeM wIth sIMILar studIes

Author Dataset Accuracy

[28] CIC-IDS2017 92.90%

[24] NSL-KDD 84%

[29] NSL-KDD 90.70%

[2] NSL-KDD 90.61%

[30] NSL-KDD 84.21%

Proposed system NSL-KDD AND
CIC-IDS2017 95.11%and 98.61%

114

JISCR 2023; Volume 6 Issue (2)

references

[1] N. Alam and M. Ahmed, “Zero-day Network Intrusion
Detection using Machine Learning Approach,” no. April,
pp. 194–201, 2023.

[2] W. E. N. Xu, J. Jang-jaccard, A. Singh, and F. Sabrina,
“Improving Performance of Autoencoder-Based Network
Anomaly Detection on NSL-KDD Dataset,” IEEE
Access, vol. 9, pp. 140136–140146, 2021, doi: 10.1109/
ACCESS.2021.3116612.

[3] R. Panigrahi et al., “A consolidated decision tree-based
intrusion detection system for binary and multiclass
imbalanced datasets,” Mathematics, vol. 9, no. 7, 2021,
doi: 10.3390/math9070751.

[4] A. Ahmim, M. Derdour, and M. A. Ferrag, “An intrusion
detection system based on combining probability
predictions of a tree of classifiers,” Int. J. Commun. Syst.,
vol. 31, no. 9, pp. 1–17, 2018, doi: 10.1002/dac.3547.

[5] R. A. R. Ashfaq, X. Z. Wang, J. Z. Huang, H. Abbas,
and Y. L. He, “Fuzziness based semi-supervised
learning approach for intrusion detection system,” Inf.
Sci. (Ny)., vol. 378, pp. 484–497, 2017, doi: 10.1016/j.
ins.2016.04.019.

[6] M. A. Rezvi, S. Moontaha, K. A. Trisha, S. T. Cynthia, and
S. Ripon, “Data mining approach to analyzing intrusion
detection of wireless sensor network,” Indones. J. Electr.
Eng. Comput. Sci., vol. 21, no. 1, pp. 516–523, 2021, doi:
10.11591/ijeecs.v21.i1.pp516-523.

[7] S. N. Mighan and M. Kahani, “A novel scalable intrusion
detection system based on deep learning,” Int. J. Inf.
Secur., vol. 20, no. 3, pp. 387–403, 2021, doi: 10.1007/
s10207-020-00508-5.

[8] D. Karthikeyan, V. Mohanraj, Y. Suresh, and J.
Senthilkumar, “An efficient stacking model with SRPF
classifier technique for intrusion detection system,” Int.
J. Commun. Syst., vol. 34, no. 10, pp. 1–15, 2021, doi:
10.1002/dac.4737.

[9] M. R. Ayyagari, N. Kesswani, M. Kumar, and K. Kumar,
“Intrusion detection techniques in network environment:
a systematic review,” Wirel. Networks, vol. 27, no. 2, pp.
1269–1285, 2021, doi: 10.1007/s11276-020-02529-3.

[10] Z. M. Khan and H. Singh, “Deep Neural Network Solution
for Detecting Intrusion in Network,” no. August, pp. 160–
171, 2023.

[11] A. Issa and Z. Albayrak, “DDoS Attack Intrusion Detection
System Based on Hybridization of CNN and LSTM,” no.
January, 2023, doi: 10.12700/APH.20.3.2023.3.6.

[12] J. Han and W. Pak, “applied sciences Hierarchical LSTM-
Based Network Intrusion Detection System Using Hybrid
Classification,” 2023.

[13] J. Han and W. Pak, “High Performance Network
Intrusion Detection System Using Two-Stage LSTM and
Incremental Created Hybrid Features,” 2023.

[14] A. A. Megantara and T. Ahmad, “A hybrid machine
learning method for increasing the performance of
network intrusion detection systems,” J. Big Data, vol. 8,
no. 1, 2021, doi: 10.1186/s40537-021-00531-w.

[15] P. Pitre, “An Intrusion Detection System for Zero-Day
Attacks to Reduce False Positive Rates,” pp. 1–6, 2022.

[16] S. Dwivedi, M. Vardhan, and S. Tripathi, “Building an
efficient intrusion detection system using grasshopper
optimization algorithm for anomaly detection,” Cluster
Comput., vol. 24, no. 3, pp. 1881–1900, 2021, doi:
10.1007/s10586-020-03229-5.

[17] C. Haripriya and M. P. P. Jagadeesh, “An Efficient
Autoencoder-based Deep Learning Technique to Detect
Network Intrusions,” vol. 13, no. 7, pp. 1–10, 2022, doi:
10.14456/ITJEMAST.2022.142.

[18] M. Sabir, J. Ahmad, and D. Alghazzawi, “A Lightweight
Deep Autoencoder Scheme for Cyberattack Detection
in the Internet of Things,” 2023, doi: 10.32604/
csse.2023.034277.

[19] O. Tabanlı and D. Öğrenme, “Detection of Attacks
in Network Traffic with the Autoencoder-Based
Unsupervised Learning Method,” vol. 6, no. 2, pp. 199–
207, 2022, doi: 10.26650/acin.1142806.

[20] Z. Gu, L. Wang, C. Liu, and Z. Wang, “Network Intrusion
Detection with Nonsymmetric Deep Autoencoding
Feature Extraction,” vol. 2021, 2021.

[21] M. Schmidt, “theRepository at St . Cloud State
Autoencoder-Based Representation Learning to Predict
Anomalies in Computer Networks,” 2020.

[22] H. Hosseinvand, “Intrusion Detection System Using SVM
as Classifier and GA for Optimizing Feature Vectors,” vol.
10, no. 1, pp. 26–35, 2018.

[23] M. Awais, “Deep Learning Based Anomaly Detection
for Fog-Assisted IoVs Network,” IEEE Access, vol. 11,

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

115

JISCR 2023; Volume 6 Issue (2)

no. January, pp. 19024–19038, 2023, doi: 10.1109/
ACCESS.2023.3246660.

[24] Y. Song, S. Hyun, and Y. G. Cheong, “Analysis of
autoencoders for network intrusion detection†,” Sensors,
vol. 21, no. 13, pp. 1–23, 2021, doi: 10.3390/s21134294.

[25] S. Rezvy, Y. Luo, M. Petridis, and A. Lasebae, “An
efficient deep learning model for intrusion classification
and prediction in 5G and IoT networks”.

[26] E. M. Maseno, Z. Wang, and H. Xing, “A Systematic Review
on Hybrid Intrusion Detection System,” vol. 2022, 2022.

[27] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani,
“A detailed analysis of the KDD CUP 99 data set in
Computational Intelligence for Security and Defense
Applications,” Comput. Intell. Secur. Def. Appl., no.
Cisda, pp. 1–6, 2009.

[28] S. Sindian and S. Sindian, “An Enhanced Deep
Autoencoder-based Approach for DDoS Attack Detection
3 Deep Neural Network 2 Related Work,” vol. 15, pp.
716–724, 2020, doi: 10.37394/23203.2020.15.72.

[29] M. Gharib and B. Mohammadi, “AutoIDS : Auto-encoder
Based Method for Intrusion Detection System,” pp. 1–9.

[30] C. Ieracitano, A. Adeel, F. C. Morabito, and
A. Hussain, “A Novel Statistical Analysis and
Autoencoder Driven Intelligent Intrusion Detection
Approach,” Neurocomputing, 2019, doi: 10.1016/j.
neucom.2019.11.016.

Alhassan et al.

