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Abstract
This study tackles the significant challenge of generating low-cost intrusion detection datasets for Internet 

of Things (IoT) camera devices, particularly for financially limited organizations. Traditional datasets often de-
pend on costly cameras, posing accessibility issues. Addressing this, a new dataset was developed, tailored 
for low-cost IoT devices, focusing on essential features. The research employed an Entry/Exit IoT Network at 
CKT-UTAS, Navrongo, a Ghanaian University, showcasing a feasible model for similar organizations. The study 
gathered location and other vital features from low-cost cameras and a standard dataset. Using the XGBoost 
machine learning algorithm, the effectiveness of this approach for cybersecurity enhancement was demonstrat-
ed. The implementation included a model-agnostic eXplainable AI (XAI) technique, employing Shapley Additive 
Explanations (SHAP) values to interpret the XGBoost model's predictions. This highlighted the significance of 
cost-effective features like Flow Duration, Total Forward Packets, and Total Length Forward Packet, in addi-
tion to location data. These features were crucial for intrusion detection using the new IoT dataset. Training a 
deep-learning model with only these features maintained comparable accuracy to using the full dataset, validat-
ing the practicality and efficiency of the approach in real-world scenarios.
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I. IntroductIon

Intrusion detection datasets for IoT camera 
devices have become increasingly prevalent, but 
their creation often relies on expensive and high-
end camera devices. This poses a challenge for 

financially constrained environments, such as 
African communities and organizations in remote 
regions. The proposed approach leverages on 
model-agnostic eXplainable AI (XAI) techniques 
to create a robust dataset for intrusion detection, 
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they produce often lack transparency and rationale, 
posing challenges for individuals, particularly 
users and expert-developers, in understanding 
the underlying processes [13]. Consequently, 
even expert-developed cyber defense systems 
may lack the necessary components to effectively 
counteract threats, rendering these defensive 
systems susceptible to potential data breaches [14]. 
Additionally, regular users find them challenging 
to provide clear and straightforward explanations 
when an attack occurs. To address these limitations 
in utilizing such algorithms for cybersecurity, 
eXplainable AI (XAI) has emerged as a solution to 
mitigate the black-box issue associated with these 
algorithms. XAI enables users and experts to 
understand the logical explanations and core data 
evidence behind the outcomes produced by these 
algorithms, enhancing interpretability [15]. Siganos 
et. al [25] also introduced an AI-powered IDS with 
explainability functions for the IoT. They proposed 
IDS that relies on machine learning and deep learning 
methods, using XAI to explain decision-making

Likewise, in this paper, an eXplainable AI 
strategy categorised as model-agnostic was 
adopted. Specifically, SHAP was used to interpret 
the prediction capability of the machine learning 
algorithm, XGBoost, on the IoTID20 dataset [11] 
that was modified on a low-cost budget. Through 
this, important features of these datasets can 
be noted. Organizations, researchers and other 
stakeholders interested in intrusion detection but 
are on low budgets can be confidently advised to 
mimic the procedures and devices used to collect 
such data at a low cost.

As described in [21-23], XAI techniques can be 
organized based on multiple categories with the 
possibility of some techniques fitting into more than 
one category due to overlapping characteristics. 
To enhance clarity, it would be more appropriate 
to classify XAI techniques under either ‘Model-
Specific or Model-Agnostic’ categorization 
perspective. This categorization perspective 
provides a more comprehensive understanding of 
the characteristics of an adopted XAI technique.

XAI techniques can be categorized based on 
the types of models they are applicable to, which 
are either model-specific or model-agnostic. 

albeit, considering low-cost features of the 
dataset.

 The escalating complexities of cyberattacks, 
particularly intrusion attempts, present a growing 
challenge in terms of handling and responding to 
these threats. Managing and responding to them is 
becoming increasingly difficult [1]. As indicated in 
the work of [2], traditional algorithms that rely on rule-
based, statistics-based, and signature-based security 
policies, are commonly used for intrusion detection. 
It is important to mention that all these approaches 
depend on datasets to achieve their effectiveness 
[3]. Some latest state-of-the-art intrusion detection 
datasets include ISCX_2012 [4] ADFA-LD/-WD [5], 
CIC-IDS2017 [6], CSE-CIC-IDS-2018 [7], IEC 60870-
5-104-IDD [8] and CICIoT2023 [9]. 

Nevertheless, with the proliferation of data 
transmitted over the Internet and the emergence 
of new computing paradigms like the Internet of 
Things (IoT) and Artificial Intelligence (AI), has 
led to challenges in generating features of these 
datasets. Not only is the process time-consuming, 
but also requires the use of sophisticated and 
expensive devices to collect feature values [3]. 
Data obtained from affordable devices [10] present 
inherent constraints for AI-based and IoT-based 
cybersecurity systems. Affordable devices may 
have less powerful electronic components or limited 
data collection capabilities, which can lead to lower-
quality or less comprehensive data for cybersecurity 
analysis.  Consequently, the accuracy of any system 
trained on such data may be limited or compromised. 
To overcome these limitations, the IoTID20 dataset 
was developed with a focus on utilizing inexpensive 
and readily available IoT devices for data gathering 
[11]. This dataset serves as a solution to enhance the 
accessibility and affordability of data for AI-driven 
cybersecurity applications, all while maintaining 
high levels of accuracy.

Moreover, considering the earlier discussed 
drawbacks in intrusion detection research, another 
significant challenge is the black-box nature of 
algorithms. This aspect requires more attention and 
consideration when integrating these models into 
the field of cybersecurity [12]. An essential factor 
to consider is the creation of datasets. Because 
algorithms and models operate with these black-
box characteristics, the predictions and decisions 
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Model-specific XAI techniques are tailored to 
a single model or a specific group of models. 
For instance, the Graph Neural Network (GNN) 
explainer [16] provides interpretable explanations 
for predictions made by GNN-based models on 
graph-related machine learning problems, which is 
beyond the scope of this study. This categorization 
of XAI technique is outside the scope of this study. 
In contrast, model-agnostic XAI techniques are 
designed to be compatible with any machine 
learning model in theory. This category of techniques 
is intentionally developed to work seamlessly with 
diverse number of machine learning models. The 
term “agnostic” signifies that these XAI techniques 
do not discriminate based on the specific type or 
architecture of the machine learning model in use.

These model-agnostic XAI techniques operate 
primarily by analyzing the inputs and outputs of a 
given machine learning model. They are designed 
to extract insights and explanations without needing 
to access the internal details of the model, such as 
its weight values or structural information. In other 
words, model-agnostic XAI techniques do not 
require knowledge of how the model was trained 
or its internal parameters; they focus solely on the 
inputs and outputs of the model.  A widely used 
example is the SHAP tools [17], which was chosen 
as the model-agnostic explanation tool for this 
study. Siganos et. al [25] used SHapley Additive 
exPlanations (SHAP) method is to explain decisions 
made by deep learning models.

In the current highly competitive and dynamic 
world, contemporary organizations need to operate 
efficiently and affordably to ensure their success. 
Security strategies are important in the success 
of contemporary organizations, necessitating 
measures to safeguard data integral to their business 
operations. Financially capable organizations often 
invest in the latest and more advanced IoT devices 
and security systems, even those at higher costs. 
Unfortunately, financially constrained organizations 
encounter challenges in adapting to such advanced 
security measures, limiting their competitiveness in 
data protection on IoT networks. AI-based Intrusion 
Detection Systems (IDSs) is a viable approach for 
organizations to secure their data on IoT networks. 
However, organizations in financially constrained 
environments have not effectively adopted IDSs, 

primarily due to the substantial expenses associated 
with their implementation. AI-based IDSs involves 
the use of expensive and sophisticated devices to 
generate datasets for training the AI modules. As 
datasets form the fuel for any AI-based system, the 
costs associated with their creation significantly 
contribute to the overall expenses of implementing 
AI-based IDSs. Consequently, there is a critical 
need for research aimed at reducing the costs 
related to dataset creation for training AI-based 
IDSs. Addressing this aspect is crucial in enabling 
financially constrained organizations to embrace 
advanced security technologies, enhancing their 
ability to compete effectively in safeguarding their 
data and operations.

The problem has to do with the availability of 
robust intrusion detection dataset features generated 
from low-cost IoT devices. These features need also 
to be comparably standard to datasets generated 
with expensive high-end IoT devices. The main 
objective of this research is to address this issue by 
developing an intrusion detection dataset tailored to 
the needs of a financially challenged environment. 
To achieve this main research objective, standard 
dataset was selected, wherein, the IoT devices 
used for collecting its features are low-cost devices 
and are the ones commonly used in people’s daily 
routines. This aligns with the research objective 
of addressing the challenges associated with 
financially constrained environments. By using data 
generated from affordable IoT devices, the study 
demonstrates that effective intrusion detection 
is still achievable without the need for expensive 
infrastructure or resources. A network of IoT camera 
devices was set up to automatically capture 
location features for monitoring intrusion detection. 
Compatibility test was conducted between features 
of the selected dataset and that of the automatically 
captured location features. Compatible features of 
the selected dataset were appended to location 
features to create a new IoT dataset. Finally, model-
agnostic XAI method is employed on the XGBoost 
algorithm to provide insights into which features of 
the new IoT dataset are most influential in making 
predictions of intrusion detection.

The subsequent sections of the paper are 
organized as follow: Section II discusses the 
methodology, Section III covers the experiments 
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and results, and finally, Section IV is the conclusion 
of the paper.

II. Methodology

The methodology begins by selecting a 
standardized dataset, IoTID20, which utilizes 
affordable IoT camera devices. Following pre-
processing, an IoT Network is set up within a 
university campus using low-cost camera devices 
to automatically capture two important location 
features: the locations of the camera devices 
initiating and receiving packets on the network. A 
Shapira-Wilk test is employed to identify features 
from the IoTID20 dataset that are compatible with 
these location features. Features from the IoTID20 
dataset demonstrating compatibility with the 

location features are then appended. After this, 
the dataset's feature count is reduced to create a 
new IoT intrusion detection dataset that includes 
only features captured by low-cost IoT devices. For 
intrusion prediction, an XGBoost regression model is 
implemented on the new dataset, with its parameters 
optimized through a grid search algorithm. A 
model-agnostic Explainable Artificial Intelligence 
(XAI) technique calculates SHAP values to interpret 
predictions made by the XGBoost algorithm. The 
analysis of SHAP values on the XGBoost model's 
predictions aids in identifying the contributions of 
globally significant dataset features to the overall 
predictive outcomes. Fig. 1 provides an overview of 
the methodology's processing steps, each of which 
is subsequently elaborated upon in detail.
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A. Selecting the IoTID20 Dataset
The IoTID20 dataset [11], which contains data 

pertaining to attacks on common smart home 
devices, is used. As previously highlighted, the key 
benefits of choosing this dataset are that its collected 
features match modern IoT network trends and use 
data from affordable devices such as cameras 
(e.g. the SKT NGU and the EZVIZ Wi-FI cameras), 
Wi-Fi routers, laptops, tablets, and smartphones, 
among others. This dataset has a total of 86 network 
features and 3 label features. The 3 labels of the 
features are the binary, categorical, and the sub-
categorical features. The original dataset contains 
625,784 data instances.

B. Pre-processing for Feature Selection from IoT-
ID20 Dataset

To get 620,673 data instances and 61 features, 
three processing techniques were performed as fol-
low. First 1 to 9 features were intentionally removed 
because they were mere descriptive features that 
identify devices on the network e.g. Flow ID, Source 
and Destination IPs, Source and Destination Ports, 
Protocols, Timestamps and Flow Duration. Following 
this, data cleaning was conducted to address infinity 
and missing values, performed column normalization 
on feature values, and lastly, conducted feature cor-
relation analysis. Features with a correlation coeffi-
cient of 0.70 or higher were removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the 

automatically collected two (2) location features 
which were termed as 'Location for Initiating Packets’ 
and ‘Location for Receiving Packets’. The set of 
features is denoted as 
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F. Extreme Gradient Boosting (XGBoost).
Extreme Gradient Boosting (XGBoost) evolved 

as an improved version of the Gradient Boosting 
Decision Tree (GBDT) algorithm [20]. When dealing 
with a dataset, denoted as 
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     where a1, a2, … an are the coefficients from Table A.6 of 
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set 

and (2) test statistic with a critical value Tab W from Table 
A.7 in the Appendix section of [19]. These statistics were 
then compared. If a feature’s Calc W is greater than Tab W 
(i.e. Calc W > Tab W), it indicates a regular distribution of 
occurrences concerning the location features, ranking it as 
highly compatible with the dataset's features. 

F. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) evolved as an 
improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
K

k=1
 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
enhance the performance of these additive functions (trees) 
to yield accurate predictions for the given dataset. 

To reduce errors within the ensemble trees, the objective 
function of XGBoost is shown in equation (4): 

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9) 

where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
to equation 10: 

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10) 

In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
equations (11) to (15)): 

1. Local Accuracy (Efficiency Property)  

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11) 

Equation 11 can be expanded to equation (12) as: 

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12) 

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,  

2. Missingness Property: 

xj
i = 0 ⇒ ϕj = 0 (13) 

The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
its value is unknown or undefined), it should be assigned 

 where 
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 to predict the output values 
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     where a1, a2, … an are the coefficients from Table A.6 of 
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set 

and (2) test statistic with a critical value Tab W from Table 
A.7 in the Appendix section of [19]. These statistics were 
then compared. If a feature’s Calc W is greater than Tab W 
(i.e. Calc W > Tab W), it indicates a regular distribution of 
occurrences concerning the location features, ranking it as 
highly compatible with the dataset's features. 

F. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) evolved as an 
improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
K

k=1
 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
enhance the performance of these additive functions (trees) 
to yield accurate predictions for the given dataset. 

To reduce errors within the ensemble trees, the objective 
function of XGBoost is shown in equation (4): 

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9) 

where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
to equation 10: 

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10) 

In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
equations (11) to (15)): 

1. Local Accuracy (Efficiency Property)  

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11) 

Equation 11 can be expanded to equation (12) as: 

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12) 

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,  

2. Missingness Property: 

xj
i = 0 ⇒ ϕj = 0 (13) 

The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
its value is unknown or undefined), it should be assigned 

as 
illustrated in equation (3):

E. Feature Ranking for Compatibility between 
IoTID20 and Location Features

Then, feature ranking was performed to extract 
from the retained 61 features of the IoTID20 dataset, 
those that are very compatible to the automatically 
collected two location features. Feature Ranking in 
increasing order is computed with a Shapira-Wilk 
test statistic. Initial data is ranked from the feature 
set:  
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processing techniques were performed as follow. First 1 to 9 
features were intentionally removed because they were mere 
descriptive features that identify devices on the network e.g. 
Flow ID, Source and Destination IPs, Source and Destination 
Ports, Protocols, Timestamps and Flow Duration. Following 
this, data cleaning was conducted to address infinity and 
missing values, performed column normalization on feature 
values, and lastly, conducted feature correlation analysis. 
Features with a correlation coefficient of 0.70 or higher were 
removed from the dataset. 

C. The Location Dataset Feature 
The retained 61 features were appended to the automatically 

collected two (2) location features which were termed as 
'Location for Initiating Packets’ and ‘Location for Receiving 
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with 
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset, 
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data 
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number 
of dataset features after appending. 

D. Data Collection for the Location Features 
The study hypothesizes that the location of an IoT camera 

device is also an important feature that could be used to monitor 
attacks for intrusion detection in an IoT network. Any packet 
needs to be initiated and received by the IoT camera within this 
location. The IPVM Design Calculator (Version 3.1)1 was used 
to design geographical plan for our IoT camera devices that are 
to be set up to monitor entry and exit of the university campus. 
The location of the CKT-UTAS University was searched, 
navigated, and set to the position coordinates 10.866 and –1.078 
(in decimal degrees format). See Figure 1. 

After locations are set, a simulation was made where 7 
cameras were added to the Campus Entry/Exit IoT network and 
placed at vantage entrance points of the university. Each camera 
with corner of coverage cone is also shown in Figure 2. 

Figure 3 shows a preview of the viewing angle and area of 
one camera. 

 

 
(a) boundary without fill 

 
1https://calculator.ipvm.com/  

 
(b) boundary with fill (translucent white) 
Fig. 1. Location setup for the University campus. 

 
Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS. 

 
Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to 
show the camera view of CKT-UTAS entrance . 

E. Feature Ranking for Compatibility between IoTID20 and 
Location Features 

Then, feature ranking was performed to extract from the 
retained 61 features of the IoTID20 dataset, those that are very 
compatible to the automatically collected two location features. 
Feature Ranking in increasing order is computed with a 
Shapira-Wilk test statistic. Initial data is ranked from the feature 
set:  

F = {x1, x2, x3, …x63}, n = 63 (1) 

and then equation (2) is calculated as: 

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)  

(2) 

 

 

and then equation (2) is calculated as:
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features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number 
of dataset features after appending. 

D. Data Collection for the Location Features 
The study hypothesizes that the location of an IoT camera 

device is also an important feature that could be used to monitor 
attacks for intrusion detection in an IoT network. Any packet 
needs to be initiated and received by the IoT camera within this 
location. The IPVM Design Calculator (Version 3.1)1 was used 
to design geographical plan for our IoT camera devices that are 
to be set up to monitor entry and exit of the university campus. 
The location of the CKT-UTAS University was searched, 
navigated, and set to the position coordinates 10.866 and –1.078 
(in decimal degrees format). See Figure 1. 

After locations are set, a simulation was made where 7 
cameras were added to the Campus Entry/Exit IoT network and 
placed at vantage entrance points of the university. Each camera 
with corner of coverage cone is also shown in Figure 2. 

Figure 3 shows a preview of the viewing angle and area of 
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Fig. 1. Location setup for the University campus. 

 
Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS. 

 
Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to 
show the camera view of CKT-UTAS entrance . 

E. Feature Ranking for Compatibility between IoTID20 and 
Location Features 

Then, feature ranking was performed to extract from the 
retained 61 features of the IoTID20 dataset, those that are very 
compatible to the automatically collected two location features. 
Feature Ranking in increasing order is computed with a 
Shapira-Wilk test statistic. Initial data is ranked from the feature 
set:  

F = {x1, x2, x3, …x63}, n = 63 (1) 

and then equation (2) is calculated as: 

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)  

(2) 

 

 

    where a1,a2,… an are the coefficients from Table 
A.6 of [19]. Test statistic computes the equation 
(1) with Calc W= 
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     where a1, a2, … an are the coefficients from Table A.6 of 
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set 

and (2) test statistic with a critical value Tab W from Table 
A.7 in the Appendix section of [19]. These statistics were 
then compared. If a feature’s Calc W is greater than Tab W 
(i.e. Calc W > Tab W), it indicates a regular distribution of 
occurrences concerning the location features, ranking it as 
highly compatible with the dataset's features. 

F. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) evolved as an 
improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
K

k=1
 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
enhance the performance of these additive functions (trees) 
to yield accurate predictions for the given dataset. 

To reduce errors within the ensemble trees, the objective 
function of XGBoost is shown in equation (4): 

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9) 

where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
to equation 10: 

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10) 

In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
equations (11) to (15)): 

1. Local Accuracy (Efficiency Property)  

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11) 

Equation 11 can be expanded to equation (12) as: 

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12) 

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,  

2. Missingness Property: 

xj
i = 0 ⇒ ϕj = 0 (13) 

The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
its value is unknown or undefined), it should be assigned 

 , where s is the standard 
deviation of the feature set and (2) test statistic with 
a critical value Tab W from Table A.7 in the Appendix 
section of [19]. These statistics were then compared. 
If a feature’s Calc W is greater than Tab W (i.e. 
Calc W>Tab W), it indicates a regular distribution of 
occurrences concerning the location features, ranking 
it as highly compatible with the dataset's features.
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processing techniques were performed as follow. First 1 to 9 
features were intentionally removed because they were mere 
descriptive features that identify devices on the network e.g. 
Flow ID, Source and Destination IPs, Source and Destination 
Ports, Protocols, Timestamps and Flow Duration. Following 
this, data cleaning was conducted to address infinity and 
missing values, performed column normalization on feature 
values, and lastly, conducted feature correlation analysis. 
Features with a correlation coefficient of 0.70 or higher were 
removed from the dataset. 

C. The Location Dataset Feature 
The retained 61 features were appended to the automatically 

collected two (2) location features which were termed as 
'Location for Initiating Packets’ and ‘Location for Receiving 
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with 
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset, 
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data 
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number 
of dataset features after appending. 

D. Data Collection for the Location Features 
The study hypothesizes that the location of an IoT camera 

device is also an important feature that could be used to monitor 
attacks for intrusion detection in an IoT network. Any packet 
needs to be initiated and received by the IoT camera within this 
location. The IPVM Design Calculator (Version 3.1)1 was used 
to design geographical plan for our IoT camera devices that are 
to be set up to monitor entry and exit of the university campus. 
The location of the CKT-UTAS University was searched, 
navigated, and set to the position coordinates 10.866 and –1.078 
(in decimal degrees format). See Figure 1. 

After locations are set, a simulation was made where 7 
cameras were added to the Campus Entry/Exit IoT network and 
placed at vantage entrance points of the university. Each camera 
with corner of coverage cone is also shown in Figure 2. 

Figure 3 shows a preview of the viewing angle and area of 
one camera. 

 

 
(a) boundary without fill 

 
1https://calculator.ipvm.com/  

 
(b) boundary with fill (translucent white) 
Fig. 1. Location setup for the University campus. 

 
Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS. 

 
Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to 
show the camera view of CKT-UTAS entrance . 

E. Feature Ranking for Compatibility between IoTID20 and 
Location Features 

Then, feature ranking was performed to extract from the 
retained 61 features of the IoTID20 dataset, those that are very 
compatible to the automatically collected two location features. 
Feature Ranking in increasing order is computed with a 
Shapira-Wilk test statistic. Initial data is ranked from the feature 
set:  

F = {x1, x2, x3, …x63}, n = 63 (1) 

and then equation (2) is calculated as: 

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)  

(2) 
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(b) boundary with fill (translucent white) 
Fig. 1. Location setup for the University campus. 
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E. Feature Ranking for Compatibility between IoTID20 and 
Location Features 

Then, feature ranking was performed to extract from the 
retained 61 features of the IoTID20 dataset, those that are very 
compatible to the automatically collected two location features. 
Feature Ranking in increasing order is computed with a 
Shapira-Wilk test statistic. Initial data is ranked from the feature 
set:  

F = {x1, x2, x3, …x63}, n = 63 (1) 

and then equation (2) is calculated as: 

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)  

(2) 

 

 

Fig. 3. Camera positions simulated on the IoT network of 
CKT-UTAS.

Fig. 4. Previewing the CCTV camera device placed exactly at 
the entrance to show the camera view of CKT-UTAS entrance.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset
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     where a1, a2, … an are the coefficients from Table A.6 of 
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set 

and (2) test statistic with a critical value Tab W from Table 
A.7 in the Appendix section of [19]. These statistics were 
then compared. If a feature’s Calc W is greater than Tab W 
(i.e. Calc W > Tab W), it indicates a regular distribution of 
occurrences concerning the location features, ranking it as 
highly compatible with the dataset's features. 

F. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) evolved as an 
improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
K

k=1
 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
enhance the performance of these additive functions (trees) 
to yield accurate predictions for the given dataset. 

To reduce errors within the ensemble trees, the objective 
function of XGBoost is shown in equation (4): 

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9) 

where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
to equation 10: 

g(x′) = ϕ0 + ∑ ϕj
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In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
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The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
its value is unknown or undefined), it should be assigned 
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(i.e. Calc W > Tab W), it indicates a regular distribution of 
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improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
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 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
enhance the performance of these additive functions (trees) 
to yield accurate predictions for the given dataset. 
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wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 
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where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
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g(x′) = ϕ0 + ∑ ϕj
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In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
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f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11) 

Equation 11 can be expanded to equation (12) as: 

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12) 

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,  

2. Missingness Property: 

xj
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The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
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To reduce errors within the ensemble trees, the 
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(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
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where g is the explanation function for XGBoost model’s 
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all data features as the maximum coalition size; ϕj ∈ ℝ are 
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They specify each feature's contribution to the prediction. 
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SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 
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where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
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In their paper [17], SHAP outlines the following three 
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The Missingness property of SHAP ensures fairness in 
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property states that when a feature is missing (meaning 
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learning models. They are calculated using the 
game theory concept called Shapley values. With 
the values, the average marginal contribution of 
each feature to the model’s prediction can be 
measured [18]. 

A key reason for choosing SHAP for this research 
is TreeSHAP, designed for efficient Shapley value 
estimation in tree models [17] like XGBoost. 
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equation (9):
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as illustrated in equation (3): 
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estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
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and (2) test statistic with a critical value Tab W from Table 
A.7 in the Appendix section of [19]. These statistics were 
then compared. If a feature’s Calc W is greater than Tab W 
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improved version of the Gradient Boosting Decision Tree 
(GBDT) algorithm [20]. When dealing with a dataset, 
denoted as D = {xi, yi}, where D consists of n examples and 
m features, a tree ensemble model incorporates K additive 
functions, denoted as fk ∈ ℱ to predict the output values ŷi 
as illustrated in equation (3): 

ŷi = ∑ fk(xi)
K

k=1
 (3) 

In this equation, each fk represents an individual decision 
tree within the ensemble, and they work collectively to 
predict the output values based on the input features from 
the dataset D. The objective of XGBoost is to iteratively 
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To reduce errors within the ensemble trees, the objective 
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(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
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models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
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To calculate the Shapley values ϕ, the formula simplifies 
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In their paper [17], SHAP outlines the following three 
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as illustrated in equation (3): 
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to yield accurate predictions for the given dataset. 

To reduce errors within the ensemble trees, the objective 
function of XGBoost is shown in equation (4): 

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4) 

where the penalizing term Ω is computed using equation (5) 
as follows: 

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5) 

The loss objective function can be expanded as shown in 
equation (6): 

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6) 

where an optimal weight of each leaf j, and the 
corresponding optimal error/loss value  ℒ̂(t) that measure 
the quality of a tree structure q as is finally computed using 
equation (7) and (8) as follows: 

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7) 

ℒ̂(t)(q) = ∑
(∑ giiϵIj )

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8) 

G. SHapley Additive exPlanations (SHAP) 

SHAP [17] explains the output of machine learning 
models. They are calculated using the game theory concept 
called Shapley values. With the values, the average 
marginal contribution of each feature to the model’s 
prediction can be measured [18].  

A key reason for choosing SHAP for this research is 
TreeSHAP, designed for efficient Shapley value estimation 
in tree models [17] like XGBoost. SHAP provides a 
structured framework to explain predictions, enhancing 
model understanding. SHAP explains model’s predictions 
using equation (9): 

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9) 

where g is the explanation function for XGBoost model’s 
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates 
all data features as the maximum coalition size; ϕj ∈ ℝ are 
estimated Shapley values that denote j feature attribution. 
They specify each feature's contribution to the prediction. 

To calculate the Shapley values ϕ, the formula simplifies 
to equation 10: 

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10) 

In their paper [17], SHAP outlines the following three 
properties of ϕ and its related expressions (as shown from 
equations (11) to (15)): 

1. Local Accuracy (Efficiency Property)  

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11) 

Equation 11 can be expanded to equation (12) as: 

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12) 

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,  

2. Missingness Property: 

xj
i = 0 ⇒ ϕj = 0 (13) 

The Missingness property of SHAP ensures fairness in 
assigning Shapley values to features in machine learning 
models, especially when some features are missing. This 
property states that when a feature is missing (meaning 
its value is unknown or undefined), it should be assigned 
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The Missingness property of SHAP ensures 
fairness in assigning Shapley values to features in 
machine learning models, especially when some 
features are missing. This property states that when 
a feature is missing (meaning its value is unknown 
or undefined), it should be assigned a Shapley 
value of 0.

3. Consistency
The Consistency property of SHAP is an 

important attribute that ensures the fairness and 
reliability of feature attributions in machine learning 
models. To understand this property, let us first 
express the Consistency property as shown in 
equation (14).
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3. Consistency 
The Consistency property of SHAP is an important 

attribute that ensures the fairness and reliability of feature 
attributions in machine learning models. To understand this 
property, let us first express the Consistency property as 
shown in equation (14). 

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14) 

The Consistency property essentially states that for any 
two models, f̂x(z′)  and f̂x(zj′), if the change in the 

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or 

equal to the change in prediction for the original model 
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M, 
then Equation (15) holds true. 

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15) 

Equation (15) shows that, given these conditions, the 
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified 

model (�̂�𝑓′) is greater than or equal to the Shapley value 
for the same feature in the original model (𝑓𝑓). Consistency 
property ensures that if a machine learning model is 
changed in a way that increases or maintains the impact 
of a particular feature (regardless of what happens to 
other features), then the Shapley value attributed to that 
feature also increases or stays the same. 

III. EXPERIMENTS AND RESULTS 

The ‘shap’ Python Package was used. The package 
provides a set of tools and functions to compute and 
interpret SHAP values for different machine learning 
models. The ‘shap’ package is designed to be compatible 
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to 
explain predictions made by tree-based models created 
using ‘scikit-learn’. The XGBoost algorithm was used as a 
tree-based model with ‘scikit-learn’. The ‘shap’ package 
was in conjunction with ‘scikit-learn’ package’s tree 
boosting framework, the XGBoost. 

A. Compatibility test between the IoTID20 Dataset and the 
Location Features 

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20 
of the 61 features ranked high in compatibility with the location 
features, with a value greater than 0.50. 

 
Fig. 4. Feature Ranking with Shapiro-Wilk test 

B. XGBoost regression 
1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 

2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that 
the XGBoost regression model outperformed the multiple 
regression model in both training and testing, with the average 
R-squared values being above 80%. In addition, the XGBoost 
model resulted in more consistent values and smaller MSE, 
RMSE and MAE values, compared to the multiple regression 
model (see Table II). 

C. SHAP Results 
We use TreeSHAP estimation method to explain individual 

predictions, since XGBoost algorithm creates a sequential 
ensemble of tree models. This helps in extracting knowledge 
from the IoTID20 dataset using the SHAP method. The results 
will be in different domains interpreting XGBoost model 
using the SHAP method, as shown in Figure 5. 

 
TABLE I 

AVERAGE VALIDATION METRICS 
Regression Model training set test set 

MSE RMSE MAE R-squared MSE RMSE MAE R-squared 
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962 
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684 
 

The Consistency property essentially states that 
for any two models, 
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1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
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2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
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the XGBoost regression model outperformed the multiple 
regression model in both training and testing, with the average 
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B. XGBoost regression 
1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 

2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that 
the XGBoost regression model outperformed the multiple 
regression model in both training and testing, with the average 
R-squared values being above 80%. In addition, the XGBoost 
model resulted in more consistent values and smaller MSE, 
RMSE and MAE values, compared to the multiple regression 
model (see Table II). 

C. SHAP Results 
We use TreeSHAP estimation method to explain individual 

predictions, since XGBoost algorithm creates a sequential 
ensemble of tree models. This helps in extracting knowledge 
from the IoTID20 dataset using the SHAP method. The results 
will be in different domains interpreting XGBoost model 
using the SHAP method, as shown in Figure 5. 
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B. XGBoost regression 
1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 

2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that 
the XGBoost regression model outperformed the multiple 
regression model in both training and testing, with the average 
R-squared values being above 80%. In addition, the XGBoost 
model resulted in more consistent values and smaller MSE, 
RMSE and MAE values, compared to the multiple regression 
model (see Table II). 

C. SHAP Results 
We use TreeSHAP estimation method to explain individual 

predictions, since XGBoost algorithm creates a sequential 
ensemble of tree models. This helps in extracting knowledge 
from the IoTID20 dataset using the SHAP method. The results 
will be in different domains interpreting XGBoost model 
using the SHAP method, as shown in Figure 5. 
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B. XGBoost regression 
1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 

2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that 
the XGBoost regression model outperformed the multiple 
regression model in both training and testing, with the average 
R-squared values being above 80%. In addition, the XGBoost 
model resulted in more consistent values and smaller MSE, 
RMSE and MAE values, compared to the multiple regression 
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C. SHAP Results 
We use TreeSHAP estimation method to explain individual 

predictions, since XGBoost algorithm creates a sequential 
ensemble of tree models. This helps in extracting knowledge 
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1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 

2) Model validation  
For validating the chosen model, the developed model is used 

to verify the performance of the model on the independent test 
set from the dataset feature as compared to one other popular 
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that 
the XGBoost regression model outperformed the multiple 
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machine learning model is changed in a way that 
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2) Model validation 
For validating the chosen model, the developed 

model is used to verify the performance of the 
model on the independent test set from the 
dataset feature as compared to one other popular 
regression model, i.e. the multiple regression 
model. The R-squared score was utilized for this 
verification and found that the XGBoost regression 
model outperformed the multiple regression model 
in both training and testing, with the average 
R-squared values being above 80%. In addition, 
the XGBoost model resulted in more consistent 
values and smaller MSE, RMSE and MAE values, 
compared to the multiple regression model (see 
Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain 

individual predictions, since XGBoost algorithm 
creates a sequential ensemble of tree models. This 
helps in extracting knowledge from the IoTID20 
dataset using the SHAP method. The results will 
be in different domains interpreting XGBoost model 
using the SHAP method, as shown in Fig. 6.

D. SHAP Feature Importance
The SHAP feature importance plot, shown 

in Fig. 7, provides insights into which features 
are most influential in making predictions using 
the XGBoost algorithm for intrusion detection. 
It helps in identifying which aspects of the input 
data have the greatest impact on the model's 
decision-making process. Fig. 7 reveals that three 
features—Flow Duration, Total Forward Packets, 
and Total Length Forward Packet—stand out as 
the most globally important features. This means 
that these three features play a significant role in 
the model's ability to detect intrusions across the 
entire dataset. Fig. 5. Feature Ranking with Shapiro-Wilk test.
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learn’, which means that SHAP could easily be applied to 
explain predictions made by tree-based models created 
using ‘scikit-learn’. The XGBoost algorithm was used as a 
tree-based model with ‘scikit-learn’. The ‘shap’ package 
was in conjunction with ‘scikit-learn’ package’s tree 
boosting framework, the XGBoost. 

A. Compatibility test between the IoTID20 Dataset and the 
Location Features 

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20 
of the 61 features ranked high in compatibility with the location 
features, with a value greater than 0.50. 

 
Fig. 4. Feature Ranking with Shapiro-Wilk test 

B. XGBoost regression 
1) Model development 

The input data features were divided into 80-20 training and 
testing subsets. Five-folds cross validation was applied to train 
and evaluate the model. The XGBoost parameters were 
optimized using a simple grid search algorithm [21] to select 
the optimal parameters in Table I. 
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AVERAGE VALIDATION METRICS 
Regression Model training set test set 

MSE RMSE MAE R-squared MSE RMSE MAE R-squared 
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962 
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684 
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taBle II
chosen xgBoost paraMeters after sIMple grId search

Parameters Values Selected Optimal value

Learning rate 0.1 ,0.01 0.01

Max tree depth 65 ,50 ,47 ,30 ,12 50

Min feature weights 12 ,8 ,6 ,4 ,1 12

Fraction of random samples for each tree 0.7 ,0.5 0.5

Subsample ratio of columns when constructing each tree 0.7 ,0.5 0.5

Number of trees to fit 1000 ,500 ,250 ,100 1000

Fig. 7. SHAP Feature Importance.

Gyamfi et al.

Fig. 6. Pipeline for interpreting XGBoost model using the SHAP method.
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TABLE II 
CHOSEN XGBOOST PARAMETERS AFTER SIMPLE GRID SEARCH 

Parameters Values Selected 
Optimal value 

Learning rate 0.01, 0.1 0.01 

Max tree depth 12, 30, 47, 
50, 65 50 

Min feature weights 1, 4, 6, 8, 12 12 

Fraction of random samples for each 
tree 0.5, 0.7 0.5 

Subsample ratio of columns when 
constructing each tree 0.5, 0.7 0.5 

Number of trees to fit 100, 250, 
500, 1000 1000 

D. SHAP Feature Importance 
The SHAP feature importance plot, shown in Figure 6, 

provides insights into which features are most influential in 
making predictions using the XGBoost algorithm for 
intrusion detection. It helps in identifying which aspects of 
the input data have the greatest impact on the model's 
decision-making process. The Figure reveals that three 
features—Flow Duration, Total Forward Packets, and Total 
Length Forward Packet—stand out as the most globally 
important features. This means that these three features play 
a significant role in the model's ability to detect intrusions 
across the entire dataset.  

1) SHAP Summary Plot 
Looking at Figure 7, focusing on the Flow Duration feature 

of Figure 7, it becomes evident that high values of this feature 
are associated with intrusion detection. In other words, when 
network flows have long durations, it may be indicative of 
intrusion events. Additionally, it is noteworthy that data 
instances with a high total number of forward packets 
(Tot_Fwd_Pkts) values are also considered as an important 

feature for distinguishing intrusion events 
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1) SHAP Summary Plot
Focusing on the Flow Duration feature of Fig. 8, 

it becomes evident that high values of this feature 
are associated with intrusion detection. In other 
words, when network flows have long durations, it 
may be indicative of intrusion events. Additionally, 
it is noteworthy that data instances with a high total 
number of forward packets (Tot_Fwd_Pkts) values 
are also considered as an important feature for 
distinguishing intrusion events.

2) SHAP Dependence Plot
SHAP dependence plot in Fig. 9 confirms that 

a feature like Total Forward Packets have SHAP 
values of nearly -1.74 for the intrusion detection are 
extremely negative.

3) SHAP Force Plot
The force plot offers a visual representation of 

the contribution of individual feature to the XGBoost 
prediction. The values ranging from -0.0257 to 
0.0716 represent the magnitude of the entire feature 
contribution to the final XGBoost prediction.

The plot has two force bars, one pink and one 
blue. The pink bar is labelled “higher” and the blue 
bar is labelled “lower”. These bars represent the 
positive and negative contributions of the features 
towards the prediction. The length of each bar 
indicates the magnitude of the feature’s effect. In Fig. 
10, it appears that certain features (“such as ‘Pkt_len_
Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are pushing 
the XGBoost model’s output higher (pink bar) when 
combined with the collected location features, while 
others (such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_
Scan-Port’) are pushing the output lower (blue bar).

E. Comparison with dataset created using high-end 
cameras

The effectiveness of the newly created dataset 
built from low-cost features is compared to that 

of an original dataset lacking such specifications. 
The newly created dataset is created through a 
methodology that retains approximately 65% of the 
original dataset's features, focusing solely on low-
cost features. Importantly, experiment is conducted 
to verify if this reduction in features streamlined 
to emphasize low-cost features, and does not 
compromise the accuracy of the machine learning 
model and still preserves the essential details of the 
dataset. 

The experiment is executed on a desktop PC 
equipped with an AMD Ryzen 7 3700X CPU with 
a Base Clock of 3.60 GHz, a 32 GB of RAM, and 
an RTX 3060 GPU with 12GB GDDR6 VRAM. The 
software utilized comprises open-source libraries 
including Python, PyTorch, and scikit-learn.> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
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The procedural steps outlined in Figure 1 for the proposed 
approach are entirely implemented in Python, encompassing 
tasks such as Dataset preparation, Data collection, Features 
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular 
boxes in Figure 1. While the primary objective of the proposed 
method is to generate a new dataset from existing ones, where 
the new dataset selectively incorporates features compatible 
with location features obtained from low-cost devices, it is 
imperative to validate that the machine learning model's 
performance on the new dataset remains unaffected.  

To achieve this, a basic deep-learning model is instantiated 
and trained twice. In the first instance, the model undergoes 
training with the IoTID20 dataset, utilizing all its original 

features. This model is referred to as the DEFAULT dataset 
model. Subsequently, in the second instance, the model is 
trained on the same dataset, but with features selected using our 
proposed methodology’s workflow, wherein only a specific 
number of features are chosen to create the new dataset. This is 
termed as the NEW dataset model.  

Figure 11 presents the deep-learning model developed, 
which is built on the convolutional neural network (CNN) 
framework proposed in [24]. The model processes the packet of 
an intrusion instance into byte-level data, passing them through 
an embedding layer, a convolution layer, a max-pooling layer, 
a flatten layer, and finally, a fully-connected layer. By assessing 
the correlation between each byte in the packet, the model 
determines whether the intrusion instance classifies as a true 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

 
Fig. 7. Summary plots 

2) SHAP Dependence Plot 
SHAP dependence plot in Figure 8 confirms that a feature 

like Total Forward Packets have SHAP values of nearly -
1.74 for the intrusion detection are extremely negative. 

 
Fig. 8. SHAP Dependence Plot 

3) SHAP Force Plot 
The force plot offers a visual representation of the 

contribution of individual feature to the XGBoost prediction. 
The values ranging from -0.0257 to 0.0716 represent the 
magnitude of the entire feature contribution to the final 
XGBoost prediction. 

The plot has two force bars, one pink and one blue. The 
pink bar is labelled “higher” and the blue bar is labelled 
“lower”. These bars represent the positive and negative 
contributions of the features towards the prediction. The 
length of each bar indicates the magnitude of the feature’s 
effect. In Figure 9, it appears that certain features (“such as 
‘Pkt_len_Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are 
pushing the XGBoost model’s output higher (pink bar) when 
combined with the collected location features, while others 
(such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_Scan-Port’) 
are pushing the output lower (blue bar). 

E. Comparison with dataset created using high-end cameras 
The effectiveness of the newly created dataset built from 

low-cost features is compared to that of an original dataset 
lacking such specifications. The newly created dataset is 
created through a methodology that retains approximately 65% 
of the original dataset's features, focusing solely on low-cost 
features. Importantly, experiment is conducted to verify if this 
reduction in features streamlined to emphasize low-cost 
features, and does not compromise the accuracy of the machine 
learning model and still preserves the essential details of the 
dataset  

The experiment is executed on a desktop PC equipped with 
an AMD Ryzen 7 3700X CPU with a Base Clock of 3.60 GHz, 
a 32 GB of RAM, and an RTX 3060 GPU with 12GB GDDR6 
VRAM. The software utilized comprises open-source libraries 
including Python, PyTorch, and scikit-learn. 

 

 
Fig. 9. SHAP Force Plot 

The procedural steps outlined in Figure 1 for the proposed 
approach are entirely implemented in Python, encompassing 
tasks such as Dataset preparation, Data collection, Features 
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular 
boxes in Figure 1. While the primary objective of the proposed 
method is to generate a new dataset from existing ones, where 
the new dataset selectively incorporates features compatible 
with location features obtained from low-cost devices, it is 
imperative to validate that the machine learning model's 
performance on the new dataset remains unaffected.  

To achieve this, a basic deep-learning model is instantiated 
and trained twice. In the first instance, the model undergoes 
training with the IoTID20 dataset, utilizing all its original 

features. This model is referred to as the DEFAULT dataset 
model. Subsequently, in the second instance, the model is 
trained on the same dataset, but with features selected using our 
proposed methodology’s workflow, wherein only a specific 
number of features are chosen to create the new dataset. This is 
termed as the NEW dataset model.  

Figure 11 presents the deep-learning model developed, 
which is built on the convolutional neural network (CNN) 
framework proposed in [24]. The model processes the packet of 
an intrusion instance into byte-level data, passing them through 
an embedding layer, a convolution layer, a max-pooling layer, 
a flatten layer, and finally, a fully-connected layer. By assessing 
the correlation between each byte in the packet, the model 
determines whether the intrusion instance classifies as a true 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

8 

 
Fig. 7. Summary plots 

2) SHAP Dependence Plot 
SHAP dependence plot in Figure 8 confirms that a feature 

like Total Forward Packets have SHAP values of nearly -
1.74 for the intrusion detection are extremely negative. 

 
Fig. 8. SHAP Dependence Plot 

3) SHAP Force Plot 
The force plot offers a visual representation of the 

contribution of individual feature to the XGBoost prediction. 
The values ranging from -0.0257 to 0.0716 represent the 
magnitude of the entire feature contribution to the final 
XGBoost prediction. 

The plot has two force bars, one pink and one blue. The 
pink bar is labelled “higher” and the blue bar is labelled 
“lower”. These bars represent the positive and negative 
contributions of the features towards the prediction. The 
length of each bar indicates the magnitude of the feature’s 
effect. In Figure 9, it appears that certain features (“such as 
‘Pkt_len_Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are 
pushing the XGBoost model’s output higher (pink bar) when 
combined with the collected location features, while others 
(such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_Scan-Port’) 
are pushing the output lower (blue bar). 

E. Comparison with dataset created using high-end cameras 
The effectiveness of the newly created dataset built from 

low-cost features is compared to that of an original dataset 
lacking such specifications. The newly created dataset is 
created through a methodology that retains approximately 65% 
of the original dataset's features, focusing solely on low-cost 
features. Importantly, experiment is conducted to verify if this 
reduction in features streamlined to emphasize low-cost 
features, and does not compromise the accuracy of the machine 
learning model and still preserves the essential details of the 
dataset  

The experiment is executed on a desktop PC equipped with 
an AMD Ryzen 7 3700X CPU with a Base Clock of 3.60 GHz, 
a 32 GB of RAM, and an RTX 3060 GPU with 12GB GDDR6 
VRAM. The software utilized comprises open-source libraries 
including Python, PyTorch, and scikit-learn. 

 

 
Fig. 9. SHAP Force Plot 

The procedural steps outlined in Figure 1 for the proposed 
approach are entirely implemented in Python, encompassing 
tasks such as Dataset preparation, Data collection, Features 
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular 
boxes in Figure 1. While the primary objective of the proposed 
method is to generate a new dataset from existing ones, where 
the new dataset selectively incorporates features compatible 
with location features obtained from low-cost devices, it is 
imperative to validate that the machine learning model's 
performance on the new dataset remains unaffected.  

To achieve this, a basic deep-learning model is instantiated 
and trained twice. In the first instance, the model undergoes 
training with the IoTID20 dataset, utilizing all its original 

features. This model is referred to as the DEFAULT dataset 
model. Subsequently, in the second instance, the model is 
trained on the same dataset, but with features selected using our 
proposed methodology’s workflow, wherein only a specific 
number of features are chosen to create the new dataset. This is 
termed as the NEW dataset model.  

Figure 11 presents the deep-learning model developed, 
which is built on the convolutional neural network (CNN) 
framework proposed in [24]. The model processes the packet of 
an intrusion instance into byte-level data, passing them through 
an embedding layer, a convolution layer, a max-pooling layer, 
a flatten layer, and finally, a fully-connected layer. By assessing 
the correlation between each byte in the packet, the model 
determines whether the intrusion instance classifies as a true 

 Fig. 8. Summary plots.

Fig. 9. SHAP Dependence Plot.

Fig. 10. SHAP Force Plot.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset



84

JISCR 2023; Volume 6 Issue (2)

The procedural steps outlined in Fig. 1 for the 
proposed approach are entirely implemented in Python, 
encompassing tasks such as Dataset preparation, 
Data collection, Features Compatibility Test, Model 
Building and Evaluation and Model-agnostic approach. 
These tasks are in green-colored rectangular boxes 
in Fig. 1. While the primary objective of the proposed 
method is to generate a new dataset from existing 
ones, where the new dataset selectively incorporates 
features compatible with location features obtained 
from low-cost devices, it is imperative to validate that 
the machine learning model's performance on the new 
dataset remains unaffected. 

To achieve this, a basic deep-learning model is 
instantiated and trained twice. In the first instance, 
the model undergoes training with the IoTID20 
dataset, utilizing all its original features. This model 
is referred to as the DEFAULT dataset model. 
Subsequently, in the second instance, the model 
is trained on the same dataset, but with features 
selected using our proposed methodology’s 
workflow, wherein only a specific number of 
features are chosen to create the new dataset. This 
is termed as the NEW dataset model. 

Fig. 11 presents the deep-learning model 
developed, which is built on the convolutional 
neural network (CNN) framework proposed in [24]. 
The model processes the packet of an intrusion 
instance into byte-level data, passing them through 
an embedding layer, a convolution layer, a max-
pooling layer, a flatten layer, and finally, a fully-
connected layer. By assessing the correlation 
between each byte in the packet, the model 
determines whether the intrusion instance classifies 
as a true positive or true negative. It is assumed 
that the maximum length of the instance is denoted 
by the number of features 'n'; if some features have 
missing values, resulting in an instance length less 
than the 'n' bytes, zero padded to add up to the 
length. The loss function employed is binary cross 
entropy. The ADAM optimizer is adopted. The non-
linear activation function ReLU, is also used. The 
Softmax function is applied in the last step.

This experiment shows the effectiveness of 
the proposed approach in demonstrating the 
usefulness of low-cost features of the dataset, 
rather than aiming to enhance the classification 
performance of the CNN model for the intrusion 
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Fig. 11. Architecture of CNN model for experiment on comparing the newly created dataset with existing ones.  

This experiment shows the effectiveness of the proposed 
approach in demonstrating the usefulness of low-cost features 
of the dataset, rather than aiming to enhance the classification 
performance of the CNN model for the intrusion problem. 
Consequently, we employ the same CNN as base model with 
consistent hyper-parameter values for both the DEFAULT 
dataset and the NEW dataset models. The number of training 
epochs is configured at 32 for the DEFAULT dataset and 64 for 
the NEW dataset. The batch size is uniformly set to 128 for both 
dataset models. Each dataset is partitioned into training and 
testing sets to assess the impact of the proposed approach on the 
performance of a machine learning model. The same model, as 
illustrated in Figure 11, undergoes training twice: once on the 
DEFAULT dataset and once on the NEW dataset. The 
outcomes are then juxtaposed based on accuracy, precision, 
recall, and F1-score, with the following definitions: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 (16) 

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

(17) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

(18) 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 

(19) 

Here are the explanations for TP, TN, FP, and FN: 
• True Positive (TP): An attack instance is correctly 

identified as an attack instance. 
• True Negative (TN): A non-attack instance is correctly 

identified as a non-attack instance. 
• False Positive (FP): A non-attack instance is incorrectly 

classified as an attack instance. 
• False Negative (FN): An attack instance is incorrectly 

classified as a non-attack instance. 

The F1-score takes into account both precision and recall, 
making it a comprehensive metric that effectively illustrates the 
overall performance of the deep learning model on the datasets. 

We visualized the experimental results. Machine learning 
models trained on the different dataset are compared and the 
resulting data is visualized in Figure 128.  
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Fig. 11. Architecture of CNN model for experiment on comparing the newly created dataset with existing ones.
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problem. Consequently, we employ the same CNN 
as base model with consistent hyper-parameter 
values for both the DEFAULT dataset and the NEW 
dataset models. The number of training epochs is 
configured at 32 for the DEFAULT dataset and 64 
for the NEW dataset. The batch size is uniformly 
set to 128 for both dataset models. Each dataset 
is partitioned into training and testing sets to 
assess the impact of the proposed approach on 
the performance of a machine learning model. The 
same model, as illustrated in Fig. 11, undergoes 
training twice: once on the DEFAULT dataset and 
once on the NEW dataset. The outcomes are then 
juxtaposed based on accuracy, precision, recall, 
and F1-score, with the following definitions:

Accuracy=

F1-Score=2×

Precision=

Recall=

TP+TN

Precision×Recall

TP

TP

TP+TN+FN+FP

Precision+Recall

TP+FP

TP+FN

(16)

(19)

(17)

(18)

Here are the explanations for TP, TN, FP, and FN:
• True Positive (TP): An attack instance is 

correctly identified as an attack instance.
• True Negative (TN): A non-attack instance is 

correctly identified as a non-attack instance.
• False Positive (FP): A non-attack instance is 

incorrectly classified as an attack instance.
• False Negative (FN): An attack instance 

is incorrectly classified as a non-attack 
instance.

The F1-score takes into account both precision 
and recall, making it a comprehensive metric that 
effectively illustrates the overall performance of the 
deep learning model on the datasets.

We visualized the experimental results. Machine 
learning models trained on the different dataset are 
compared and the resulting data is visualized in Fig. 12.

It is interesting that values computed for the 
metrics for the DEFAULT dataset model is almost 

equal to that of the NEW dataset. Thus, the figure 
reveals that the machine learning model trained on 
the NEW dataset does not degrades in terms of 
precision, recall, and F1-score. For the DEFAULT 
dataset model, the Precision, Recall, Accuracy 
and F1-Score values are 0.85, 0.86, 0.91 and 
0.85 respectively. For the NEW dataset model, 
the Precision, Recall, Accuracy and F1-Score 
values are 0.84, 0.85, 0.93 and 0.84, respectively. 
Comparing these metrics reveals that the NEW 
dataset maintains the performance of the machine 
learning model almost identical to the DEFAULT 
dataset.

Iv. conclusIon

This research addresses a significant challenge 
related to obtaining intrusion detection dataset 
features from cost-effective devices, with the goal 
of ensuring their comparability to those derived from 
high-end counterparts. The primary aim is to construct 
an intrusion detection dataset customized to meet 
the specific demands of financially constrained 
environments, without requiring costly infrastructure. 
The methodology starts by selecting the IoTID20 
dataset, specifically designed to capture common 
IoT network characteristics, with a distinctive focus 
on using low-cost camera devices. Subsequently, an 
Entry/Exit IoT Network is simulated within a university 
campus using budget-friendly camera devices to 
automatically capture two essential location features: 
the locations of the initiating and receiving packets of 
the camera devices on the network. A Shapira-Wilk 
test statistic is executed to identify which features 
from the IoTID20 dataset is compatible with the two 
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NEW dataset vs. DEFAULT dataset. 
It is interesting that values computed for the metrics for the 

DEFAULT dataset model is almost equal to that of the NEW 
dataset. Thus, the figure reveals that the machine learning 
model trained on the NEW dataset does not degrades in terms 
of precision, recall, and F1-score. For the DEFAULT dataset 
model, the Precision, Recall, Accuracy and F1-Score values are 
0.85, 0.86, 0.91 and 0.85 respectively. For the NEW dataset 
model, the Precision, Recall, Accuracy and F1-Score values are 
0.84, 0.85, 0.93 and 0.84, respectively. Comparing these 
metrics reveals that the NEW dataset maintains the 
performance of the machine learning model almost identical to 
the DEFAULT dataset. 

IV. CONCLUSION 
This research addresses a significant challenge related to 

obtaining intrusion detection dataset features from cost-
effective devices, with the goal of ensuring their comparability 
to those derived from high-end counterparts. The primary aim 
is to construct an intrusion detection dataset customized to meet 
the specific demands of financially constrained environments, 
without requiring costly infrastructure. The methodology starts 
by selecting the IoTID20 dataset, specifically designed to 
capture common IoT network characteristics, with a distinctive 
focus on using low-cost camera devices. Subsequently, an 
Entry/Exit IoT Network is simulated within a university 
campus using budget-friendly camera devices to automatically 
capture two essential location features: the locations of the 
initiating and receiving packets of the camera devices on the 
network. A Shapira-Wilk test statistic is executed to identify 
which features from the IoTID20 dataset is compatible with the 
two location features. The identified compatible location 
features are then appended to the existing features of the 
IoTID20 dataset. Through the compatibility test, features that 
received high rankings were found to be compatible for 
integration with the location dataset. This confirms the initial 
concept that the development of the IoTID20 dataset was 
intended for a budget-friendly process. 

Following a pre-processing phase, the dataset feature count 
is reduced to create a new IoT intrusion detection dataset, 
streamlined in such a way that it includes only features captured 
by low-cost IoT devices. To offer a practical solution that uses 
the cost-effective features of this new dataset, an important 

aspect of the research involves implementing the XGBoost 
machine learning algorithm on this new dataset for intrusion 
prediction. The implemented XGBoost regression model with 
the selection of its parameters optimized using a simple grid 
search algorithm was found to predict better on the new low-
budget IoT intrusion detection dataset than other popular 
multiple regression models. 

A model-agnostic XAI approach was adopted in using SHAP 
values to interpret the predictions made by XGBoost algorithm. 
The computation of SHAP values on the XGBoost model’s 
predictions shows the contributions of a substantial number of 
dataset features to the overall predictive outcomes. The research 
also found that the SHAP results highlight certain globally 
important, low-cost features within the IoTID20 dataset when 
the location features collected in this study were appended to 
them to create a new IoT dataset. The Flow Duration, Total 
Forward Packets, and Total Length Forward Packet are deemed 
important global features in the context of intrusion detection 
using the implemented XGBoost algorithm on the new low-cost 
IoT dataset. 

The Flow Duration feature represents the duration of a 
network flow, which could be significant in identifying patterns 
associated with normal or abnormal network behavior. The 
Total Forward Packets suggests that the number of forward 
packets in a network flow is a significant factor in determining 
whether an intrusion is occurring. It could indicate that certain 
patterns in packet transmission are indicative of security threats. 
Lastly, the Total Length Forward Packet implies that the total 
length of forward packets in a network flow plays a crucial role 
in intrusion detection. It could suggest that the size or content 
of transmitted data is a key consideration in identifying 
potential security issues. 

In essence, these findings suggest that focusing on these 
specific aspects of network activity—flow duration, the number 
of forward packets, and the total length of forward packets—
provides valuable insights for effectively detecting intrusions 
using the XGBoost algorithm on the new budget-friendly IoT 
dataset. 

From the experimental results, it was found that the newly 
created dataset maintains the performance of a machine 
learning model while selecting only  low-cost features of 
dataset of an intrusion detection instances. This means that 
selecting only the low-cost features of the original dataset using 
our proposed approach is sufficient for training a deep learning 
model for intrusion detection, and the financial burden on using 
expensive features of the datasets could be lessened 

From the abovementioned, the study demonstrate the 
feasibility of building an effective intrusion detection dataset 
suited to financially constrained settings, ensuring that 
institutions in resource-limited areas (like CKT-UTAS, 
Navrongo, Ghana) can enhance their cybersecurity measures 
without the need for costly infrastructure. The findings 
presented in this paper can serve as a valuable reference for 
organizations seeking to improve their security posture without 
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location features. The identified compatible location 
features are then appended to the existing features 
of the IoTID20 dataset. Through the compatibility 
test, features that received high rankings were found 
to be compatible for integration with the location 
dataset. This confirms the initial concept that the 
development of the IoTID20 dataset was intended 
for a budget-friendly process.

Following a pre-processing phase, the dataset 
feature count is reduced to create a new IoT 
intrusion detection dataset, streamlined in such 
a way that it includes only features captured by 
low-cost IoT devices. To offer a practical solution 
that uses the cost-effective features of this new 
dataset, an important aspect of the research 
involves implementing the XGBoost machine 
learning algorithm on this new dataset for intrusion 
prediction. The implemented XGBoost regression 
model with the selection of its parameters optimized 
using a simple grid search algorithm was found to 
predict better on the new low-budget IoT intrusion 
detection dataset than other popular multiple 
regression models.

A model-agnostic XAI approach was adopted in 
using SHAP values to interpret the predictions made 
by XGBoost algorithm. The computation of SHAP 
values on the XGBoost model’s predictions shows 
the contributions of a substantial number of dataset 
features to the overall predictive outcomes. The 
research also found that the SHAP results highlight 
certain globally important, low-cost features within 
the IoTID20 dataset when the location features 
collected in this study were appended to them to 
create a new IoT dataset. The Flow Duration, Total 
Forward Packets, and Total Length Forward Packet 
are deemed important global features in the context 
of intrusion detection using the implemented 
XGBoost algorithm on the new low-cost IoT dataset.

The Flow Duration feature represents the 
duration of a network flow, which could be significant 
in identifying patterns associated with normal or 
abnormal network behavior. The Total Forward 
Packets suggests that the number of forward 
packets in a network flow is a significant factor 
in determining whether an intrusion is occurring. 
It could indicate that certain patterns in packet 
transmission are indicative of security threats. 

Lastly, the Total Length Forward Packet implies that 
the total length of forward packets in a network flow 
plays a crucial role in intrusion detection. It could 
suggest that the size or content of transmitted 
data is a key consideration in identifying potential 
security issues.

In essence, these findings suggest that focusing 
on these specific aspects of network activity—flow 
duration, the number of forward packets, and the total 
length of forward packets—provides valuable insights 
for effectively detecting intrusions using the XGBoost 
algorithm on the new budget-friendly IoT dataset.

From the experimental results, it was found 
that the newly created dataset maintains the 
performance of a machine learning model while 
selecting only  low-cost features of dataset of 
an intrusion detection instances. This means 
that selecting only the low-cost features of the 
original dataset using our proposed approach is 
sufficient for training a deep learning model for 
intrusion detection, and the financial burden on 
using expensive features of the datasets could be 
lessened

From the abovementioned, the study demonstrate 
the feasibility of building an effective intrusion detection 
dataset suited to financially constrained settings, 
ensuring that institutions in resource-limited areas 
(like CKT-UTAS, Navrongo, Ghana) can enhance their 
cybersecurity measures without the need for costly 
infrastructure. The findings presented in this paper 
can serve as a valuable reference for organizations 
seeking to improve their security posture without 
incurring substantial financial burdens.
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