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Abstract
The rise in cyberattacks targeting critical network infrastructure has spurred an increased emphasis on 

the development of robust cybersecurity measures. In this context, there is a growing exploration of effective 
Intrusion Detection Systems (IDS) that leverage Machine Learning (ML) and Deep Learning (DL), with a particular 
emphasis on autoencoders. Recognizing the pressing need to mitigate cyber threats, our study underscores 
the crucial importance of advancing these methodologies. Our study aims to identify the optimal architecture for 
an Intrusion Detection System (IDS) based on autoencoders, with a specific focus on configuring the number 
of hidden layers. To achieve this objective, we designed four distinct sub-models, each featuring a different 
number of hidden layers: Test 1 (one hidden layer), Test 2 (two hidden layers), Test 3 (three hidden layers), and 
Test 4 (four hidden layers).We subjected our models to rigorous training and testing, maintaining consistent 
neuron counts of 30 and 60. The outcomes of our experimental study reveal that the model with a single 
hidden layer consistently outperformed its counterparts, achieving an accuracy of 95.11% for NSL-KDD and an 
impressive 98.6% for CIC-IDS2017. The findings of our study indicate that our proposed system is viable for 
implementation on critical network infrastructure as a proactive measure against cyber-attacks.
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I. IntroductIon

The rapid growth of computer network users 
has resulted in individuals, organizations, and 
businesses storing and transmitting sensitive 
information on these networks. These sensitive 
data have witnessed increased cyber-attacks, 
leading to data breaches, financial loss, intellectual 
property theft, reputational damage, identity theft, 
and other security issues. There is a need for 
countermeasures to minimize the spate of these 
attacks. Academia and industry have proposed 

measures such as Cryptography, Access control, 
firewalls, anti-virus, and Intrusion Detection 
Systems (IDS). IDS is the only technique that 
can be deployed to prevent insider and external 
attacks. Insider attacks emanate from people within 
an organization, while external attacks are those 
from outside the organization. According to [1], 
intrusion detection system is a crucial component 
of cybersecurity.

The intrusion detection system is hardware or 
software implemented to monitor a network or a 
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Additionally, host-based intrusion detection has 
the benefit of detecting encrypted attacks, but 
NIDS cannot detect encrypted attacks.

Depending on how they are implemented, 
intrusion detection systems (IDS) can also be divided 
into anomaly-based and signature-based categories. 
Any incoming traffic with a signature that differs from 
those in the database is regarded as an attack by 
signature-based intrusion detection systems, which 
keep a database of all known attack signatures. 

There are some disadvantages associated 
with this type of IDS. Signature-based IDS is not 
capable of detecting unknown types of attacks. 
Besides, maintaining a database of all known 
attacks increases the computational cost. One 
major advantage of this type of IDS is the minimal 
number of false alarms rate. Anomaly-based 
intrusion detection, on the other hand, maintains 
a normal profile, and any incoming data packets 
that deviate from this normal profile are considered 
an attack. This type of IDS has the advantage of 
detecting new attacks, but its weakness is the high 
level of false alarms associated with it [22].

The industrial application of IDS is mostly 
achieved through signature-based IDS because 
of the false alarm associated with anomaly-based 
IDS. However, the inability of signature-based IDS 
to detect novel or new types of attacks makes it 
unsuitable for the current dynamic nature of network 
attacks. Anomaly-based intrusion detection 
system has become a hot research area[23]. The 
advantages of anomaly-based intrusion detection 
system call for improving the detection accuracy of 
existing anomaly-based IDS to reduce false alarm 
rates. Previous studies on IDS using autoencoders, 
according to [24], always report on manual and 
random turning of parameters, making them 
inconvenient for practical application.

In [24], a study was conducted to determine the 
possibility of the number of layers and bottlenecks 
affecting the performance of the autoencoder 
algorithm for IDS. They concluded that these 
parameters indeed affect the autoencoder 
performance. Their study, therefore, creates 
the need for effective ways of optimizing these 
parameters to improve the autoencoder algorithm 
to increase detection accuracy and reduce the 
false alarm rate.
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host for unauthorized access and report for action 
to be taken. The importance of IDS has led to 
several researchers proposing various methods 
to improve the performance of existing IDS. [2] 
stated that Artificial Intelligence methods with data 
science have been proposed to solve the issue of 
network security.  

[3], [4] Proposed Decision Trees classifier 
for NIDS. [5]–[8] proposed Naïve Bayes as a 
NIDS classifier. The aforementioned researchers 
recorded a significant improvement in their 
respective machine learning models. However, 
machine learning algorithms have weaknesses 
that make them unsuitable for NIDS research. The 
classical machine learning algorithm cannot handle 
the high dimensional data traffic witnessed by the 
current network[7]. This weakness has prompted 
researchers to focus on deep learning techniques. 
According to [9], deep learning algorithms can 
handle labeled and unlabeled data. The issues 
of false positive and false negatives associated 
with anomaly-based intrusion detection can be 
significantly reduced  with deep learning[10]. The 
advantages of deep learning and the growing 
interest in its application in NIDS are evident from 
the increasing studies rate. [11]–[13] All applied 
Long Short-Term Memory (LSTM) to design 
intrusion detection systems. Deep neural networks 
have also been explored by [9], [14]–[16] to 
enhance the functionality of the intrusion detection 
systems in place. The autoencoder is another deep 
learning technique that has drawn a lot of interest. 
[2], [17]–[21] All mentioned the exceptional 
functioning of the systems they provided and 
offered various recommendations for improving the 
autoencoder algorithm's performance for NIDS. 
Depending on where the implementation is done, 
intrusion detection systems that use machine 
learning and deep learning techniques can be 
divided into two categories: host-based intrusion 
detection systems and network intrusion detection 
systems. A network intrusion detection system 
tracks data packets as they enter a computer 
network segment and uses data point analysis 
to report on any intrusions or attacks. While host-
based intrusion detection requires installation on 
each host, NIDS has the benefit of just requiring 
one workstation to monitor the whole network. 
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A. Purposes of the study
This study aims to address the increasing 

frequency of cyberattacks targeting critical network 
infrastructure. We delved into the exploration of 
effective and accurate Intrusion Detection Systems 
(IDS) utilizing the capabilities of machine learning 
and deep learning, specifically emphasizing 
the use of autoencoders. The pressing need to 
mitigate cyber threats highlights the importance of 
advancing methodologies in the field of IDS.

The contributions of this paper include:
1) The experimental design of the autoencoder 

networking, consisting of the number of neurons 
and the number of hidden layers, specifically 
starting from layer one.

2) Results from this experimental study will provide 
an optimized number of autoencoder layers for 
improved NIDS based on a constant number of 
neurons.

II. LIterature revIew

A. The autoencoder algorithm
Autoencoders represent a category of artificial 

neural networks employed in unsupervised 
learning—a type of learning algorithm focused 
on analyzing and clustering unlabeled datasets. 
This class of algorithms is commonly known as 
unsupervised learning algorithms.

There are several advantages associated with 
using autoencoder as an IDS system learning 
algorithm. The most important one is its ability 
to learn useful representations of data in an 
unsupervised manner, making it very important 
when labelled training data is expensive. Its major 
components consist of an encoder and a decoder. 

The autoencoder's dimensionality reduction 
feature enables it to learn a concise representation 
of input data, effectively reducing computational 
complexity. By focusing solely on relevant features, 
the use of an autoencoder diminishes the risk of 
overfitting. Additionally, autoencoders offer benefits 
such as facilitating transfer learning and adapting 
to various data types.

The specifics of the autoencoder's architecture 
are detailed in Fig. 1.

1) Encoder:
a) Input layer:  This layer holds the input 

data.
b) Hidden layers: The layers between the 

bottleneck and the input layer.
c) Activation functions: ReLu (Rectified 

Linear Unit) and Sigmoid are commonly 
applied in an autoencoder.

2) Latent Space:
a) It is the layer where the compressed 

version of the input data is stored.
b) The size of the latent space is determined 

by the type of problem that has been 
solved.

3) Decoder:
a) This layer progressively reconstructs the 

output layer, which is similar to the size of 
the input data.

b) The nature of the input data determines the 
activation function used for the decoding 
phase. Binary data requires a sigmoid 
activation function, while continuous 
data is better represented using a linear 
activation function.

Fig. 1 below shows the architecture of an 
autoencoder consisting of one hidden layer.

B. Related works
Numerous studies have applied the autoencoder 

algorithm to enhance network intrusion detection 
systems. This section provides an overview of these 
studies. 
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B.   Related works 
Numerous studies have applied the autoencoder 
algorithm to enhance network intrusion detection 
systems. This section provides an overview of these 
studies.  
[25] Illustrates the development of an efficient 
intrusion detection system for 5G and IoT networks 

based on deep learning. The authors introduce a 
hybrid system combining deep learning and data 
mining techniques. The system employs a deep 
autoencoder to perform unsupervised pre-training on 
the data, generating a concise and less noisy 
representation of the input space. The final 
component is a dense neural network acting as a 
supervised classifier for intrusion detection. The 
study provides insights into configuring and 
optimizing the hybrid intrusion detection system, 
including specific details on the parameter values of 
the applied model. 
In [17], an effective deep learning method based on 
autoencoders is employed. The study underscores the 
challenges posed by the vast volume of data 
generated across networks and emphasizes the 
critical need for swift intrusion detection to prevent 
cyberattacks. It compares the superior intrusion 
detection capabilities of deep learning algorithms to 
traditional machine learning methods. To tackle class 
imbalance in intrusion detection datasets, the 
research utilizes the SMOTE approach. The deep 
autoencoder model is developed using the latest 
benchmark dataset, "CSE-CIC-IDS 2018", 
representing contemporary assaults. The study 
showcases promising results, considering all records 
and assault types in the dataset, claiming an average 
accuracy of 97.79%. Overall, it highlights the 
escalating demand for effective intrusion detection 
systems in response to the extensive network-
generated data and emphasizes the potential of deep 
learning methods, particularly autoencoders, in 
enhancing intrusion detection precision. The 
application of SMOTE addresses class imbalance 
issues, preventing overfitting and ensuring reliable 
model performance. 
While the above study provides valuable insights, it 
lacks specific technical details, including the 
architecture of the deep autoencoder model, 
evaluation measures, and a more in-depth analysis of 
experimental findings. The absence of references 
supporting the assertions made in the 
aforementioned paper makes it challenging to verify 
the accuracy of the research and the details of the 
dataset. 
In [24], extracting features using a non-symmetric 
deep autoencoder is recommended. The essay 
discusses the challenges created by the exponential 
growth of network size and data, which has led to an 
increase in novel network attacks and called for the 

Fig 1: Architecture of an Autoencoder 

Fig. 1. Architecture of an Autoencoder.
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[25] Illustrates the development of an efficient 
intrusion detection system for 5G and IoT networks 
based on deep learning. The authors introduce 
a hybrid system combining deep learning and 
data mining techniques. The system employs a 
deep autoencoder to perform unsupervised pre-
training on the data, generating a concise and 
less noisy representation of the input space. The 
final component is a dense neural network acting 
as a supervised classifier for intrusion detection. 
The study provides insights into configuring and 
optimizing the hybrid intrusion detection system, 
including specific details on the parameter values 
of the applied model.

In [17], an effective deep learning method based 
on autoencoders is employed. The study underscores 
the challenges posed by the vast volume of data 
generated across networks and emphasizes the 
critical need for swift intrusion detection to prevent 
cyberattacks. It compares the superior intrusion 
detection capabilities of deep learning algorithms 
to traditional machine learning methods. To tackle 
class imbalance in intrusion detection datasets, 
the research utilizes the SMOTE approach. The 
deep autoencoder model is developed using the 
latest benchmark dataset, "CSE-CIC-IDS 2018", 
representing contemporary assaults. The study 
showcases promising results, considering all records 
and assault types in the dataset, claiming an average 
accuracy of 97.79%. Overall, it highlights the 
escalating demand for effective intrusion detection 
systems in response to the extensive network-
generated data and emphasizes the potential of 
deep learning methods, particularly autoencoders, 
in enhancing intrusion detection precision. The 
application of SMOTE addresses class imbalance 
issues, preventing overfitting and ensuring reliable 
model performance.

While the above study provides valuable 
insights, it lacks specific technical details, including 
the architecture of the deep autoencoder model, 
evaluation measures, and a more in-depth 
analysis of experimental findings. The absence of 
references supporting the assertions made in the 
aforementioned paper makes it challenging to verify 
the accuracy of the research and the details of the 
dataset.

In [24], extracting features using a non-symmetric 
deep autoencoder is recommended. The essay 
discusses the challenges created by the exponential 
growth of network size and data, which has led to 
an increase in novel network attacks and called for 
the creation of accurate intrusion detection systems 
(IDS). The study emphasizes the importance 
of monitoring network traffic to thwart potential 
intrusions, highlight the value of IDS, and ensure 
network confidentiality, integrity, and availability. 
Despite extensive research efforts, IDS still needs 
to work on detecting new intrusions, reducing the 
number of false alarms, and increasing detection 
accuracy. To overcome these difficulties, machine 
learning (ML) and deep learning (DL) are emerging 
as viable methods for efficient intrusion detection 
across the network.

In [25], a novel IDS, termed AutoIDS, is 
introduced, utilizing an autoencoder-based 
approach within a semi-supervised machine learning 
framework. This IDS effectively discerns abnormal 
packet flows from normal ones by employing two 
efficient detectors, both constructed as encoder-
decoder neural networks. These networks are 
trained to generate compressed and sparse 
representations of normal flows. During the testing 
phase, an intrusion is identified if the networks fail 
to produce the anticipated compressed or sparse 
representation from an incoming packet flow. To 
optimize computational costs while preserving 
accuracy, the first detector processes numerous 
flows, and the second detector is exclusively 
employed for challenging samples where the first 
detector exhibits uncertainty. The proposed AutoIDS 
undergoes evaluation on the widely-used NSL-
KDD benchmark dataset, achieving an impressive 
accuracy of 90.17%, thereby demonstrating its 
superiority over alternative approaches.

III. MethodoLogy

A. Overview
This section describes the use of autoencoders 

in the context of intrusion detection systems and 
presents a proposed system architecture. The key 
components of this section include the autoencoder 
model, datasets used, and metrics for evaluating 
the performance of the intrusion detection system.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers
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B. Autoencoder
A deep autoencoder is an autoencoder with 

more than one hidden layer.
Autoencoder is a deep learning algorithm used 

to take input data (X) and compress it to a lower 
dimensional space known as a bottleneck (Z), and 
this whole process is known as encoding. Fig. 2 shows 
an autoencoder architecture showing the encoding 
and decoding phases. Equation (1) below shows the 
mathematical representation of the encoder.
                         Z = encoder(X)                            (1)

The bottleneck is then converted back to 
approximately the original data size, known 
as decoding. Equation (2) below shows the 
mathematical representation of the decoder. 
                         (Ŷ) ̂ = decoder (Z)                       (2)

An error exists between the data fed as input(Y) 
and the output ((Y)) ̂ in training the autoencoder. 
The error is known as the reconstruction error. This 
error is an objective that needs to be optimized 
during training using loss functions. Common loss 
functions include Binary Cross Entropy (BCE) and 
the Mean Square Error (MSE). Equation (3) shows 
the mathematical representation of the Mean 
Square Error used in this study.
                      MSE = 1/n *∑(Y-Ŷ ̂)                         (3)

This work's main objective is to minimize this 
reconstruction error and increase the detection 
accuracy for IDS.

C. Proposed system 
The proposed system consists of a constant input 

neuron of size 30, and several varied hidden layers 
starting from layers one, two, three, and four, as shown 
in Fig. 3. The model is trained with two main datasets: 
the NSL-KDD dataset and the CIC-IDS2017 dataset. 
The performance of each layer in terms of detection 
accuracy is recorded. The process continues until 
the best possible accuracy is obtained.

D. Datasets
The datasets used to train, test, and validate our 

proposed system are the CIC-IDS2017 and NSL-
KDD datasets. These datasets, in their raw form, 
cannot be run on deep learning algorithms such as 

Autoencoders. Therefore, both datasets were first 
prepared using the following steps:
1) Data cleaning, which involves removing duplicate 

data and handling missing values.
2) Normalization. The datasets are first normalized to 

enhance the performance and reliability of our 
model by converting all numeric columns to a 
common scale in the form of 1s or 0s. Equation 
(4) shows how the min-max technique performs 
the normalization task. 

         y = x-min/max-min                          (4)
Where y = new value of each entry
min = minimum value for each data point
max = maximum value for each data point

Alhassan et al.
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(𝑌𝑌)̂ = decoder(Z)……………………………(2) 
 
An error exists between the data fed as input(Y) and 
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Fig. 2. Deep Autoencoder.

C. Proposed system  
The proposed system consists of a constant input 
neuron of size 30, and several varied hidden layers 
starting from layers one, two, three, and four, as 
shown in Figure 3 below. The model is trained with 
two main datasets: the NSL-KDD dataset and the 
CIC-IDS2017 dataset. The performance of each 
layer in terms of detection accuracy is recorded. The 
process continues until the best possible accuracy is 
obtained. 

 
 
 
D.  Datasets 
The datasets used to train, test, and validate our 
proposed system are the CIC-IDS2017 and NSL-
KDD datasets. These datasets, in their raw form, 
cannot be run on deep learning algorithms such as 
Autoencoders. Therefore, both datasets were first 
prepared using the following steps: 
 
1) Data cleaning, which involves removing duplicate data 
and handling missing values. 
 
2) Normalization. The datasets are first normalized to 
enhance the performance and reliability of our model by 
converting all numeric columns to a common scale in the form 

of 1s or 0s. Equation 4 shows how the min-max technique 
performs the normalization task.  
 
                  y = x-min/max-min……….………..(4) 
Where y = new value of each entry 
min = minimum value for each data point 
max = maximum value for each data point 
3) Data Splitting. The data that has been transformed is then 
split into the ratio 75:25 for training and testing, respectively. 
 

E. 3.5 Rationale for the use of NSL-KDD and CIC-IDS2017 
The study used the NSL-KDD dataset because it is 
the most used dataset, providing an opportunity to 
compare our study with similar studies. This 
assertion is backed by [26], where a study was  
conducted on IDS and concluded that the most used 
datasets are KDDCup99 and NSL-KDD. However, 
according to [27], KDDCup99 contains redundant 
and duplicate records, which tends to make the result 
biased. Given the limitations of KDDCup99, NSL-
KDD was selected for this study. 
The NSL-KDD stated above is good for comparison, 
but it is an old dataset that does contain new attack 
types. An effective intrusion detection system 
requires that researchers in IDS use updated datasets 
such as CIC-IDS2017 [26]. The updated nature of 
CIC-IDS2017 is the main reason for this study. 
 
F.  Metrics of evaluation 
The performance of intrusion detection systems is 
assessed using a variety of metrics, 
including accuracy, precision, F1-score, and recall. 
The others include: 
True positive: Accurately categorized in a sample of 
data. 
True negative: Normal traffic in an appropriately 
classified normal data sample. 
False positive: A data sample's normal traffic was 
incorrectly categorized as an anomaly. 
False negative: Malicious traffic mistakenly 
categorized as normal in a sample of data. 
Mathematical representation of metrics of 
evaluation  
Accuracy is the total number of data samples that 
were correctly identified. Equation 5 shows how the 
accuracy is calculated.  

Accuracy (ACC) =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇 ………………(5) 

Recall, also called true positive rate, is the proportion 
of correctly predicted positive instances of a class to 

Fig 3: Proposed system 
Fig. 3. Proposed system.
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3) Data Splitting. The data that has been 
transformed is then split into the ratio 75:25 for 
training and testing, respectively.

E. Rationale for the use of NSL-KDD and CIC-
IDS2017

The study used the NSL-KDD dataset because 
it is the most used dataset, providing an opportunity 
to compare our study with similar studies. This 
assertion is backed by [26], where a study was  
conducted on IDS and concluded that the most 
used datasets are KDDCup99 and NSL-KDD. 
However, according to [27], KDDCup99 contains 
redundant and duplicate records, which tends to 
make the result biased. Given the limitations of 
KDDCup99, NSL-KDD was selected for this study.

The NSL-KDD stated above is good for 
comparison, but it is an old dataset that does 
contain new attack types. An effective intrusion 
detection system requires that researchers in IDS 
use updated datasets such as CIC-IDS2017 [26]. 
The updated nature of CIC-IDS2017 is the main 
reason for this study.

F. Metrics of evaluation
The performance of intrusion detection systems 

is assessed using a variety of metrics, including 
accuracy, precision, F1-score, and recall. The 
others include:
True positive: Accurately categorized in a sample 
of data.
True negative: Normal traffic in an appropriately 
classified normal data sample.
False positive: A data sample's normal traffic was 
incorrectly categorized as an anomaly.
False negative: Malicious traffic mistakenly 
categorized as normal in a sample of data.
Mathematical representation of metrics of evaluation 
Accuracy is the total number of data samples that 
were correctly identified. Equation (5) shows how 
the accuracy is calculated. 

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
 (5)

Recall, also called true positive rate, is the 
proportion of correctly predicted positive instances 
of a class to the overall instance of the same class. 
A higher recall rate that ranges from 0 to 1 indicates 
a better model performance. Equation (6) below 
shows how the Recall is calculated.

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
 (6)

Precision is the ratio of positive instances correctly 
predicted to the ratio of all predicted samples for a 
class. Recall and Precision are always paired when 
evaluating model performance. Equation (7) shows 
how the Precision is calculated.

Precision  = 
TP

TP+FN
(7)

F1-score is computed by taking the harmonic 
mean of precision and recall. F1-score normally 
calculates the tradeoff between precision and recall. 
F1-score is calculated as shown in equation (8).

F1-score =  2*
Precision*Recall

Precision*Recall
(8)

Iv. resuLts and dIscussIon

A. Analyzing the performance of our proposed system
Four independent sub-experiments-Test 1, Test 

2, Test 3, and Test 4-were set up as separate models 
to examine the performance of the autoencoder 
based on the number of hidden layers. NSL-
KDD and CICIDS2017 preprocessed datasets 
were used to train the models. Our investigation 
maintained a consistent bottleneck size of X, X+2, 
X+4, and X+6, where X = 3 for the 30 and 60 
neurons. This is because [1] conducted a similar 
study and found that the bottleneck impacts the 
model performance. In addition, our study kept the 
total number of neurons for each of the four sub-
models at 30.  In the next subsection we present 
the results depicting the loss versus the training 
and testing data for each deployed model. Fig. 4, 
5, and 6 collectively illustrate a consistent reduction 
in the training and test data error rate across all 
models. This decline persists until the models have 
completed the learning process.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers
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B. Results from NSL-KDD for 30 and 60 neurons
The output of the suggested system using 

the NSL-KDD dataset is shown in this section. 
The configuration was tested once, and the 
outcomes were recorded because this study aims 
to determine the model's performance based on 
various autoencoder hidden layers. The accuracy, 
precision, recall, and F1-Score of each model 
were noted throughout training and testing. The 
effectiveness of the suggested system based on 
the 30 neurons is displayed in Table I. According 
to Table I, Test 4, the model's performance was as 
follows: detection accuracy = 70.00%, precision 
= 65.55%, and recall = 75.00%. Furthermore, 
F-Score = 89.11% indicates the four models in 
the experimental configuration with the poorest 
performance. Accuracy, precision, recall, and 
F1-Score for Test 3 are 80.00%, 75.80%, 91.12%, 
and 93.33%, respectively. Test 2 also recorded an 
accuracy of 90.36, a precision of 88.49, a recall of 
95.45, and an F1-Score of 96.82. Test 1, the model 
with only bottleneck or one-layer autoencoder, 
recorded the best performance with an accuracy 
of 92.45%, precision of 91%, recall of 96.02%, and 
F1-Score of 97.45%. 

In addition to these metrics, the mean 
reconstruction error measured throughout training 
and testing was 0.104567 for Test 1, 0.104854 for 
Test 2, 0.104854 for Test 3, and 0.106460 for Test 
4. The mean reconstruction error for each model is 
displayed in Fig. 7. The biggest reconstruction error 
was reported by Test 4, followed by Test 3, Test 2, and  
Test 1, which had the lowest reconstruction errors.

Similar results are shown in Table II for the 
proposed system utilizing the NSL-KDD dataset and 
60 neurons. The suggested system obtained the 
following results from Table II for Test 4: accuracy 
= 80.91%, precision = 78.22, recall = 85.00%, and 
F1-Score of 92.50. Accuracy = 85.54%, precision = 
80.77%, recall = 91.12%, and F1-Score = 97.00% 
were also recorded for Test 3. The best sub-model, 
Test 1, outperformed all other sub-models with an 
accuracy of 96.45%, precision of 93.00%, recall of 
98.01%, and F1-Score of 98.63%. Test 2 maintained 
the second highest performing sub-model with an 
accuracy of 94.92%, precision of 91.00%, recall of 
97.45, and F1-Score of 98.01.
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Fig. 4. Loss vs epoch for train and test dataset for two hidden 
layers autoencoder.

the overall instance of the same class. A higher recall 
rate that ranges from 0 to 1 indicates a better model 
performance. Equation 6 below shows how the 
Recall is calculated. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 ……………………………………(6) (5) 

Precision is the ratio of positive instances correctly 
predicted to the ratio of all predicted samples for a 
class. Recall and Precision are always paired when 
evaluating model performance. Equation 7 shows 
how the Precision is calculated. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ……….………………………(7) (6) 

F1-score is computed by taking the harmonic mean 
of precision and recall. F1-score normally calculates 
the tradeoff between precision and recall. F1-score is 
calculated as shown in equation 8. 

F1-score =  2 ∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅…………………….(8) (7) 

IV. RESULTS AND DISCUSSION 

In terms of optimizing the hidden layers of our 
proposed system, this part covers the experimental 
design of our system. As a result, the suggested 
system is separated into four designs: Test 1 
represents a single hidden layer autoencoder, Test 2 
represents two hidden layers autoencoder, Test 3 
represents three hidden layers autoencoder, and Test 
4 represents four hidden layers autoencoder. 
 
These four models were run in two stages, phase 1 
involving 30 neurons and phase 2 including 60 
neurons. These experimental designs are trained and 
tested using the reference datasets NSL-KDD and 
CIC-IDS2017. We trained and tested these sub-
models, and the accuracy, recall, precision, and 
F1_Score outcomes are recorded. This investigation 
aims to determine how having various hidden layers 
affects performance. 
 
A.  Analyzing the performance of our proposed system 
Four independent sub-experiments—Test 1, Test 2, 
Test 3, and Test 4—were set up as separate models 
to examine the performance of the autoencoder based 
on the number of hidden layers. NSL-KDD and 
CICIDS2017 preprocessed datasets were used to 
train the models. Our investigation maintained a 
consistent bottleneck size of X, X+2, X+4, and X+6, 

where X = 3 for the 30 and 60 neurons. This is 
because [1] conducted a similar study and found that 
the bottleneck impacts the model performance. In 
addition, our study kept the total number of neurons 
for each of the four sub-models at 30. Below, we 
present the results depicting the loss versus the 
training and testing data for each deployed model. 
Figures 4, 5, and 6 collectively illustrate a consistent 
reduction in the training and test data error rate 
across all models. This decline persists until the 
models have completed the learning process. 

a  
Fig 4: Loss vs epoch for train and test dataset for 

two hidden layers autoencoder 

 
Fig 5: Loss vs epoch for train and test dataset for 

three hidden layers autoencoder 
Fig. 5. Loss vs epoch for train and test dataset for three 
hidden layers autoencoder.

Fig. 6. Loss vs epoch for train and test dataset for four 
hidden layers autoencoder.

the overall instance of the same class. A higher recall 
rate that ranges from 0 to 1 indicates a better model 
performance. Equation 6 below shows how the 
Recall is calculated. 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 ……………………………………(6) (5) 

Precision is the ratio of positive instances correctly 
predicted to the ratio of all predicted samples for a 
class. Recall and Precision are always paired when 
evaluating model performance. Equation 7 shows 
how the Precision is calculated. 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 ……….………………………(7) (6) 

F1-score is computed by taking the harmonic mean 
of precision and recall. F1-score normally calculates 
the tradeoff between precision and recall. F1-score is 
calculated as shown in equation 8. 

F1-score =  2 ∗ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅…………………….(8) (7) 

IV. RESULTS AND DISCUSSION 

In terms of optimizing the hidden layers of our 
proposed system, this part covers the experimental 
design of our system. As a result, the suggested 
system is separated into four designs: Test 1 
represents a single hidden layer autoencoder, Test 2 
represents two hidden layers autoencoder, Test 3 
represents three hidden layers autoencoder, and Test 
4 represents four hidden layers autoencoder. 
 
These four models were run in two stages, phase 1 
involving 30 neurons and phase 2 including 60 
neurons. These experimental designs are trained and 
tested using the reference datasets NSL-KDD and 
CIC-IDS2017. We trained and tested these sub-
models, and the accuracy, recall, precision, and 
F1_Score outcomes are recorded. This investigation 
aims to determine how having various hidden layers 
affects performance. 
 
A.  Analyzing the performance of our proposed system 
Four independent sub-experiments—Test 1, Test 2, 
Test 3, and Test 4—were set up as separate models 
to examine the performance of the autoencoder based 
on the number of hidden layers. NSL-KDD and 
CICIDS2017 preprocessed datasets were used to 
train the models. Our investigation maintained a 
consistent bottleneck size of X, X+2, X+4, and X+6, 

where X = 3 for the 30 and 60 neurons. This is 
because [1] conducted a similar study and found that 
the bottleneck impacts the model performance. In 
addition, our study kept the total number of neurons 
for each of the four sub-models at 30. Below, we 
present the results depicting the loss versus the 
training and testing data for each deployed model. 
Figures 4, 5, and 6 collectively illustrate a consistent 
reduction in the training and test data error rate 
across all models. This decline persists until the 
models have completed the learning process. 

a  
Fig 4: Loss vs epoch for train and test dataset for 

two hidden layers autoencoder 

 
Fig 5: Loss vs epoch for train and test dataset for 

three hidden layers autoencoder 
fuy

 
Fig 6: Loss vs epoch for train and test dataset for 

four hidden layers autoencoder 

B.  Results from NSL-KDD for 30 and 60 neurons 
The output of the suggested system using the NSL-
KDD dataset is shown in this section. The 
configuration was tested once, and the outcomes 
were recorded because this study aims to determine 
the model's performance based on various 
autoencoder hidden layers. The accuracy, precision, 
recall, and F1-Score of each model were noted 
throughout training and testing. The effectiveness of 
the suggested system based on the 30 neurons is 
displayed in Table 1 below. According to Table 1, 
Test 4, the model's performance was as follows: 
detection accuracy = 70.00%, precision = 65.55%, 
and recall = 75.00%. Furthermore, F-Score = 89.11% 
indicates the four models in the experimental 
configuration with the poorest performance. 
Accuracy, precision, recall, and F1-Score for Test 3 
are 80.00%, 75.80%, 91.12%, and 93.33%, 
respectively. Test 2 also recorded an accuracy of 
90.36, a precision of 88.49, a recall of 95.45, and an 
F1-Score of 96.82. Test 1, the model with only 
bottleneck or one-layer autoencoder, recorded the 
best performance with an accuracy of 92.45%, 
precision of 91%, recall of 96.02%, and F1-Score of 
97.45%.  
In addition to these metrics, the mean reconstruction 
error measured throughout training and testing was 
0.104567 for Test 1, 0.104854 for Test 2, 0.104854 

for Test 3, and 0.106460 for Test 4. The mean 
reconstruction error for each model is displayed in 
Figure 7 below. The biggest reconstruction error was 
reported by Test 4, followed by Test 3, Test 2, and 
Test 1, which had the lowest reconstruction errors. 
Similar results are shown in Table 2 for the proposed 
system utilizing the NSL-KDD dataset and 60 
neurons. The suggested system obtained the 
following results from Table 2 for Test 4: accuracy = 
80.91%, precision = 78.22, recall = 85.00%, and F1-
Score of 92.50. Accuracy = 85.54%, precision = 
80.77%, recall = 91.12%, and F1-Score = 97.00% 
were also recorded for Test 3. The best sub-model, 
Test 1, outperformed all other sub-models with an 
accuracy of 96.45%, precision of 93.00%, recall of 
98.01%, and F1-Score of 98.63%. Test 2 maintained 
the second highest performing sub-model with an 
accuracy of 94.92%, precision of 91.00%, recall of 
97.45, and F1-Score of 98.01. 
 

C.  Results from CIC-IDS2017 
This section also shows the outcomes of the proposed 
system's training and testing using the CIC-IDS2017 
dataset. The various models, including Tests 1, 2, 3, 
and 4, were each run once, with the results being 
recorded. Again, the study kept the number of 
neurons at 30 as a constant. The results achieved with 
the NSL-KDD dataset were comparable to those 
observed for this dataset—however, the performance 
of the measured metrics improved in the CIC-
IDS2017. For instance, the Test 1 score increased 
slightly from 96.45 for the NSL-KDD dataset to 
97.11 for the CIC-IDS2017 dataset. The accuracy of 
Test 2 increased from 92.15 to 94.65, Test 3 from 
92.15% to 92.45%, and Test 4 improved, going from 
70.0% to 90.70%, as shown in Table 3. 

The autoencoder's performance using the CIC-
IDS2017 dataset with 60 neurons is shown in Table 
4 below. Based on the CIC-IDS2017 datasets, we 
evaluate the effect of the various layers on the 
functionality of our suggested system. We tested the 
performance of our suggested system using the sub-
models, and we noted a similar pattern to that seen in 
phases 1 and 2 of the NSL-KDD and the CIC-
IDS2017. Test 1 was the sub-model that performed 
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C. Results from CIC-IDS2017
This section also shows the outcomes of the 

proposed system's training and testing using 
the CIC-IDS2017 dataset. The various models, 
including Tests 1, 2, 3, and 4, were each run once, 
with the results being recorded. Again, the study 
kept the number of neurons at 30 as a constant. 
The results achieved with the NSL-KDD dataset 
were comparable to those observed for this dataset 
however, the performance of the measured metrics 
improved in the CIC-IDS2017. For instance, the 
Test 1 score increased slightly from 96.45 for the 
NSL-KDD dataset to 97.11 for the CIC-IDS2017 
dataset. The accuracy of Test 2 increased from 
92.15 to 94.65, Test 3 from 92.15% to 92.45%, and 
Test 4 improved, going from 70.0% to 90.70%, as 
shown in Table III.

The autoencoder's performance using the 
CIC-IDS2017 dataset with 60 neurons is shown 
in Table IV. Based on the CIC-IDS2017 datasets, 
we evaluate the effect of the various layers on the 
functionality of our suggested system. We tested 
the performance of our suggested system using 
the sub-models, and we noted a similar pattern 
to that seen in phases 1 and 2 of the NSL-KDD 
and the CIC-IDS2017. Test 1 was the sub-model 
that performed the best, and Test 4 was the one 
that performed the worst. From Test 1 to Test 4, 
the reconstruction error increases by the prior 
pattern.

Analyzing Autoencoder-Based Intrusion Detection System Performance: Impact of Hidden Layers

taBLe I
resuLts of ae usIng 30 neurons wIth nsL-Kdd dataset

Model Accuracy Precision Recall F1-Score

Test 4 70.00% 65.55 75.00% 89.11

Test 3 80.00% 75.80 91.12% 93.33

Test 2 90.36% 88.49 95.45% 96.82

Test 1 92.45% 91.00% 96.02% 97.45%

taBLe II
resuLts of ae usIng 60 neurons wIth nsL-Kdd dataset

Model Accuracy Precision Recall F1-Score

Test 4 %.80.91 78.22% 85.00% 92.50%

Test 3 85.54% 80.77% 91.12% 97.00%

Test 2 94.92.36% 90.00% 97.45% 98.01

Test 1 96.54% .93.00% 98.97% 98.63%

the best, and Test 4 was the one that performed the 
worst. From Test 1 to Test 4, the reconstruction error 
increases by the prior pattern. 

Table 1: Results of AE using 30 neurons with 
NSL-KDD dataset 

Model Accuracy Precision Recall F1-
Score 

Test 4 70.00% 65.55 75.00% 89.11 
Test 3 80.00% 75.80 91.12% 93.33 
Test 2 90.36% 88.49 95.45% 96.82 
Test 1 92.45% 91.00% 96.02% 97.45% 

 

Table 2: Results of AE using 60 neurons with 
NSL-KDD dataset 

Mode
l 

Accuracy Precisio
n 

Recall F1-
Score 

Test 4 80.91.% 78.22% 85.00
% 

92.50
% 

Test 3 85.54% 80.77% 91.12
% 

97.00
% 

Test 2 94.92.36
% 

90.00% 97.45
% 

98.01 

Test 1 96.54% 93.00%. 98.97
% 

98.63
% 

 

Table 3: The performance of AE based on the 
CIC-IDS2017 dataset for 30 neurons 

Model Accuracy Precision Recall F1-
Score 

Test 4 90.70% 84.55 86.00% 92.11 
Test 3 92.60% 89.80 82.12% 90.33 
Test 2 92.95% 82.49 93.45% 94.82 
Test 1 95.11% 94.00% 98.88% 98.85% 

 

Table 4: The performance of AE based on CIC-
IDS2017 dataset for 60 neurons 

Model Accuracy Precision Recall F1-
Score 

Test 4 95.70% 90.00% 91.00% 92.11 

Test 3 97.30% 94.40% 92.12% 90.33 
Test 2 97.95% 95.11% 93.45% 94.82 
Test 1 98.61% 97.00% 98.88% 98.15% 

 
Fig 7: Test vs mean reconstruction error  

D. Discussion 
According to the study's findings, given the same 
number of neurons, a single hidden-layer 
autoencoder performs better than a multi-layer 
autoencoder. In this work, 30 neurons, for example, 
were fed into the model for a single hidden layer 
autoencoder and the same number for the remaining 
multi-layer autoencoder layers. The single-layer 
autoencoder demonstrated excellent performance for 
every assessment parameter mentioned in this study, 
including recording the lowest reconstruction error. 
Given that single-layer autoencoders and multi-layer 
autoencoders use the same number of neurons, the 
maximum detection accuracy of 98.61% of Test 1 
suggests that a single-layer autoencoder can detect 
intrusion more effectively than a multi-layer 
autoencoder. The results also demonstrate that, with 
the same number of neurons, the model's 
performance decreases as the number of layers 
increases.  
For instance, the autoencoder with two hidden layers 
is recording the second-best performance, followed 
by the autoencoder with three hidden layers, and the 
autoencoder with four hidden layers is the least 
performing. The obtained reconstruction error 
verifies the proposed system's effectiveness.  
The result from our study suggests that lesser 
reconstruction error will lead to improved model 
performance, while higher reconstruction error will 
lead to decreased model performance. The worst 

Fig. 7. Test vs mean reconstruction error.

taBLe III
the PerforMance of ae Based on the cIc-Ids2017

dataset for 30 neurons

Model Accuracy Precision Recall F1-Score

Test 4 90.70% 84.55 86.00% 92.11

Test 3 92.60% 89.80 82.12% 90.33

Test 2 92.95% 82.49 93.45% 94.82

Test 1 95.11% 94.00% 98.88% 98.85%

taBLe Iv
the PerforMance of ae Based on cIc-Ids2017

dataset for 60 neurons

Model Accuracy Precision Recall F1-Score

Test 4 95.70% 90.00% 91.00% 92.11

Test 3 97.30% 94.40% 92.12% 90.33

Test 2 97.95% 95.11% 93.45% 94.82

Test 1 98.61% 97.00% 98.88% 98.15%
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D. Discussion
According to the study's findings, given the 

same number of neurons, a single hidden-layer 
autoencoder performs better than a multi-layer 
autoencoder. In this work, 30 neurons, for example, 
were fed into the model for a single hidden layer 
autoencoder and the same number for the 
remaining multi-layer autoencoder layers. The 
single-layer autoencoder demonstrated excellent 
performance for every assessment parameter 
mentioned in this study, including recording the 
lowest reconstruction error. Given that single-
layer autoencoders and multi-layer autoencoders 
use the same number of neurons, the maximum 
detection accuracy of 98.61% of Test 1 suggests 
that a single-layer autoencoder can detect intrusion 
more effectively than a multi-layer autoencoder. 
The results also demonstrate that, with the same 
number of neurons, the model's performance 
decreases as the number of layers increases. 

For instance, the autoencoder with two hidden 
layers is recording the second-best performance, 
followed by the autoencoder with three hidden 
layers, and the autoencoder with four hidden layers 
is the least performing. The obtained reconstruction 
error verifies the proposed system's effectiveness. 

The result from our study suggests that lesser 
reconstruction error will lead to improved model 
performance, while higher reconstruction error will 
lead to decreased model performance. The worst 
reconstruction error was achieved by Test 4, with 
Test 1 maintaining the lowest reconstruction error. 
We can, therefore, conclude with the following key 
findings:

1. The reconstruction error increases as the 
number of layers increases, given the same 
number of input neurons.

2. As reconstruction error increases, model 
performance will decline.

E. Methods comparison
A very good performance was registered when 

comparing the suggested system to another state-
of-the-art research applying autoencoder with NSL-
KDD and CIC-IDS2017 dataset. The performance of 
our suggested solution utilizing the NSL-KDD dataset 
and the CIC-IDS2017 dataset is shown in Table V.  

v. concLusIon

In summary, the outcomes of this study strongly 
indicate that a single hidden-layer autoencoder 
surpasses multi-layer counterparts when utilizing 
the same number of neurons. The single-
layer autoencoder consistently demonstrated 
remarkable performance across all evaluation 
metrics, particularly by attaining the lowest 
reconstruction error. Notably, the high detection 
accuracy of 98.6% in Test 1 further underscores 
the superiority of the single-layer autoencoder 
in intrusion detection compared to its multi-layer 
counterparts.  Furthermore, the results suggest 
that as the number of layers in the autoencoder 
increases, the model's performance declines, even 
when maintaining an identical number of neurons. 
The configuration with a single hidden layer proved 
the most effective, achieving a reconstruction error 
of 0.106460 in Test 1, thereby confirming that a 
lower reconstruction error correlates with improved 
model performance.
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taBLe v
coMParIng our ProPosed systeM wIth sIMILar studIes

Author Dataset Accuracy

[28] CIC-IDS2017 92.90%

[24] NSL-KDD 84%

[29] NSL-KDD 90.70%

[2] NSL-KDD 90.61%

[30] NSL-KDD 84.21%

Proposed system  NSL-KDD AND
CIC-IDS2017 95.11%and 98.61%
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