
29

Cyber Security Incident Response: The Effectiveness of Open-Source
Detection Tools in DLL Injection Detection
Ali Abuabid*, Abdulrahman Aldeij
College of Computing and Informatics, Saudi Electronic University, Abha, Kingdom of Saudi Arabia.
Received 11 Jan. 2024; Accepted 25 Mar. 2024; Available Online 02 Jun. 2024.

Abstract
In response to the growing cyber-attack threat, incident response teams have become a critical compo-

nent of an organization's cybersecurity strategy. These teams are responsible for detecting, analyzing, and
responding to security incidents promptly and effectively. However, detecting code injection attacks can be
particularly challenging, as they can be difficult to detect and often go unnoticed until it is too late. Cybersecurity
professionals use detection tools to detect and respond to DLL injection attacks that monitor system activity and
detect unusual behavior. A large portion of the related literature focuses on the use of commercial DLL injection
tools. In contrast, little attention has been paid to the effectiveness of using open-source DLL injection detection
tools. Thus, this research project aims to evaluate the effectiveness of three widely used open-source tools,
VirusTotal, Sysinternals, and Yara, in detecting DLL injection incidents. This study's findings highlight each tool's
strengths and limitations, which in turn enables cybersecurity professionals to make informed decisions when
selecting the most suitable tool for DLL injection detection. Furthermore, the study emphasizes the importance
of continuous tool development and updates to keep pace with evolving malware techniques and emerging
threats. By highlighting the effectiveness of the tools, this research enhances the overall security posture of
organizations and individuals, empowering them to mitigate the risks associated with DLL injection attacks pro-
actively. The outcomes of this research project also underscore the significance of leveraging advanced tools to
fortify cybersecurity defenses and safeguard critical systems and data.

* Corresponding Author: Ali Abuabid
Email: A.abuabid@seu.edu.sa
doi: 10.26735/PNOB5534

Keywords: Open-source, DLL injection, VirusTotal, Sysinternal suite, Yara, Incident response.

Production and hosting by NAUSS

1658-7782© 2024. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security and Cybercrimes Research 2024; Volume 7 Issue (1), 29-50 Original Article

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. Introduction

In recent years, the threat of cyber-attacks
has increased exponentially, making it critical for
organizations to have effective incident response
plans to mitigate the impact of cybersecurity
incidents. One such type of cyber-attack is code
injection, in which an attacker inserts malicious code

into a legitimate application to exploit vulnerabilities
and gain unauthorized access to a system. Code
injection can occur in many forms, including SQL
injection, command injection, and Dynamic Link
Library (DLL) injection [1].

Analysis of DLL injection attacks reveals
significant consequences, with a majority resulting

30

JISCR 2024; Volume 7 Issue (1)

their powerful capabilities in detecting malware
and DLL injection attacks, they are relatively active
and require valid proprietary licenses [7]. Some
examples of commercial DLL detection tools
include:

A. Kaspersky Endpoint Security
It is an endpoint protection platform designed

to defend against various cyber threats, including
malware, ransomware, and advanced persistent
threats. While Kaspersky Lab, the company behind
Kaspersky Endpoint Security, provides detailed
information about the features and capabilities of
their products, specific studies or research papers
focusing solely on DLL injection detection with
Kaspersky Endpoint Security may be limited [8].

However, Kaspersky Endpoint Security
incorporates various technologies and features
that contribute to its ability to detect DLL injection
attacks, such as:

Behavioral Analysis: Kaspersky Endpoint
Security employs behavioral analysis techniques
to monitor system processes and behaviors for
signs of malicious activity, including suspicious DLL
injections. By analyzing the behavior of processes
in real-time, the solution can identify abnormal
activities indicative of DLL injection attempts [8].
Signature-based Detection: Kaspersky Endpoint
Security utilizes a signature database of known
malware and malicious DLLs to detect and block
threats. When a file or DLL matches a signature
in the database, it is flagged as malicious, and
appropriate actions are taken to mitigate the threat.
Moreover, heuristic Analysis: The solution employs
heuristic analysis algorithms to identify previously
unseen or unknown threats, including novel DLL
injection techniques. Kaspersky Endpoint Security
can detect and block suspicious DLL injections
based on their characteristics by analyzing file
attributes, behavior patterns, and code structures
[9]. Integration with Threat Intelligence: Kaspersky
Endpoint Security integrates with Kaspersky

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

in severe issues. Among 103 identified studies, it
was found that 90.3% of attacks caused system
crashes, while 3.9% resulted in the loss of user
request responses. Further investigation into the
origins of these attacks indicated that 55.3% were
attributed to antivirus software, 19% to hardware
vendor drivers, and 10% to malware [2].

DLL injection, in particular, is a widespread
technique attackers use to inject malicious code
into a system [3]. This technique involves injecting
malicious code into a DLL file, which is a file that
contains code and data that multiple programs
can share. Code injection attacks using DLL files
have become increasingly prevalent in recent
years, and organizations need to have practical
detection tools in place to identify and respond to
such attacks. Code injection can lead to severe
consequences, including the theft of sensitive
information, disruption of operations, and damage
to an organization's reputation [1].

In response to the growing cyber-attack threat,
incident response teams have become a critical
component of an organization's cybersecurity
strategy [4]. These teams are responsible for
detecting, analyzing, and responding to security
incidents promptly and effectively. However,
detecting code injection attacks can be particularly
challenging, as they can be difficult to detect and
often go unnoticed until it is too late. To detect and
respond to DLL injection attacks, cybersecurity
professionals use detection tools that monitor
system activity and detect unusual behavior [5].
Detection tools can help identify the presence of
malicious code injected into a DLL file and alert
security professionals to act accordingly.

It is observed that the existence of two types
of DLL detection tools: commercial and open
source. Commercial tools are typically designed
for easy expansion and management, and they
often come with a graphical user interface to help
you visually understand the exact security posture
and make faster and better decisions [6]. Despite

31

JISCR 2024; Volume 7 Issue (1)

Lab's threat intelligence network, providing real-
time updates and insights into emerging threats,
including DLL injection techniques used by
cybercriminals. This integration enhances the
solution's ability to detect and respond to evolving
threats on time [9].

B. AppGuard
It is an endpoint security solution designed to

prevent malware and unauthorized processes
from compromising system integrity. While not
specifically marketed as a DLL injection detection
tool, AppGuard's application control and behavior-
based protection approach can indirectly mitigate
the risks associated with DLL injections [10]. The
key features of AppGuard that contribute to its
effectiveness in preventing DLL injection attacks
include application whitelisting: it uses application
whitelisting to restrict execution to only trusted
applications. By maintaining a whitelist of approved
applications, AppGuard prevents unauthorized or
malicious processes, including those associated
with DLL injections, from running on the system
[10]. Moreover, isolation and containment:
AppGuard employs isolation and containment
techniques to prevent malware from accessing
critical system resources. By isolating processes
and restricting their access to sensitive areas of the
system, AppGuard can thwart malware attempts
to inject DLLs into legitimate processes or system
components [10].

C. Symantec Endpoint Protection (SEP)
Symantec Endpoint Protection (SEP) is renowned

as a widely adopted endpoint security solution,
adept at thwarting many malware variants, including
those employing DLL injection techniques. Several
key features bolster SEP's efficacy in DLL injection
detection. Firstly, Behavioral Analysis: SEP employs
sophisticated behavioral analysis methodologies
to scrutinize system processes and behaviors,
vigilantly monitoring for any indications of malicious

activity, including suspicious DLL injections.
Through real-time process behavior analysis, SEP
swiftly identifies anomalies suggestive of DLL
injection attempts [11].

Secondly, signature-based detection: leveraging
an extensive signature database teeming with
known malware and malicious DLLs, SEP can
swiftly recognize and neutralize threats. Upon
detecting a file or DLL that matches an entry in the
database, SEP promptly flags it as malicious and
takes requisite measures to mitigate the potential
threat.

Thirdly, heuristic analysis: SEP integrates
advanced algorithms to identify previously unseen
or emerging threats, including novel DLL injection
techniques. By scrutinizing file attributes, behavior
patterns, and code structures, SEP adeptly
identifies and obstructs suspicious DLL injections
based on their unique characteristics [11].

Finally, integration with threat intelligence:
seamlessly meshing with Symantec's expansive
global threat intelligence network, SEP remains
constantly abreast of emerging threats, including
cybercriminals' latest DLL injection methodologies.
This seamless integration furnishes SEP with real-
time updates and insights, enhancing its capacity
to detect and counter evolving threats promptly[3].
Through the amalgamation of these cutting-edge
features, Symantec Endpoint Protection stands as
a stalwart guardian against DLL injection attacks,
safeguarding endpoints with unparalleled efficacy
and agility [2].

On the other hand, open-source DLL detection
tools are free and often have a more limited feature
set than commercial tools [12]. However, they can
be a good option if users are on a tight budget or
need to customize the tool to meet their needs [13].
Some examples of open-source DLL detection
tools include:

1.	 Process Hacker
2.	 DLL Hijack Auditor
3.	 Yara

Abuabid and Aldeij

32

JISCR 2024; Volume 7 Issue (1)

4.	 VirusTotal
5.	 Sysinternal

The effectiveness of open-source detection
tools in identifying DLL injection attacks remains an
open question. While detection tools have improved
over the years, hackers have also become more
sophisticated, and they can easily evade detection
by using advanced techniques. To overcome such
issues, detection tools have been developed to
help incident response teams identify code injection
attacks early. These tools use various techniques
to monitor system activity, identify anomalies, and
alert security personnel when suspicious activity
is detected [14]. However, the effectiveness of
these tools in detecting DLL injection attacks is
not well identified, and further research is needed
to evaluate their efficacy. This research project is
initiated to evaluate the effectiveness of three widely
used open-source DLL injection detection tools:
VirusTotal, Sysinternals, and Yara. By examining
the capabilities and limitations of these tools, the
researchers aim to better understand how incident
response teams can best leverage them to improve
their ability to detect and respond to DLL injection
attacks. Furthermore, this study highlights the critical
limitation of current open-source detection tools and
identifies areas for improvement to enhance the
effectiveness of incident response in such attacks.
This limitation is that open-source detection tools
often require manual operation, which can be time-
consuming and potentially prone to human error. To
address this limitation, the researcher developed
a script that automates detecting DLL injection
attacks, reducing the manual effort required
by cybersecurity professionals and improving
the speed and accuracy of incident response.
Using such a script to automate the detection
tools provides a solution that can enhance the
effectiveness of incident response in detecting DLL
injection attacks.

This research contributes to cybersecurity

incident response in several ways. Firstly, it
comprehensively reviews the current detection
tools used to detect DLL injection attacks and their
limitations. This review will serve as a valuable
resource for cybersecurity professionals, helping
them select the most effective detection tools for
their needs.

Secondly, this research evaluates the
effectiveness of detection tools in detecting DLL
injection attacks through a controlled experiment
that simulates real-world attacks. The experiment
will test several commonly used detection tools
against various DLL injection attacks, including
those using evasion techniques. This research
provides insights into the effectiveness of these
detection tools and the limitations of their current
capabilities.

Thirdly, this research identifies the evasion
techniques attackers use to avoid detection by
detection tools. Identifying these techniques
helps cybersecurity professionals develop
countermeasures and improve the effectiveness of
detection tools. Moreover, this research proposes
ways to counteract these evasion techniques,
which enhance the accuracy of detection tools and
minimize false alarms.

Finally, it provides recommendations for
improving the effectiveness of detection tools and
cybersecurity incident response, which include
enhancing the capabilities of detection tools to
detect DLL injection attacks and developing new
approaches to mitigate the damage caused by
such attacks.

D. Research Objectives
This study assesses the efficacy of detection

tools in identifying and responding to DLL injection
attacks. The specific objectives of this research are
as follows:

•	 To evaluate and compare the effectiveness of
Sysinternals Suite and VirusTotal in detecting
DLL injection attacks.

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

33

JISCR 2024; Volume 7 Issue (1)

•	 To assess and compare the effectiveness of
Sysinternals Suite and Yara in identifying DLL
injection attempts.

•	 To analyze and compare the effectiveness of
VirusTotal and Yara in detecting DLL injection
activities.

•	 To develop a script capable of automating
the detection process for VirusTotal and
Yara, streamlining the identification of DLL
injection threats.

The rest of the study is structured as follows:
literature analysis of the open-source DLL detection
tools, the research approach employed in this study,
research results and discussions, and conclusion,
which includes research limitation, contribution,
and future work.

II. Literature Review

This section critically analyzes the background
literature related to the research questions
mentioned above. It consists of four subsections.
Each section compares two of the top three open-
source DLL Injection Detection tools in terms of
detection mechanism, effectiveness, and limitations
of each other and formulate a hypothesis after
evaluating each.
A. Comparison Between Sysinternal and VirusTotal

Cybersecurity is a critical concern in today’s
digital age, and cybersecurity tools have become
increasingly essential to protect against cyber-
attacks. Sysinternal Suites and VirusTotal are two
commonly used tools in the field of cybersecurity.

Sysinternal Suites is a suite of more than
70 tools developed by Mark Russinovich and
Bryce Cogswell, which are used for analyzing
and troubleshooting Windows systems [15]. The
suite includes tools for monitoring system activity,
managing processes, and diagnosing system
issues. Sysinternal Suites is a powerful tool that
can be used to identify and mitigate security
vulnerabilities in Windows systems.

VirusTotal, on the other hand, is an online tool
that analyzes files and URLs for viruses, malware,
and different types of malicious content [16].
VirusTotal uses multiple antivirus engines and other
tools to scan files and URLs for malicious content.
The tool can also provide detailed reports on the
behavior of files and URLs, making it a valuable tool
for cybersecurity professionals.

Both Sysinternal Suites and VirusTotal are
valuable tools for cybersecurity professionals.
However, they serve different purposes. Sysinternal
Suites is primarily used for analyzing and
troubleshooting Windows systems, while VirusTotal
analyzes files and URLs for malicious content [16].
Therefore, each tool's effectiveness depends on
the user's specific needs. The choice of which
tool to use depends on the user's particular
needs. Sysinternal Suites is ideal for analyzing and
troubleshooting Windows systems, while VirusTotal
is ideal for analyzing files and URLs for malicious
content [17].

Christopher and Raychaudhuri [18] provided an
overview of the Sysinternals Suite and its various
tools, including Process Monitor, Process Explorer,
and Autoruns. They describe how these tools can
analyze virtual machine hard disks, mainly when the
virtual machine is offline or in a “frozen” state. One
of the key strengths of the Sysinternals Suite in this
context is its ability to provide detailed information
about system processes and their interactions with
other processes. The authors note that tools such
as Process Monitor can be used to monitor system
processes and identify any unusual or suspicious
activity. They also highlight the importance of using
the Sysinternals Suite with other digital forensics
tools and techniques. While the Sysinternals Suite
can provide valuable information, it may not be
sufficient on its own to analyze and understand a
digital forensic case fully. Overall, it demonstrates
the usefulness of the Sysinternals Suite in digital
forensics investigations, particularly in the analysis
of virtual machine hard disks. It is recommended
that digital forensics practitioners become familiar

Abuabid and Aldeij

34

JISCR 2024; Volume 7 Issue (1)

with the various tools in the suite and learn how to
use them effectively in different scenarios.

Sysinternals is not primarily designed for malware
analysis, but it can be used in some instances. For
example, some of the tools in the Sysinternals suite,
such as Process Explorer and Autoruns, can be
used to identify and analyze suspicious processes
and startup items on a Windows system [15].
However, these tools are not explicitly designed for
malware analysis and may not be as effective as
dedicated malware analysis tools like VirusTotal.

In contrast, VirusTotal is a specialized tool
designed for malware analysis. It uses signature-
based and behavior-based detection techniques
to identify malware and other types of malicious
content [14]. VirusTotal provides detailed
information about the analyzed files, including the
names of the malware families they belong to, the
AV labels assigned to them, and the detection
rates of various antivirus engines [16]. VirusTotal
is a valuable tool for cybersecurity professionals
who need to analyze files and URLs for malicious
content.

Cozzi et al. [17] used VirusTotal to extract AV
labels for malware samples and fed them to the
AVClass tool to obtain a normalized name for the
malware family. Moreover, [19] used VirusTotal to
detect the classes of malware in their dataset. The
key findings of the study were that VirusTotal was
effective at detecting both phishing and malware
URLs, with a high percentage of URLs being
identified as malicious by the scanning engines used
by VirusTotal. It was also found that most phishing
URLs were hosted on compromised websites
rather than standalone pages designed to look
like legitimate websites. The study also highlighted
some limitations of VirusTotal, particularly when
detecting new or previously unknown threats. The
authors noted that some URLs initially classified
as benign by VirusTotal were later found to be
malicious, suggesting that the scanning engines
used by VirusTotal may not be able to detect all

types of threats. Overall, the study demonstrated
the effectiveness of VirusTotal in detecting phishing
and malware URLs but also highlighted the need
for additional tools and techniques to supplement
VirusTotal's capabilities to detect new and emerging
threats.

In addition, there have been studies that have
used other tools and techniques for malware
analysis, such as static feature extraction from ELF
binaries [17], deep learning-based detection and
classification of Android malware using API-based
features [20], and behavioral reports of multi-stage
malware. However, these studies did not specifically
compare Sysinternals and VirusTotal.

Both Sysinternals and VirusTotal can be used
for malware analysis; they serve different purposes
and have different strengths and weaknesses.
VirusTotal is a specialized tool designed explicitly
for malware analysis and provides a wealth of
information about the analyzed files [16]. At the
same time, Sysinternals is a suite of tools that offers
advanced system information and troubleshooting
capabilities for Windows-based systems and can
be used for malware analysis in some instances
[15]. The literature has used VirusTotal for malware
analysis and detection, but there have yet to be
studies that specifically compare Sysinternals and
VirusTotal. Therefore, for this study, it is suggested
that Sysinternal is more effective in detecting DLL
Injection than VirusTotal. Hence, the following
hypothesis is formulated:
H1: Sysinternal is more effective than VirusTotal in

DLL injection detection.

B. Comparison Between Sysinternal and Yara
The Sysinternal Suite is a collection of system

utilities and tools created by Microsoft for Windows
[15]. On the other hand, Yara is an open-source
tool used for malware analysis, detection, and
classification.

Sysinternals is a suite of system utilities designed
to help diagnose and troubleshoot Windows-

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

35

JISCR 2024; Volume 7 Issue (1)

based computers. At the same time, Yara is a tool
for pattern matching used by malware analysts
worldwide [21]. Yara can scan files and process
memory, allowing users to define sequences of
symbols as text strings, hexadecimal strings, and
regular expressions [21]. However, the use of regular
expressions is limited because of the concern
that it can slow down the scanning process [21].
Moreover, Yara is a tool specifically designed for
pattern matching and used by malware analysts to
detect and analyze malware [21]. It rules discover
malware based on a string-matching technique,
which can be customized depending on the specific
requirement of an individual or organization to
uncover targeted attacks and security threats. The
quality and quantity of the Yara rules are crucial for
analytic success, as there should be an effective
and sufficient number of Yara rules to improve the
overall performance of the malware analysis [22].

Regarding usability, both Sysinternals and Yara
are easy to use and provide a simple and intuitive
interface. Sysinternals provides a unified interface
for all its tools, making it easy for users to find the
tools they need [23]. In contrast, Yara provides a
simple and easy-to-use interface that allows users
to view the exported functions of a DLL file quickly.

To sum up, both tools are well-documented and
provide helpful information to users. They are two
software programs that serve different purposes.
Sysinternals is a suite of system utilities designed
to help diagnose and troubleshoot Windows-based
computers [15]. At the same time, Yara is a tool
for pattern matching used by malware analysts
worldwide [22]. While both tools are easy to use
and provide a simple and intuitive interface,
Sysinternals offers a broader range of tools and
functionality, while Yara is a more specialized tool
that is designed specifically for pattern matching
and malware analysis. Sysinternal Suite and Yara
are valuable tools in cybersecurity investigations.
Although Sysinternal Suite is more effective in
monitoring and analyzing system activity, providing
valuable insights into malware behavior, Yara is

more effective in detecting and classifying malware
through its pattern-matching algorithms. Ultimately,
the choice between the two tools depends on the
specific needs of the investigation and the type of
malware being analyzed. Therefore, for this study,
it is suggested that Sysinternal is more effective
than Yara in detecting DLL injection. Hence, the
following hypothesis is formulated:
H2: Sysinternal is more effective than Yara in DLL

injection detection.
C. Comparison Between VirusTotal and Yara

Two popular tools for malware analysis are
VirusTotal and Yara. Cybersecurity experts have
widely used both tools for detecting and analyzing
malware. VirusTotal and Yara are both tools used
for malware detection. VirusTotal is a large-scale
malware detection system integrating machine
learning with expert reviewers [5]. It treats reviewers
as a limited labeling resource and demonstrates
that even in small numbers, reviewers can vastly
improve the system's ability to keep pace with
evolving threats [14]. VirusTotal can scan files and
process memory, and it allows defining sequences
of symbols as text strings, hexadecimal strings,
and regular expressions [21].

On the other hand, Yara is a tool for pattern
matching used by malware analysts worldwide
[21]. It can use sandbox memory dumps for the
identification of malware families and can scan files
as well as process memory. Yara allows defining
sequences of symbols as text strings, hexadecimal
strings, and regular expressions [21]. However,
the use of regular expressions is limited because
of the concern that it can slow down the scanning
process [21]. In terms of performance, [5] found
that VirusTotal achieved 72% detection without
reviewer assistance. Meanwhile, Yara is a pattern-
matching technique using sandbox memory dumps
to identify malware families [23]. However, pattern-
matching techniques fail silently due to minor code
variations, leading to unidentified malware samples
[23].

Abuabid and Aldeij

36

JISCR 2024; Volume 7 Issue (1)

Both VirusTotal and Yara are valuable tools for
malware detection. VirusTotal integrates machine
learning with expert reviewers, while Yara is a tool
for pattern matching used by malware analysts
worldwide. Both tools allow for defining sequences
of symbols as text strings, hexadecimal strings,
and regular expressions. However, the use of
regular expressions in Yara is limited because of
the concern that it can slow down the scanning
process. While VirusTotal achieved 72% detection
without reviewer assistance, pattern-matching
techniques in Yara failed silently due to minor code
variations, leading to unidentified malware samples.

When comparing VirusTotal and Yara, several
factors should be considered, including their
effectiveness for detecting known and unknown
malware samples, their false-positive rate, and
their ease of use [24]. In terms of effectiveness
for detecting known malware samples, both tools
are effective, with VirusTotal having a detection
rate of 80.2% and Yara having a detection rate
of 90.2%. However, when detecting new and
unknown malware samples, Yara is more effective

than VirusTotal, with a detection rate of 82.8%
compared to VirusTotal's detection rate of 47.7%.
In terms of false-positive rates, VirusTotal has a
higher false-positive rate. Therefore, for this study,
it is suggested that VirusTotal is less effective in
detecting DLL Injection than Yara. Hence, the
following hypothesis is formulated:
H3: VirusTotal is less effective than Yara in detecting

DLL Injection.

III. Research Method

This study will use an experimental research
design. The study aims to evaluate the effectiveness
of three open-source detection tools in identifying
and responding to code injection cyber security
incidents. The research design involves data
collection through an automated script to check the
injection on DLL files. Fig. 1 shows the diagram of
the methodology used in the research project.

A. Data Collection
This research utilizes two datasets: a malicious

dataset sourced from MalwareBazaar [25] and a

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

Fig. 1 The Diagram of the Methodology Used.

Restricted - مقيد

III. Research Method
This study will use an experimental research design. The study aims to evaluate the effectiveness of three open-source

detection tools in identifying and responding to code injection cyber security incidents. The research design involves

data collection through an automated script to check the injection on DLL files. Figure 1 shows the diagram of the

methodology used in the research project.

Figure 1: The Diagram of the Methodology Used

1. DATA COLLECTION

This research utilizes two datasets: a malicious dataset sourced from Malware Bazaar [25] and a benign dataset sourced

from [26]. The malicious dataset contains samples of known malware, while the benign dataset contains clean files

that are not associated with any malicious activity. By analyzing these two datasets, the researchers can gain insights

into the characteristics and behaviors of malware and develop more effective detection and prevention strategies.

MALWAREBAZAAR

It is designed to be a community-driven repository of malware samples where users can upload and share their samples

or browse and download samples uploaded by others. The MalwareBazaar website provides a user-friendly interface

for browsing and searching the collection of malware samples, as well as for analyzing individual samples using

various tools and services [25]. The website also offers APIs for programmatically accessing and

37

JISCR 2024; Volume 7 Issue (1)

benign dataset sourced from [26]. The malicious
dataset contains samples of known malware,
while the benign dataset contains clean files that
are not associated with any malicious activity. By
analyzing these two datasets, the researchers can
gain insights into the characteristics and behaviors
of malware and develop more effective detection
and prevention strategies.

1) MalwareBazaar
It is designed to be a community-driven repository

of malware samples where users can upload and
share their samples or browse and download
samples uploaded by others. The MalwareBazaar
website provides a user-friendly interface for
browsing and searching the collection of malware
samples, as well as for analyzing individual samples

Abuabid and Aldeij

TABLE I
Summary of Open-Source DLL Injection Detection Tools

Sysinternals Suite VirusTotal Yara

Developed By Mark Russinovich and Bryce Cog-
swell

Hispasec Sistemas Victor Manuel Alvarez

Developed Year 1996 2004 2007

Short Description It was acquired by Microsoft in
2006.

 It was acquired by Google in
2012.

 It is available as an open-source tool
under the Apache License 2.0.

 Underline
Theory

 Sysinternals includes various
utility software tools that use dif-
 ferent techniques and theories to
 help IT professionals and system
 administrators troubleshoot and
 diagnose issues with Windows
 systems. These tools include
 process monitoring and analysis,
file and disk utilities, network

utilities, and more.

VirusTotal uses signa-
ture-based and behav-
 ior-based detection methods to
 identify malware and viruses.
 It relies on multiple antivirus
 engines and other security
 tools to analyze and identify
 potential threats in submitted
files, URLs, and IP addresses.

 Yara uses pattern matching to
 identify specific characteristics or
 behavior patterns associated with
 malware. Analysts can create custom
 rules based on strings, regular
 expressions, and other criteria to
detect and categorize malware.

Platform Windows Windows, Mac, and Linux Windows, Linux, and Mac

TABLE II
 Strengths and Limitations of Open-Source Dll Injection Detection Tools

Criteria Sysinternals Suite VirusTotal Yara

Strengths Provides real-time monitoring of
system activity

Utilizes multiple antivirus engines
for scanning

Flexible rule-based approach for
malware detection

Offers detailed event information
and filtering

Performs behavioral analysis for
detecting threatsv

Efficient pattern matching for file
analysis

Enables stack tracing to identify
code origins

Provides historical analysis of
scanned files

Modular and shareable rules for
community use

Powerful toolset for system
troubleshooting

Allows community contributions and
comments

Integration with various security
systems

Limitations Not specifically designed for
detecting DLL injection

Detection depends on available
antivirus engines

Creation of effective rules requires
expertise

Limited to monitoring and analysis,
not removal

False positives/negatives possible
with some engines

Rules need to be regularly updated
and maintained

Limited support for automated
scanning

Limited to file and URL scanning,
not real-time

Relies on rule quality and specificity
for accuracy

38

JISCR 2024; Volume 7 Issue (1)

using various tools and services [25]. The website
also offers APIs for programmatically accessing
and interacting with the malware samples. The file
type filter is specified for listing only the required
DLL files while searching.

2) DLL-FILES.COM
It is a website that provides an extensive

collection of Dynamic Link Library (DLL) files that
users can download and use to fix issues related
to missing or corrupted DLL files on their Windows
operating system. The DLL files uploaded on it are
trusted and safe. In this research, therefore, about
80 random DLL files have been used as the dataset
of secure files.

B. Open-Source Detection Tools
Three detection tools are tested in this study

to evaluate their effectiveness in detecting DLL
injection. These tools are selected based on
their popularity, availability, and reputation within
the industry. The selected tools are Microsoft
Sysinternals Suite, Yara, and VirusTotal. Table I
shows the background and description of each
of these tools. Table II shows the strengths and
limitations of each open-source DLL injection
detection.

1) Microsoft Sysinternals Suite
Microsoft Sysinternals provides technical

resources and utilities for managing, diagnosing,
troubleshooting, and monitoring Microsoft Windows
environments [15]. Known initially as NTInternals,
the suite was founded in 1996 by software
developers Bryce Cogswell and Mark Russinovich
and was operated by Winternals Software LP in
Austin, Texas [27]. Microsoft acquired Winternals
and its assets on July 18, 2006. The suite offers
a range of freeware tools for administering and
monitoring Windows computers, which can now
be found on the Microsoft website. Microsoft tools,

such as Process Explorer, AutoRuns, Procmon,
etc., can be used to find the injected DLL files.

This section shows a detailed description of
Procmon's features, functionalities, and how it can
contribute to the detection and analysis of DLL
injection incidents:

1.	 Real-time Monitoring: Procmon captures and
displays real-time system activity, providing
a comprehensive view of process behavior,
file system operations, registry modifications,
network activity, and more. This enables
users to monitor and analyze the activity of
processes and identify any suspicious or
unexpected behavior.

2.	 Filtering and Capture Options: Procmon
offers robust filtering capabilities, allowing
users to define specific criteria to capture
or exclude particular events or processes.
This feature helps focus the monitoring
on relevant processes or activities related
to DLL injection incidents, enhancing the
efficiency of analysis.

3.	 Detailed Event Information: Each captured
event in Procmon includes extensive details,
such as the process name, process ID,
timestamp, operation type, target file/registry
key, result, and more. This level of granularity
enables users to drill down into specific
events, track the sequence of operations,
and identify any abnormal or unauthorized
DLL-related activities.

2) VirusTotal
VirusTotal is a free online service that allows users

to upload files, URLs, or IP addresses to scan them
for potential malware and viruses. It uses multiple
antivirus engines and other security tools to analyze
and identify any threats or malicious behavior in the
submitted files. VirusTotal is a website created by
the Spanish security company Hispasec Sistemas
[14]. In June 2004, it was launched and acquired
by Google in September 2012. Later, in January

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

39

JISCR 2024; Volume 7 Issue (1)

2018, the company's ownership was transferred
to Chronicle, a subsidiary of Google.

A description of VirusTotal's features, functionalities,
and how it contributes to the overall analysis of DLL
injection incidents:

1.	 File and URL Scanning: VirusTotal accepts
file uploads and URLs, allowing users to scan
a wide range of file types, including DLLs, as
well as websites or web pages for potential
threats. This feature provides a convenient
way to assess the safety of specific files
or URLs that may be associated with DLL
injection attempts.

2.	 Multiple Antivirus Engines: VirusTotal
employs a broad array of antivirus engines
and detection mechanisms from different
vendors. When a file is submitted for
scanning, it is checked against these
engines, which collectively provide a
comprehensive assessment of potential
malware or suspicious behavior. This multi-
engine approach enhances the accuracy
and effectiveness of detecting DLLs that
may be involved in DLL injection incidents.

3.	 Malware Detection and Analysis: VirusTotal
checks files against known signatures and
heuristics to identify known malware strains.
It also performs behavioral analysis to detect
potential threats that exhibit suspicious
behavior, even if they are not yet identified by
specific signatures. This analysis can help
identify DLLs that may be part of a larger
malware campaign or used for DLL injection
purposes.

3) Yara
Yara is a tool used for malware analysis

that allows analysts to create custom rules for
identifying and categorizing malware based on
specific characteristics. These rules can be based
on various factors, including file metadata, code
structure, and behavioral patterns. Yara can be
used to detect DLL injection by creating custom
rules that identify specific characteristics or
behavior patterns associated with DLL injection.

This is a thorough explanation of Yara rules,
covering their attributes, capabilities, and role in
identifying DLL injection incidents:

1.	 Rule Creation: Yara rules are created using
a simple and expressive syntax that allows
security researchers and analysts to define
patterns and conditions to identify specific
characteristics within files. These rules can
encompass a wide range of indicators,
including file signatures, byte sequences,
strings, entropy values, and more.
Researchers can create custom Yara rules
tailored to their specific requirements, such
as detecting DLL injection techniques.

2.	 String and Byte Sequence Matching: Yara
rules can include strings or byte sequences
that are indicative of DLL injection. For
example, a Yara rule can include specific
strings related to injection techniques or
known DLLs involved in injection incidents.
By scanning files or memory regions for

Abuabid and Aldeij

TABLE III
Hardware Requirements of the Environment

Environment Components Description

Host Operating System Windows 11 Home

Processor 12th Gen Intel(R) Core (TM)
i7-12650H

RAM 32 GB

Guest Operating system Windows 10 Home Edition

Virtual Machine Software Oracle VM VirtualBox 7.0

Tool #1 VirusTotal (Online Version)

Tool #2 Yara (Downloaded on Win-
dows)

Tool #3 Sysinternal (Downloaded on
Windows 10 VM)

40

JISCR 2024; Volume 7 Issue (1)

these strings or sequences, Yara rules can
flag potential instances of DLL injection.

3.	 Metadata Extraction: Yara rules can extract
metadata from files or memory regions being
analyzed, such as file names, sizes, hashes,
or version information. This metadata can
be used within the rules to filter or further
analyze potential DLL injection incidents.
For example, rules can be designed to
detect DLLs with suspicious or unexpected
metadata properties.

C. Hardware Requirements
Table III shows an overview of the hardware

requirements. The Windows machine is being
used for testing purposes. All the tests are being
performed on a Windows Virtual Machine with 16GB
of RAM, 12th Gen Intel(R) Core(TM) i7-12650H 2.30
GHz processor. The virtual machine is being used
to avoid damage to the host machine in case the
malware damages the system.

IV. Implementation

This section identifies the primary tools utilized
for effective detection as Yara, VirusTotal, and
the Microsoft Sysinternals Suite. As previously
discussed, the researcher compiled a collection
of both malicious and non-malicious files. Within
this implementation section, we will employ the
aforementioned tools to analyze the dataset
prepared earlier.

A. Using VirusTotal
VirusTotal API is being used to automate the

detection of the maliciousness of the DLL files.
Writing a script with Python is helpful as it was used
to upload the DLL files to the web and automate
the process. The VirusTotal API is being requested
against all the files in the used dataset, and the
result is stored in a text file showing whether the file
is malicious or benign.

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

Restricted - مقيد

Below is the list of functions that are being used in this script.

❖ VirusTotalAPI: This function interacts with the VirusTotal API to retrieve analysis results for a given file

hash. It takes the file hash and an API key as parameters and returns a dictionary containing the analysis

results.

❖ Get_files_in_directory: This function obtains a list of file names in a specified directory. It takes the directory

path as input and returns a list of file names.

❖ Calculate_md5: This function calculates the MD5 hash of a file. It takes the file path as input and returns the

MD5 hash as a hexadecimal string.

❖ Is_prime: This function checks whether a given number is prime. It takes a number as input and returns a

boolean value indicating whether it is prime.

❖ Write_to_file: This function appends the filename and maliciously percentage to an output file. It takes the

filename and maliciously as input and writes them to the output file.

Working on VirusTotal

VirusTotal contains a list of anti-virus software engines. It scans the provided file against all the anti-virus software’s.

VirusTotal stores all the results in its database and provides them when needed. It also categorizes the critical features

of the file, for example, if the file is malicious and represents some specific malware family or type. It has a community

feature where security researchers share information about the specific sample.

2. USING YARA

Yara tool is being automated to find whether the DLL files are malicious or not. In this way, the effectiveness of the

Figure 2: Virustotal Automation Script Fig. 2 Virustotal Automation Script.

41

JISCR 2024; Volume 7 Issue (1)

1) Automating the Process
The process of scanning DLL files through

VirusTotal is being automated using Python
scripting. A Python script is being written that reads
all the DLL files from a specified directory (that can
either be a directory with all the malicious DLL files
or a directory with all the non-malicious files). The
Python script goes through every file in the directory.
It calculates the hash of the file. Suppose the hash
is available in the VirusTotal database. In that case,
it just gives the stored results, or if the hash is not
in the VirusTotal database, then it calculates the
maliciousness of the DLL file by running it against
different anti-virus software engines.

The provided code is a program that analyzes
files in a specific directory using the VirusTotal
API, which checks files for malware. The program
calculates the maliciousity percentage for each file
and writes the results to an output file. The code is
given in Fig. 2.

Below is the list of functions that are being used
in this script.
•	 VirusTotalAPI: This function interacts with the

VirusTotal API to retrieve analysis results for a

given file hash. It takes the file hash and an API
key as parameters and returns a dictionary
containing the analysis results.

•	 Get_files_in_directory: This function obtains
a list of file names in a specified directory. It
takes the directory path as input and returns a
list of file names.

•	 Calculate_md5: This function calculates the
MD5 hash of a file. It takes the file path as input
and returns the MD5 hash as a hexadecimal
string.

•	 Is_prime: This function checks whether a
given number is prime. It takes a number as
input and returns a boolean value indicating
whether it is prime.

•	 Write_to_file: This function appends the
filename and maliciously percentage to an
output file. It takes the filename and maliciously
as input and writes them to the output file.

2) Working on VirusTotal
VirusTotal contains a list of anti-virus software

engines. It scans the provided file against all the
anti-virus software’s. VirusTotal stores all the results

Abuabid and Aldeij

Restricted - مقيد

Yara tool is being determined. Different Yara rules from the open-source projects are being downloaded to make the

results effective. These rules represent the signature of any malware, and these rules print out the rule and matching

signature if any of the signatures match.

Automating the Process

The process of scanning DLL files through the Yara tool is being automated using Python scripting. A Python script

is being written that reads all the DLL files from a specified directory (that can either be a directory with all the

malicious DLL files or a directory with all the non-malicious files). The Python script goes through every file in the

directory. It will run around 1000 Yara rules against all the malware files individually. If any signature matches, it

prints out the Yara rule and matching strings. All the results of all the files are stored in a text file to analyze all the

results correctly. Figure 3 shows the code for the automation of the Yara tool.

Figure 3: Yara automation script

This code is a script that scans a directory for Yara (.yar) files and then checks each DLL file in another directory

against those Yara rules. It writes the results of the scan to a text file.

❖ The code first retrieves a list of Yara (.yar) files in a given directory.
❖ It then retrieves a list of DLL files in another directory and iterates over each DLL file.

❖ For each DLL file, it iterates over the list of Yara files and executes a Yara scan using the yara32 command.

The results are appended to a text file.

❖ Progress of the scan is printed to the console, indicating the current file being processed and the overall

progress.

The following are the functions in the above script.

❖ Get_yar_files(directory): This function takes a directory path as input and returns a list of Yara (.yar) file

paths found in that directory and its subdirectories. It uses the os.walk() function to traverse the directory and

Fig. 3 Yara automation script.

42

JISCR 2024; Volume 7 Issue (1)

in its database and provides them when needed.
It also categorizes the critical features of the file,
for example, if the file is malicious and represents
some specific malware family or type. It has a
community feature where security researchers
share information about the specific sample.

B. Using Yara
Yara tool is being automated to find whether

the DLL files are malicious or not. In this way, the
effectiveness of the Yara tool is being determined.
Different Yara rules from the open-source projects
are being downloaded to make the results effective.
These rules represent the signature of any malware,
and these rules print out the rule and matching
signature if any of the signatures match.

1) Automating the Process
The process of scanning DLL files through

the Yara tool is being automated using Python
scripting. A Python script is being written that reads
all the DLL files from a specified directory (that
can either be a directory with all the malicious DLL
files or a directory with all the non-malicious files).
The Python script goes through every file in the
directory. It will run around 1000 Yara rules against
all the malware files individually. If any signature
matches, it prints out the Yara rule and matching
strings. All the results of all the files are stored in
a text file to analyze all the results correctly. Fig. 3
shows the code for the automation of the Yara tool.

This code is a script that scans a directory for
Yara (.yar) files and then checks each DLL file in
another directory against those Yara rules. It writes
the results of the scan to a text file.
•	 The code first retrieves a list of Yara (.yar) files

in a given directory.
•	 It then retrieves a list of DLL files in another

directory and iterates over each DLL file.
•	 For each DLL file, it iterates over the list of

Yara files and executes a Yara scan using the

yara32 command. The results are appended
to a text file.

•	 Progress of the scan is printed to the console,
indicating the current file being processed
and the overall progress.

The following are the functions in Yara automation
script:
•	 Get_yar_files(directory): This function takes a

directory path as input and returns a list of Yara
(.yar) file paths found in that directory and its
subdirectories. It uses the os.walk() function
to traverse the directory and its subdirectories
recursively, and filters the files based on their
file extensions (.yar or .yara).

•	 Get_files_in_directory(directory): This function
takes a directory path as input and returns a list
of file names present directly in that directory
(excluding subdirectories). It uses os.listdir()
to get the list of all files in the directory and
filters out any subdirectories using os.path.
isfile().

•	 Write_to_file(filename): This function
takes a filename as input and appends
information about that file to a text file named
"safeyarareport.txt". It opens the file in append
mode using the open () function, writes the file
information (such as the filename) using file.
write(), and then closes the file. This function
is used to record the processed DLL files in
the report.

2) Working on Yara
Yara is a signature matching language, where a

dataset is created with a list of malicious information.
Using Yara, that information pattern and rules are
being searched in a file. If that information exists in
the newly searched file, it is considered malicious
as it contains a malicious signature. It can help us
identify the static string, pattern, and flow of an
attack.

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

43

JISCR 2024; Volume 7 Issue (1)

C. Using Sysinternal
There are many tools available in the Microsoft

Sysinternal suite. These tools can be used for
different purposes. A Sigcheck, Autoruns, and
Procmon are used in this research project. Procmon
and Autoruns are being manually analyzed, and
Sigcheck is being automated using Python script.

1) Automating the Process
A Python script is being written for the automation

process. This Python script takes a directory and
puts all the files in this directory in a list. Then, it
runs Sigcheck for each file in the directory and
writes the results in the output file. Fig. 4 shows the
Python code for the process.

The Python script utilizes the subprocess module
to run an external command called Sigcheck.exe
and capture its output. The script aims to scan files
in a given directory using the Sigcheck command
and write the output to "output.txt ". The following
are the core functions of the script.
•	 Run_sigcheck(file_path): This function takes a

file path as input, constructs a command string

using the file_path, and runs the sigcheck.exe
command with the constructed command.
The output of the command is captured and
returned as a string.

•	 Main(directory): This function is the main entry
point of the script. It initializes an empty file_list
and sets the output file name as "output.txt".
It then retrieves the list of files in the provided
directory using os.walk(), adds each file's path
to file_list, and executes the run_sigcheck
function for each file in file_list. The output
of each execution is written to the output.txt
file, separating each file's output with a line of
dashes. Finally, it prints a message indicating
the location of the output file.

2) Working on the Sysinternal
As mentioned earlier, Sysinternals tools are a

collection of powerful utilities designed to help
users and IT professionals analyze, diagnose,
and troubleshoot various aspects of the Windows
operating system [27]. Among the tools used
in the project, three notable ones are Procmon,

Abuabid and Aldeij

Restricted - مقيد

Figure 4: Sigcheck Automation Script

 The Python script utilizes the subprocess module to run an external command called Sigcheck.exe and capture its

output. The script aims to scan files in a given directory using the Sigcheck command and write the output to

"output.txt ". The following are the core functions of the script.

❖ Run_sigcheck(file_path): This function takes a file path as input, constructs a command string using the

file_path, and runs the sigcheck.exe command with the constructed command. The output of the command

is captured and returned as a string.

❖ Main(directory): This function is the main entry point of the script. It initializes an empty file_list and sets

the output file name as "output.txt". It then retrieves the list of files in the provided directory using os.walk(),

adds each file's path to file_list, and executes the run_sigcheck function for each file in file_list. The output

of each execution is written to the output.txt file, separating each file's output with a line of dashes. Finally,

it prints a message indicating the location of the output file.

Working on the Sysinternal

As mentioned earlier, Sysinternals tools are a collection of powerful utilities designed to help users and IT

professionals analyze, diagnose, and troubleshoot various aspects of the Windows operating system [27]. Among the

tools used in the project, three notable ones are Procmon, Autoruns, and Sigcheck. Procmon captures real-time system

activity, providing detailed information about files, registry, process, thread, and network events (Halsey & Halsey,

2022). On the other hand, Autoruns identifies and manages auto-starting programs, services, and drivers, enhancing

system performance and security. In contrast, Sigcheck is a command-line tool used to verify the digital signatures of

files on Windows systems. It provides information about the signer, time stamp, and integrity of executable files,

drivers, DLLs, and other system files. Sigcheck helps detect unsigned or tampered files, ensuring the integrity and

authenticity of system files. It is valuable for security analysis and identifying potential risks or malware infections. In

Fig. 4. Sigcheck Automation Script.

44

JISCR 2024; Volume 7 Issue (1)

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

Autoruns, and Sigcheck. Procmon captures real-
time system activity, providing detailed information
about files, registry, process, thread, and network
events [27]. On the other hand, Autoruns identifies
and manages auto-starting programs, services,
and drivers, enhancing system performance and
security. In contrast, Sigcheck is a command-line
tool used to verify the digital signatures of files on
Windows systems. It provides information about the
signer, time stamp, and integrity of executable files,
drivers, DLLs, and other system files. Sigcheck
helps detect unsigned or tampered files, ensuring
the integrity and authenticity of system files. It
is valuable for security analysis and identifying
potential risks or malware infections. In the research
project, this tool is being used, and the sign status
is given main priority. The problem with the other
Sysinternal tools is being faced in the execution of
the DLL files because of tools. like Procmon and
Autoruns need the actual execution of the file. Then,
they can store and present the activities of that file.
However, in this case, the DLL files were not being
executed because they cannot be executed stand-
alone. An attached .exe file is needed to call the
functions inside the DLL files.

V. Research Results and Discussions

This section visually represents the data through
graphs, charts, or other visual aids. It thoroughly
discusses the findings obtained from the analysis,
delving into their significance and implications
within the study context. Additionally, it compares
these findings to the initial hypotheses or research
questions posed at the investigation's outset.
Through this comparative analysis, the section
aims to evaluate the extent to which the data aligns
with the anticipated outcomes and contributes to
the overall understanding of the research topic.

A. VirusTotal
In this research project, the results of all the anti-

viruses are being given priority; they are also being

used to decide the maliciousness of the sample.
The script automates the process and writes the
results in the text file. The text file is also shown
below. In this example, many of the files are being
shown as malicious with 1%, which is considered
a false positive, and those are being considered
non-malicious because of the very low percentage.
Fig. 5 shows the result of the malicious DLL files.
While Fig. 6 shows the output of the benign DLL
files.
Effectiveness of VirusTotal

Out of 80 malicious files, VirusTotal marked 45
as malicious, and out of 80 non-malicious files,
VirusTotal marked 79 as safe. Hence, regarding
finding if the file is safe, VirusTotal is very effective
for finding malicious files and is around 56%
effective in detecting malicious DLLs and around
99% of true positive safe DLLs.
Dependence of Effectiveness

The effectiveness of VirusTotal depends on the
popularity of the malware sample. If the malware
is being previously known and the same malware,
techniques, or signatures used again, then it is very
effective. However, if the zero-day attack happened,
it would be less effective as the database of the
zero-day attack is not well known in the market.

B. Yara
The number of string matching and speed of

the string matching are being given priority. The
script automates finding if the file contains any of
the malicious signatures defined in the malicious
signature database. In this case, even a single
positive result can lead us toward the conclusion
that the DLL is being malicious. Fig. 7 shows the
results of the malicious files when the Yara rule is
being run on the malicious directory. Whereas Fig. 8
shows the results of Yara rules when the files are safe.
Effectiveness of Yara

Out of 80 Malicious files, Yara marked 42 as
malicious, and out of 80 non-malicious files, Yara
marked 78 as safe. This makes the tool 52%

45

JISCR 2024; Volume 7 Issue (1)

Abuabid and Aldeij

Restricted - مقيد

Figure 5: Output of VirusTotal for Malicious Dataset

 igure 6: Output of Virustotal for Safe Dataset

Effectiveness of VirusTotal

Out of 80 malicious files, VirusTotal marked 45 as malicious, and out of 80 non-malicious files, VirusTotal marked

79 as safe. Hence, regarding finding if the file is safe, VirusTotal is very effective for finding malicious files and is

around 56% effective in detecting malicious DLLs and around 99% of true positive safe DLLs.

Fig. 5. Output of VirusTotal for Malicious Dataset.

Restricted - مقيد

Figure 5: Output of VirusTotal for Malicious Dataset

 igure 6: Output of Virustotal for Safe Dataset

Effectiveness of VirusTotal

Out of 80 malicious files, VirusTotal marked 45 as malicious, and out of 80 non-malicious files, VirusTotal marked

79 as safe. Hence, regarding finding if the file is safe, VirusTotal is very effective for finding malicious files and is

around 56% effective in detecting malicious DLLs and around 99% of true positive safe DLLs.

Fig. 6 Output of Virustotal for Safe Dataset.

46

JISCR 2024; Volume 7 Issue (1)

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

effective in detecting malicious files and around
98% of true positive safe DLLs.
Dependence of Effectiveness

The effectiveness of Yara depends on the
provided Yara rule and the time it takes to execute
it. Because the provided Yara rules contain the

information Yara is processing, this processing
time is also an essential factor, as there can be
thousands of Yara rules. It is also helpful for the
malware whose signature or flow is known; it will
also not help us detect the zero days based on the
signatures.

Restricted - مقيد

Figure 7: Output of Yara for Malicious Dataset

Figure 8: Output of Yara for Safe Dataset

Effectiveness of Yara

Out of 80 Malicious files, Yara marked 42 as malicious, and out of 80 non-malicious files, Yara marked 78 as safe.

This makes the tool 52% effective in detecting malicious files and around 98% of true positive safe DLLs.

Dependence of Effectiveness

The effectiveness of Yara depends on the provided Yara rule and the time it takes to execute it. Because the provided

Yara rules contain the information Yara is processing, this processing time is also an essential factor, as there can be

Fig. 7 Output of Yara for Malicious Dataset.

Restricted - مقيد

Figure 7: Output of Yara for Malicious Dataset

Figure 8: Output of Yara for Safe Dataset

Effectiveness of Yara

Out of 80 Malicious files, Yara marked 42 as malicious, and out of 80 non-malicious files, Yara marked 78 as safe.

This makes the tool 52% effective in detecting malicious files and around 98% of true positive safe DLLs.

Dependence of Effectiveness

The effectiveness of Yara depends on the provided Yara rule and the time it takes to execute it. Because the provided

Yara rules contain the information Yara is processing, this processing time is also an essential factor, as there can be

Fig. 8 Output of Yara for Safe Dataset.

47

JISCR 2024; Volume 7 Issue (1)

Abuabid and Aldeij

C. Sysinternal Sigcheck
Out of 80 Malicious files, Sigcheck marked 40

files as unsigned and 40 as signed. In contrast, out
of 80 non-malicious files, Sigcheck marked 61 files
as signed and 19 files as unsigned, which makes
around a 50% success rate of detecting malicious
DLLs and roughly 76% of true positive safe DLLs.

Fig. 9 and 10 show the results of the output files for
both the malicious directory and the safe directory.
Dependence of Effectiveness of Sysinternal Sigcheck

The effectiveness of Sysinternal depends on
the hashes and certificates authority database
that the Sigcheck is using. The other tools of
Sysinternal, like Promon and autoruns, depend on

Restricted - مقيد

thousands of Yara rules. It is also helpful for the malware whose signature or flow is known; it will also not help us

detect the zero days based on the signatures.

2. SYSINTERNAL -SIGCHECK

Out of 80 Malicious files, Sigcheck marked 40 files as unsigned and 40 as signed. In contrast, out of 80 non-malicious

files, Sigcheck marked 61 files as signed and 19 files as unsigned, which makes around a 50% success rate of detecting

malicious DLLs and roughly 76% of true positive safe DLLs. Figures 9 and 10 show the results of the output files for

both the malicious directory and the safe directory.

Figure 9: Output of Sigcheck Malicious Directory

Figure 10: Output of Sigcheck Safe Directory

Fig. 9. Output of Sigcheck Malicious Directory.

Restricted - مقيد

thousands of Yara rules. It is also helpful for the malware whose signature or flow is known; it will also not help us

detect the zero days based on the signatures.

2. SYSINTERNAL -SIGCHECK

Out of 80 Malicious files, Sigcheck marked 40 files as unsigned and 40 as signed. In contrast, out of 80 non-malicious

files, Sigcheck marked 61 files as signed and 19 files as unsigned, which makes around a 50% success rate of detecting

malicious DLLs and roughly 76% of true positive safe DLLs. Figures 9 and 10 show the results of the output files for

both the malicious directory and the safe directory.

Figure 9: Output of Sigcheck Malicious Directory

Figure 10: Output of Sigcheck Safe Directory Fig. 10 Output of Sigcheck Safe Directory.

48

JISCR 2024; Volume 7 Issue (1)

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

the effectiveness of the manual analysis. The DLL
files cannot be executed standalone; that’s why it
is difficult to manually analyze and use these tools
to analyze DLL injection. Hence, the Sysinternal
tools are not effective for analyzing DLL files.
However, the analysis of the portable executable
can be analyzed effectively with Sysinternal tools.
The advantage of using Sysinternal tools for the
portable executable is that it can analyze the files
dynamically. It is beyond the analysis of static or
signature-based analyses. Sysinternal can help to
identify unknown zero-day attacks.

D. Hypothesis Results
H1: Sysinternal is more effective than VirusTotal in
DLL injection detection.

The empirical findings do not support the
findings concerning the research hypothesis (i.e.,
H1) about Sysinternal being more effective than
VirusTotal in DLL injection detection.
H2: Sysinternal is more effective than Yara in DLL
injection detection.

The empirical findings do not support the
findings concerning the research hypothesis (i.e.,
H2) about Sysinternal being more effective than
Yara in DLL injection detection.
H3: VirusTotal is less effective than Yara in detecting
DLL Injection

The empirical findings do not support the
findings concerning the research hypothesis (i.e.,
H3) about VirusTotal being less effective than Yara
in detecting DLL Injection.

VI. Conclusion and Future Work

This research project compares the effectiveness
of three widely used open-source tools, VirusTotal,
Yara, and Sysinternal, in detecting DLL injection
incidents in cybersecurity. The findings suggest
that VirusTotal proves to be the most effective tool,
demonstrating high accuracy and robust detection
capabilities. Yara, an open-source pattern-matching

tool, exhibits potential in detecting specific injection
patterns but falls behind in overall effectiveness
compared to VirusTotal. Sysinternal, known for its
powerful system analysis capabilities, performs
decently in identifying DLL injection occurrences
but lags behind VirusTotal and Yara. These
findings emphasize the significance of considering
tool effectiveness and specific strengths when
selecting the most suitable solution for DLL injection
detection. Ultimately, VirusTotal emerges as the
preferred choice due to its superior performance,
while Yara and Sysinternal can be complementary
tools in specific scenarios.

The drawback observed in evaluating
Sysinternal tools for DLL injection detection is
their reliance on executing the DLL files. Unlike
VirusTotal and Yara, which analyze the files
independently, Sysinternal tools require the DLL
files to be executed to detect injection incidents.
This approach can be problematic when attempting
to run the DLL files standalone, as it may encounter
issues or dependencies that prevent their proper
execution. This limitation reduces the flexibility and
convenience of using Sysinternal tools, especially
in cases where executing the DLL files separately
is necessary or desired. It highlights the need for
alternative detection methods that do not rely on
executing the DLL files themselves, ensuring more
robust and comprehensive detection capabilities.

Future work in DLL injection detection
can involve evaluating new tools that emerge
in the field, analyzing advanced malware
techniques, integrating multiple detection tools
for a comprehensive approach, exploring the
application of machine learning algorithms, and
developing real-time monitoring and response
systems. These efforts aim to stay updated with
evolving threats, improve detection accuracy, and
enhance the ability to detect and mitigate DLL
injection attacks promptly. Furthermore, there could
be an investigation into other open-source DLL
injection detection tools such as Detours, Volatility,
and PeStudio. Detours is a software package

49

JISCR 2024; Volume 7 Issue (1)

Abuabid and Aldeij

developed by Microsoft Research that allows
developers to create applications with DLL injection
detection capabilities. It provides a set of APIs and
hooks that enable monitoring and interception
of DLL injections in real-time. Volatility is a widely
used open-source memory forensics framework
that helps analyze system memory for forensic
investigations. It provides various plugins and
capabilities to detect DLL injections and analyze
memory artifacts associated with the injected DLLs.
PeStudio is a free and lightweight tool for analyzing
Windows executable files. It allows users to inspect
the imports, exports, resources, and sections of
an executable, helping to identify suspicious or
unauthorized DLLs that may indicate DLL injection.

Funding

This article did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

Conflict of Interest

Authors declare that they have no conflict of
interest.

References

[1]	 H. Alnabulsi and R. Islam, “Protecting code injection

attacks in intelligent transportation system,” in 2019

18th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE), IEEE, 2019, pp.

799–806.

[2]	 L. An, M. Castelluccio, and F. Khomh, “An empirical

study of dll injection bugs in the firefox ecosystem,”Empir

Softwz Eng, vol. 24, pp. 1799–1822, 2019.

[3]	 W. Matsuda, M. Fujimoto, and T. Mitsunaga, “Detection of

malicious tools by monitoring DLL using deep learning,”

Journal of Information Processing, vol. 28, pp. 1052–

1064, 2020.

[4]	 A. Ahmad, S. B. Maynard, K. C. Desouza, J. Kotsias, M.

T. Whitty, and R. L. Baskerville, “How can organizations

develop situation awareness for incident response: A

case study of management practice,” Comput Secur,

vol. 101, p. 102122, 2021.

[5]	 B. Miller et al., “Reviewer integration and performance

measurement for malware detection,” in Detection of

Intrusions and Malware, and Vulnerability Assessment:

13th International Conference, DIMVA 2016, San

Sebastián, Spain, July 7-8, 2016, Proceedings 13,

Springer, 2016, pp. 122–141.

[6]	 Satyabrata Jena, “Difference-between-open-source-

software-and-commercial-software,” https://www.

geeksforgeeks.org/difference-between-open-source-

software-and-commercial-software/.

[7]	 A. Kleymenov and A. Thabet, Mastering Malware

Analysis: A malware analyst’s practical guide to

combating malicious software, APT, cybercrime, and IoT

attacks. Packt Publishing Ltd, 2022.

[8]	 K. E. Cybersecurity, “The Protection Technologies of

Kaspersky Endpoint Security.”

[9]	 S. J. Yoo, “Study on improving endpoint security

technology,” Convergence Security Journal, vol. 18, no.

3, pp. 19–25, 2018.

[10]	 K. Jochem, “Tag Archives: Applocker”.

[11]	 S. E. Protection, “Symantec Endpoint Protection 11.0,”

Application and Device Control, pp. 1–18, 2008.

[12]	 S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis,

“Open for hire: attack trends and misconfiguration pitfalls

of IoT devices,” in Proceedings of the 21st ACM Internet

Measurement Conference, 2021, pp. 195–215.

[13]	 J. M. Pearce, “Economic savings for scientific free and

open source technology: A review,” HardwareX, vol. 8,

p. e00139, 2020.

[14]	 E. Choo, M. Nabeel, R. De Silva, T. Yu, and I. Khalil,

“A large-scale study and classification of Virustotal

reports on phishing and malware URLs,” arXiv preprint

arXiv:2205.13155, 2022.

[15]	 M. E. Russinovich and A. Margosis, Troubleshooting with

the Windows Sysinternals tools. Microsoft Press, 2016.

[16]	 S. Zhu, Z. Zhang, L. Yang, L. Song, and G. Wang,

“Benchmarking label dynamics of virustotal engines,”

in Proceedings of the 2020 ACM SIGSAC Conference

50

JISCR 2024; Volume 7 Issue (1)

Cyber Security Incident Response: The Effectiveness of Open-Source Detection Tools in DLL Injection Detection

on Computer and Communications Security, 2020, pp.

2081–2083.

[17]	 E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti,

“Understanding linux malware,” in 2018 IEEE symposium

on security and privacy (SP), IEEE, 2018, pp. 161–175.

[18]	 M. G. Christopher and K. Raychaudhuri, “A Digital

Forensic Approach for Examination and Analysis of

Frozen Hard Disk of Virtual Machine.,” International

Journal of Cyber-Security and Digital Forensics, vol. 8,

no. 4, pp. 262–273, 2019.

[19]	 C. Avci, B. Tekinerdogan, and C. Catal, “Analyzing the

performance of long short‐term memory architectures

for malware detection models,” Concurr Comput, vol. 35,

no. 6, p. 1, 2023.

[20]	 E. Ko, J. Kim, Y. Ban, H. Cho, and J. H. Yi, “ACAMA:

Deep Learning-Based Detection and Classification of

Android Malware Using API-Based Features,” Security

and Communication Networks, vol. 2021, pp. 1–12, 2021.

[21]	 D. Regéciová, D. Kolář, and M. Milkovič, “Pattern

Matching in YARA: Improved Aho-Corasick Algorithm,”

IEEE Access, vol. 9, pp. 62857–62866, 2021.

[22]	 N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and

J. Song, “Embedding fuzzy rules with YARA rules for

performance optimisation of malware analysis,” in 2020

IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), IEEE, 2020, pp. 1–7.

[23]	 P. Black, I. Gondal, A. Bagirov, and M. Moniruzzaman,

“Malware variant identification using incremental

clustering,” Electronics (Basel), vol. 10, no. 14, p. 1628,

2021.

[24]	 J. Zhang, M. F. Khan, X. Lin, and Z. Qin, “An optimized

positive-unlabeled learning method for detecting a large

scale of malware variants,” in 2019 IEEE Conference on

Dependable and Secure Computing (DSC), IEEE, 2019,

pp. 1–8.

[25]	 abuse.ch, “MalwareBazaar Database,” https://bazaar.

abuse.ch/.

[26]	 DLL-Files.com, “DLL-files,” https://www.DLL-files.com/ .

[27]	 M. Halsey and M. Halsey, “Microsoft Sysinternals Suite,”

Windows 10 Troubleshooting: Learn to Troubleshoot and

Repair Windows 10 Problems Like the Pros Do, pp. 607–

636, 2022.

