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Abstract
This paper introduces a novel, deep knowledge-based approach for classifying Distributed Denial of Service 

(DDoS) attacks in Software-Defined Networking (SDN) environments. While SDN’s centralized architecture en-
hances programmability and control, it also increases vulnerability to advanced cyber-attacks. DDoS assaults, 
including SYN, UDP, and ICMP floods, pose significant risks by overloading network capacity and disrupting 
normal operations. The proposed method uses deep learning to distinguish legitimate traffic from malicious 
activities, leveraging key traffic flow features such as flow duration, packet size, protocol type, and byte counts. 
A neural network classifier analyzes this data to identify complex patterns and behaviors associated with DDoS 
attacks. The model’s performance was evaluated using the CICIDS 2024 dataset, which simulates real-world 
DDoS scenarios. Results demonstrate superior performance compared to traditional machine learning tech-
niques, achieving high accuracy, precision, recall, and F1 scores. The model also exhibits robustness against 
imbalanced datasets, minimizing false positives and maximizing detection rates. This approach enhances the 
speed and accuracy of DDoS detection in SDN systems and provides a foundation for future research into ad-
vanced deep learning models for real-time network defense and mitigation strategies. By improving detection 
capabilities and resilience, the method supports the development of more secure SDN environments.

* Corresponding Author: Mohd Nadeem
Email: mohd.nadeem1155@gmail.com
doi: 10.26735/VNFU3495

Keywords: cybercrimes, deep learning (DL), DDoS attacks, network traffic classification, neural networks, SDN

Production and hosting by NAUSS

1658-7782© 2024. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security and Cybercrimes Research 2024; Volume 7 Issue (2), 109-126 Original Article

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. IntroductIon

Distributed Denial of Service (DDoS) attacks 
are a significant threat in modern digital networks, 
designed to overwhelm target systems with 
excessive traffic, rendering them inaccessible to 
legitimate users. These attacks exploit system 
vulnerabilities to flood network resources, disrupt 
services, and cause prolonged downtime, leading 
to financial and operational losses [1].

The increasing adoption of Software-Defined 
Networking (SDN) has introduced innovative 
approaches and opportunities for mitigating such 
attacks, necessitating the development of more 
robust detection and mitigation techniques. SDN 
is a transformative networking paradigm that 
decouples the control plane from the data plane, 
allowing for centralized and programmable network 
management [2]. This separation provides enhanced 
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flexibility and adaptability in managing network 
resources, enabling dynamic traffic handling and 
improved scalability. However, it also introduces 
unique vulnerabilities, particularly to the centralized 
control plane [3].

DDoS attacks can specifically target the SDN 
control plane, overwhelming it with malicious 
traffic and disrupting the overall functionality of 
the network. As these attacks grow in complexity, 
effectively distinguishing between legitimate traffic 
and malicious activity in SDN environments becomes 
critical to maintaining network security.

A. Background
Conventional network architectures integrate the 

data planes within network nodes, such as switches 
and routers. These devices are responsible for both 
forwarding traffic and making routing decisions. SDN 
introduces a paradigm shift by relocating control 
functions to a centralized controller while the data 
plane remains distributed across network devices 
[4]. This architectural change offers significant 
benefits, including simplified network management, 
automation, and dynamic configuration capabilities. 
However, it also introduces a single point of failure—
the SDN controller. If the controller is compromised 
or overloaded, the entire network can become 
inoperative, making it a prime target for DDoS 
attackers [5].

Protecting the control plane from DDoS 
attacks is one of the most pressing challenges in 
SDN environments. Attackers can flood the SDN 
controller with a massive volume of requests, 
overwhelming it and preventing the processing of 
legitimate traffic. This is particularly hazardous in 
SDN, as the controller is crucial for managing all 
traffic streams within the network. If it becomes 
unresponsive, network operations can come to a 
halt, disrupting services for all users.

Traditional DDoS mitigation techniques, such 
as signature-based detection systems or rule-
based intrusion detection systems (IDS), have 
been employed in SDN environments with varying 
success. However, these methods often struggle 
to keep pace with the evolving tactics of attackers. 
As DDoS attacks grow more sophisticated, they 
increasingly mimic normal traffic patterns, making 

it difficult for conventional methods to distinguish 
between benign and malicious activity. Further 
more, traditional techniques frequently produce 
high false positive rates and rely on manual feature 
engineering, limiting their real-time effectiveness.

In recent years, deep learning (DL) has proven 
to be a highly effective approach to improving 
network security. Unlike conventional machine 
learning techniques that depend on manually 
engineered features and fixed rules, DL models can 
automatically identify and extract intricate patterns 
from large datasets. This capability is particularly 
advantageous for detecting DDoS attacks as traffic 
patterns evolve. By employing DL, models can 
adapt to emerging attack vectors, leading to more 
accurate classification of network traffic [6]. These 
models can be trained to differentiate between 
normal and malicious traffic by identifying subtle 
variations in traffic flow characteristics, thereby 
improving detection speed and precision. The main 
objectives of this research paper are the following:
•	 To classify traffic types within an SDN 

environment using deep learning.
•	 To enhance the security of SDN through 

effective DDoS detection methodologies.
The primary objective of this study is to extend 

and evaluate a DL-based approach to classify 
DDoS attack traffic in SDN environments. This 
approach leverages traffic flow features such 
as flow duration, packet size, and protocol type 
to distinguish between legitimate and malicious 
traffic. By utilizing a neural network classifier, the 
study aims to address the limitations of traditional 
DDoS detection methods, including high false 
positive rates and difficulty adapting to evolving 
attack patterns. The model’s performance will be 
evaluated using real-world attack datasets, such 
as the CICIDS 2024 dataset, based on metrics 
like recall, accuracy, and F1-score. This research 
seeks to contribute to the ongoing development of 
advanced security mechanisms that protect SDN 
environments from DDoS attacks [7].

II. LIterature revIew

Several studies have focused on DDoS 
detection in SDN environments. Early approaches 



111

JISCR 2024; Volume 7 Issue (2)

include rule-based systems and conventional 
machine learning (ML) methods, such as decision 
trees (DT) and support vector machines (SVM), 
which rely on handcrafted features to classify 
network traffic [1]. These techniques need help 
with complex traffic patterns [2]. More recent 
approaches have explored deep learning 
because it can automatically mine relevant 
features from raw traffic data. Researchers like 
Xiong and Chen [3] and Yin and Han [4] have 
employed Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs) to achieve 
better accuracy in their findings. This paper builds 
upon these prior works by proposing a deep 
learning-founded model focusing on scalability, 
detection efficiency, and real-time performance 
in SDN environments. Authors in [5] introduced a 
hybrid approach coalescing Convolutional Neural 
Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks for intrusion detection. While their 
method demonstrated high accuracy in identifying 
known threats, it struggled with scalability under 
high traffic conditions, limiting its practical 
application in real-time network scenarios. An auto 
encoders to detect rare anomalies in web traffic 
has been utilized in [6]. The proposed approach 
excelled at identifying unusual patterns but lacked 
robustness against adversarial attacks, leaving 
systems vulnerable to stealthy or sophisticated 
threats. Authors in [7] developed a 1D-CNN model 
optimized for IoT-specific traffic classification. While 
their solution achieved impressive throughput for 
IoT environments, it struggled to adapt to diverse 
network types, limiting its broader applicability.

III. MethodoLogy

 Implementing a deep learning model in 
real-world scenarios requires a strategic focus 
on computational efficiency, training time, and 
scalability to ensure practical deployment and 
robust performance. Here is how the proposed 
model can be applied effectively:

A. Real-World Applications
Previous research has demonstrated the 

versatility of deep learning models in network 
security applications [5, 6]. Our model extends 

these approaches by integrating real-time detection 
capabilities with SDN environments. In network 
security, the model can detect malicious traffic by 
integrating with intrusion detection systems (IDS), 
where edge devices locally process data and flag 
potential threats for in-depth cloud-based analysis 
[7]. This approach has been successfully applied 
in various domains, including financial transaction 
monitoring for fraud detection [8], and large-scale 
system monitoring [9], where the critical challenge 
is maintaining low latency for high traffic volumes. 
The solution involves using lightweight frameworks 
optimized for inference, as demonstrated in recent 
SDN security implementations [10].

B. Computational Efficiency
Efficient computation ensures seamless 

operation in resource-constrained environments. 
Model Optimization Prune unnecessary weights 
and quantize parameters to reduce complexity 
while deploying lightweight architectures like Mobile 
Net for edge devices. Inference Optimization: Use 
dynamic batching and parallel processing for faster 
throughput.

C. Reducing Training Time
Efficient training methods save development 

costs. Transfer Learning Modify pre-trained models 
on specific tasks, e.g., ResNet for image processing. 
They distributed Training Split tasks across GPUs 
or nodes for faster results. Incremental training 
continuously update models with new data instead 
of retraining.

Mohd Nadeem et. al

Fig. 1. Implementing a deep learning model in real-world in 
real-world scenarios.
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and malicious traffic by identifying subtle variations in traffic 
flow characteristics, thereby improving detection speed and 
precision. 
Objective 

• To classify traffic types within an SDN environment 
using deep learning. 

• To enhance the security of SDN through effective 
DDoS detection methodologies. 

The primary objective of this study is to extend and evaluate a 
DL-based approach to classify DDoS attack traffic in SDN 
environments. This approach leverages traffic flow features 
such as flow duration, packet size, and protocol type to 
distinguish between legitimate and malicious traffic. By 
utilizing a neural network classifier, the study aims to address 
the limitations of traditional DDoS detection methods, 
including high false positive rates and difficulty adapting to 
evolving attack patterns. The model’s performance will be 
evaluated using real-world attack datasets, such as the CICIDS 
2024 dataset, based on metrics like recall, accuracy, and F1-
score. This research seeks to contribute to the ongoing 
development of advanced security mechanisms that protect 
SDN environments from DDoS attacks [7]. 

 
II. LITERATURE REVIEW 

 
Several studies have focused on DDoS detection in SDN 
environments. Early approaches include rule-based systems 
and conventional machine learning (ML) methods, such as 
decision trees (DT) and support vector machines (SVM), 
which rely on handcrafted features to classify network traffic 
[1]. These techniques need help with complex traffic patterns 
[2]. More recent approaches have explored deep learning 
because it can automatically mine relevant features from raw 
traffic data. Researchers like X et al. [3] and Y et al. [4] have 
employed Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) to achieve better accuracy 
in their findings. This paper builds upon these prior works by 
proposing a deep learning-founded model focusing on 
scalability, detection efficiency, and real-time performance in 
SDN environments. [5] Introduced a hybrid approach 
coalescing Convolutional Neural Networks (CNNs) and Long 
Short-Term Memory (LSTM) networks for intrusion 
detection. While their method demonstrated high accuracy in 
identifying known threats, it struggled with scalability under 
high traffic conditions, limiting its practical application in 
real-time network scenarios. [6] Utilized auto encoders to 
detect rare anomalies in web traffic. Their approach excelled 
at identifying unusual patterns but lacked robustness against 
adversarial attacks, leaving systems vulnerable to stealthy or 
sophisticated threats. [7] Developed a 1D-CNN model 
optimized for IoT-specific traffic classification. While their 
solution achieved impressive throughput for IoT 
environments, it struggled to adapt to diverse network types, 
limiting its broader applicability. 
 

III. METHODOLOGY 
 Implementing a deep learning model in real-world scenarios 
requires a strategic focus on computational efficiency, training 
time, and scalability to ensure practical deployment and robust 
performance. Here's how the proposed model can be applied 
effectively: 

 

Fig. 1. Implementing a deep learning model in real-world in real-world 
scenarios 

A. Real-World Applications 
 
1) Network Security 
The model can detect malicious traffic in real-time by 
integrating it into intrusion detection systems (IDS). Edge 
devices can locally process data and flag potential threats for 
in-depth cloud-based analysis. The critical challenge is 
maintaining low latency for high traffic volumes. Solution: 
Use lightweight frameworks optimized for inference. 
 
2)  Healthcare 
The model can analyze medical imaging, such as X-rays or CT 
scans, in hospital systems for disease detection. Using pre-
trained models and transfer learning minimizes the need for 
large-scale Training while enabling real-time diagnostics. 
3) Finance 
The model can detect fake activities by monitoring matter data 
in real time. Synthetic data generation and ensemble methods 
help handle data imbalances. 
4) Retail 
The model can analyze user behavior to deliver personalized 
product recommendations. Cloud integration ensures 
scalability for large customer bases, using tools like 
Kubernetes for horizontal scaling. 
 
B. Computational Efficiency 
Efficient computation ensures seamless operation in resource-
constrained environments. Model Optimization Prune 
unnecessary weights and quantize parameters to reduce 
complexity while deploying lightweight architectures like 
Mobile Net for edge devices. Inference Optimization: Use 
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D. Scalability
Cloud Integration Use server-less architectures 

for auto-scaling during high loads. Edge 
Deployment Process data locally on IoT devices, 
reducing latency. Containerization Use Docker and 
Kubernetes for scalable, flexible deployments.

E. Traffic Congestion Prediction
In smart cities, IoT sensors and cameras collect 

data on traffic flow. The model preprocesses data, 
predicts congestion locally on edge devices, 
and aggregates insights in the cloud for city-wide 
monitoring. This approach balances computational 
efficiency, minimizes training time through transfer 
learning, and scales dynamically with traffic demand.

The proposed deep learning model addresses 
these aspects to ensure effective implementation 
in diverse domains, making it robust, scalable, and 
practical for real-world applications.

Our methodology involves step by step 8 phases, 
as shown in Fig.3  [8]: 

A. DATASET PREPARATION
Table I is a DDoS traffic dataset (2020–2024) 

that represents different features extracted from 
network traffic data related to DDoS attacks: Traffic 
data is collected from benign and DDoS attack 
scenarios within an SDN simulation environment. 
Various DDoS attack types will be simulated using 
tools such as Low Orbit Ion Cannon (LOIC) and 
High Orbit Ion Cannon (HOIC) [9].

B. Data Preprocessing
1) Data Cleaning
 Eliminate duplicates and handle missing values.

2) Feature Selection
 Focus on critical features such as packet length, 

flow duration, and flags.

C.  Model Design
1) Deep Learning Model & Architecture
We propose a deep learning architecture that 

includes the Input Layer receiving the feature set, 

hidden layers, a sequence of fully connected layers 
with activation functions (ReLU), dropout layers to 
prevent overfitting, and an Output Layer, a softmax 
layer to classify traffic into benign or various DDoS 
categories.

Fig. 2. Smart City IoT Traffic Flow Monitoring System.

 
 

3 

dynamic batching and parallel processing for faster 
throughput. 
 
C. Reducing Training Time 
Efficient training methods save development costs. Transfer 
Learning Modify pre-trained models on specific tasks, e.g., 
ResNet for image processing. They distributed Training Split 
tasks across GPUs or nodes for faster results. Incremental 
Training Continuously update models with new data instead of 
retraining. 
 
D. Scalability 
Cloud Integration Use server-less architectures for auto-
scaling during high loads. Edge Deployment Process data 
locally on IoT devices, reducing latency. Containerization Use 
Docker and Kubernetes for scalable, flexible deployments. 
 
E. Traffic Congestion Prediction 
In smart cities, IoT sensors and cameras collect data on traffic 
flow. The model preprocesses data, predicts congestion locally 
on edge devices, and aggregates insights in the cloud for city-
wide monitoring. This approach balances computational 
efficiency, minimizes training time through transfer learning, 
and scales dynamically with traffic demand. 

Fig.2. Smart City IOT Traffic Flow Monitoring System 
The proposed deep learning model addresses these aspects to 
ensure effective implementation in diverse domains, making it 
robust, scalable, and practical for real-world applications. 
Our methodology involves step by step 8 phases [8]:  
 
A. DATASET PREPARATION 
Table I is a DDoS traffic dataset (2020–2024), a table 
structure you can use. This table could represent different 
features extracted from network traffic data related to DDoS 
attacks: Traffic data is collected from benign and DDoS attack 
scenarios within an SDN simulation environment. Various 
DDoS attack types will be simulated using tools such as LOIC 
and HOIC [9]. 

TABLE I 
TRAFFIC DATA RELATED TO DDOS ATTACKS
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Source IP Destinatio
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5 1.5 MB 1200 SY
N 

Attack 

2021-03-
12 
14:25:12 
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Attack 
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Fig. 3. Flow Chart of Proposed Model of Methodology.
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B. Data Preprocessing 
 
1) Data Cleaning 
 Eliminate duplicates and handle missing values. 
2) Feature Selection 
 Focus on critical features such as packet length, flow 
duration, and flags. 
 
C.  Model Design 
1) Deep Learning Model & Architecture 
We propose a deep learning architecture that includes 
the Input Layer receiving the feature set, hidden layers, 
a sequence of fully connected layers with activation 
functions (ReLU), dropout layers to prevent overfitting, 
and an Output Layer, a softmax layer to classify traffic 
into benign or various DDoS categories. 
 
 2) Training Process 
As part of the training process, the dataset is separated 
into training, validation, and test sets. Using an 
optimizer like Adam results in a loss of cross-entropy 
function and tuning model hyper parameters to improve 
performance. Architecture Create many convolutional 
neural networks (CNNs), pooling layers, and fully 
linked levels in a CNN design. Activation Functions 

ReLU is used for the hidden layer and softmax on 
behalf of the output layer to classify traffic.  
 
We created a deep learning model that employs feed-
forward neural network architecture. The design 
includes an input layer to capture the traffic features, 
followed by several hidden layers prepared with ReLU 
activation functions. The output layer performs binary 
classification, distinguishing between regular traffic and 
DDoS attacks. Dropout regularization is employed to 
mitigate overfitting, while the Adam optimizer is 
applied to train the model effectively [10]. 
 
D. Model Training 
Training Set Divide the dataset hooked on training 
(80%) and testing (20%) sets. Training Process Train 
the CNN model designed for a fixed period, using an 
optimizer like Adam and a loss function such as 
categorical cross-entropy. Hyper parameter Tuning 
Adjust parameters like knowledge rate and group size to 
optimize model performance [11]. 
 
E.  Model Evaluation         
Testing Set Estimate the representation lying on the 
unseen testing set. Metrics Used Calculate accuracy, 
recall, and F1 Score. 
 
1) Sample Findings 
Precision: 98.7%  
Accuracy: 98.4%  
Recall percentage: 98.9%  
F1 score: 98.6%  
 
F.  Confusion Matrix 

                           TABLE II 
VISUALIZATION OF GENERATE A CONFUSION MATRIX TO 

ASSESS MODEL PERFORMANCE  
Predicted Normal Predicted DDoS 

Actual Normal 965 5 
Actual DDoS 4 926 

G.  Performance Evaluation  

This model is evaluated using fold-up cross-validation. 
The next performance metrics compute accurateness, 
accuracy, F1-score, recall, and AUC. We compare the 
results with traditional machine learning models, such 
as Random Forest, SVM, and K-Nearest Neighbors 
[12]. 
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 2) Training Process
As part of the training process, the dataset is 

separated into training, validation, and test sets. 
Using an optimizer like Adam results in a loss of cross-
entropy function and tuning model hyper parameters 
to improve performance. Architecture Create many 
convolutional neural networks (CNNs), pooling layers, 
and fully linked levels in a CNN design. Activation 
Functions ReLU is used for the hidden layer and 
softmax on behalf of the output layer to classify traffic. 

We created a deep learning model that employs 
feed-forward neural network architecture. The 
design includes an input layer to capture the 
traffic features, followed by several hidden layers 
prepared with ReLU activation functions. The output 
layer performs binary classification, distinguishing 
between regular traffic and DDoS attacks. Dropout 
regularization is employed to mitigate overfitting, 
while the Adam optimizer [10] is applied to train the 
model effectively, as shown in Fig.4.

D. Model Training
Training Set Divide the dataset hooked on training 

(80%) and testing (20%) sets. Training Process Train 
the CNN model designed for a fixed period, using 
an optimizer like Adam and a loss function such as 
categorical cross-entropy. Hyper parameter Tuning 
Adjust parameters like knowledge rate and group 
size to optimize model performance [11].

E.  Model Evaluation        
Testing Set Estimate the representation lying on 

the unseen testing set. Metrics used to calculate 
accuracy, recall, and F1 Score are the following:

Precision: 98.7% 
Accuracy: 98.4% 
Recall percentage: 98.9% 
F1 score: 98.6% 

F.  Confusion Matrix
Table II shows a visualization of the generated 

confusion matrix, used to assess the model 
performance, where both Fig.5(a) and Fig.5(b) 
show a confusion matrix which will also be utilized 
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for visualizing classification performance and a 
confusion matrix using confusion display.

G. Performance Evaluation 

This model is evaluated using fold-up cross-
validation. The next performance metrics compute 
accurateness, accuracy, F1-score, recall, and AUC. 
We compare the results with traditional machine 
learning models, such as Random Forest, SVM, 
and K-Nearest Neighbors [12].

The results shown in Table III, highlight how 
cutting-edge machine learning methods can 
improve network security protocols against dynamic 
cyber threats in SDN infrastructures.

H. Feature Selection

Key features are extracted from traffic flows, 
including packet size, flow duration, and the number 
of packets sent per second. These features will be 
crucial for training the deep learning models [13].

I. Evaluation Metrics

The determination of the model presentation will 
be evaluated based on accuracy, precision, recall, 
and F1 score. A confusion matrix will also be utilized 
for visualizing classification performance [14].

In the DDoS detection or classification task, 
where the model performance is evaluated, it is 
essential to understand how each metric works and 
how they contribute to the overall assessment. Here 
is a breakdown of A Misperception Milieu, Table V, 

to illustrate the show of a classification model by 
showing the relationship between real labels and 
predicted labels. It is made up of four essential 
components.

1) True Positive
This represents the number of instances 

correctly predicted as positive (for example, an 
attack correctly identified).

2) False Positive
This indicates the number of instances incorrectly 

predicted as positive (an attack is expected when 
it is benign).

Fig. 4. Proposed Framework for DDoS Attack Classification.

taBLe II
vIsuaLIzatIon of generate a confusIon MatrIx to assess ModeL 

PerforMance

Predicted Normal Predicted DDoS

Actual Normal
Actual DDoS

965
4

5
926

taBLe III
 ModeL PerforMance assessMent

Model accurateness Accuracy Recall F1-Score AUC

SVM 88.7% 87.5% 88.9% 88.2% 0.92

Random Forest
Deep Learning

91.3%
97.5%

90.8%
97.3%

91.5%
97.7%

91.1%
97.5%

0.94
0.98
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TABLE III 
 MODEL PERFORMANCE ASSESSMENT 

Model accurateness Accuracy Recall F1-
Score 

AUC 

SVM 88.7% 87.5% 88.9% 88.2% 0.92 
Random 
Forest 

91.3% 90.8% 91.5% 91.1% 0.94 

Deep 
Learning 

97.5% 97.3% 97.7% 97.5% 0.98 

 
The results highlight how cutting-edge machine learning 
methods can improve network security protocols against 
dynamic cyber threats in SDN infrastructures. 
 
H. Feature Selection 
Key features are extracted from traffic flows, including 
packet size, flow duration, and the number of packets 
sent per second. These features will be crucial for 
training the deep learning models [13]. 

 
 

Fig.4. Proposed Framework for DDoS Attack Classification 
 

I. Evaluation Metrics 

The determination of the model presentation will be 
evaluated based on accuracy, precision, recall, and F1 
score. A confusion matrix will also be utilized for 
visualizing classification performance [14] 

 
 

Fig. 5(a). A confusion matrix will also be utilized for visualizing 
classification performance 

 
 

                  Fig. 5(b). A confusion matrix uses using confusion display 

TABLE IV 
CLASSIFICATION OF DDOS DETECTION 

Accuracy: 100% 
Precision: 100% 
Recall: 100% 
F1 score: 100%  

 
 

TABLE V 
CLASSIFICATION REPORTS  

Precision recall f1-score  support 
DDoS      1.00        1.00       1.00          2 
Normal        1.00        1.00       1.00          3 
 
Accuracy       1.00                5 
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3) True Negative
 The number of instances acceptably predicts 

as unfavorable (a benign case correctly identified).

4) False Negative
The number of instances to be incorrectly 

predicted as unfavorable (an actual attack 
classified as benign).

Using the values from the confusion matrix, we 
calculate the following metrics [16].

A. Accuracy
The percentage of accurate forecasts among 

every forecast is known as accurateness

 
 

6 

Macro avg        1.00        1.00       1.00          5 

Weighted avg       1.00        1.00       1.00          5 

In your DDoS detection or classification task, where 
you're evaluating model performance, it's essential to 
understand how each metric works and how they 
contribute to the overall assessment. Here's a breakdown 
of A Misperception Milieu, Table V, to illustrate the 
show of a classification model by showing the 
relationship between real labels and predicted labels. It 
is made up of four essential components. 
 

TABLE VI. 
 COMPARING PREDICTED LABELS AGAINST ACTUAL 

LABELS. IT IS MADE UP OF FOUR ESSENTIAL COMPONENTS 
  

Predicted Positive Predicted Negative 
Actual Positive True Positive  False Negative  
Actual Negative False Positive  True Negative  

 
1) True Positive 
This represents the number of instances correctly 
predicted as positive (for example, an attack correctly 
identified). 
 
2) False Positive 
This indicates the number of instances incorrectly 
predicted as positive (an attack is expected when it’s 
benign). 
 
3) True Negative 
 The number of instances acceptably predicts as 
unfavorable (a benign case correctly identified). 
 
4) False Negative 
The number of instances to be incorrectly predicted as 
unfavorable (an actual attack classified as benign). 
Using the values from the confusion matrix, we 
calculate the following metrics [16]. 
 
A. Accuracy 
The percentage of accurate forecasts among every 
forecast is known as accurateness = !"#!$

!"#!$#%"#%$
 

 
Higher accuracy indicates better overall model 
performance, but it may be misleading in cases where 
the dataset is imbalanced (e.g., more benign traffic than 
attack traffic). 

B. Precision 

Precision refers to the percentage of appropriately 
identified positive instances out of all cases labelled as 
positive. 

Precision= !"
!"#%"

 
 

Higher accuracy indicates fewer false positives, which 
is crucial in DDoS detection, where wrongly labelling 
benign traffic as attack traffic can lead to unnecessary 
blocking [17]. 

C. Recall (Sensitivity) 

Recall measures the fraction of actual positive cases that 
the model positively recognizes from all actual positive 
cases. 

Recall= !"
!"#%$

 
 

Higher recall means the model is good at detecting 
attacks, reducing the chance of missing an attack (false 
negatives). 

D. F1 Score 

The F1 score represents the recall and harmonic mean 
of precision, comprehensively assessing a model’s 
performance, particularly in situations involving 
imbalanced classes. By integrating precision and recall, 
the F1 score takes both false positives (FP) and false 
negatives (FN), making it an effective metric for 
evaluating models in cases of uneven class dispersal. 
 

F1= 2𝑋𝑋 "&'()*)+,×.'(/00
"&'()*)+,#.'(/00

 
 
 The F1 score strikes symmetry between recall& 
accuracy, building it particularly appropriate for 
circumstances where both FP and FN carry significant 
costs. Confusion Matrix and Metric Calculation [18] 
 

TABLE VII 
CONFUSION MATRIX FOR DDOS DETECTION 

  
Forecasted Positive Forecasted Negative 

True Positive 50 10 
True Negative 15 75 
 
1) From This Matrix: 

TP (True Positives) = 50 
FP (False Positives) = 15 
TN (True Negatives) = 75 
FN (False Negatives) = 10 
 

Higher accuracy indicates better overall model 
performance, but it may be misleading in cases 
where the dataset is imbalanced (e.g., more benign 
traffic than attack traffic).

B. Precision
Precision refers to the percentage of 

appropriately identified positive instances out of all 
cases labelled as positive.
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Weighted avg       1.00        1.00       1.00          5 

In your DDoS detection or classification task, where 
you're evaluating model performance, it's essential to 
understand how each metric works and how they 
contribute to the overall assessment. Here's a breakdown 
of A Misperception Milieu, Table V, to illustrate the 
show of a classification model by showing the 
relationship between real labels and predicted labels. It 
is made up of four essential components. 
 

TABLE VI. 
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LABELS. IT IS MADE UP OF FOUR ESSENTIAL COMPONENTS 
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Actual Negative False Positive  True Negative  

 
1) True Positive 
This represents the number of instances correctly 
predicted as positive (for example, an attack correctly 
identified). 
 
2) False Positive 
This indicates the number of instances incorrectly 
predicted as positive (an attack is expected when it’s 
benign). 
 
3) True Negative 
 The number of instances acceptably predicts as 
unfavorable (a benign case correctly identified). 
 
4) False Negative 
The number of instances to be incorrectly predicted as 
unfavorable (an actual attack classified as benign). 
Using the values from the confusion matrix, we 
calculate the following metrics [16]. 
 
A. Accuracy 
The percentage of accurate forecasts among every 
forecast is known as accurateness = !"#!$

!"#!$#%"#%$
 

 
Higher accuracy indicates better overall model 
performance, but it may be misleading in cases where 
the dataset is imbalanced (e.g., more benign traffic than 
attack traffic). 

B. Precision 

Precision refers to the percentage of appropriately 
identified positive instances out of all cases labelled as 
positive. 

Precision= !"
!"#%"

 
 

Higher accuracy indicates fewer false positives, which 
is crucial in DDoS detection, where wrongly labelling 
benign traffic as attack traffic can lead to unnecessary 
blocking [17]. 

C. Recall (Sensitivity) 

Recall measures the fraction of actual positive cases that 
the model positively recognizes from all actual positive 
cases. 

Recall= !"
!"#%$

 
 

Higher recall means the model is good at detecting 
attacks, reducing the chance of missing an attack (false 
negatives). 

D. F1 Score 

The F1 score represents the recall and harmonic mean 
of precision, comprehensively assessing a model’s 
performance, particularly in situations involving 
imbalanced classes. By integrating precision and recall, 
the F1 score takes both false positives (FP) and false 
negatives (FN), making it an effective metric for 
evaluating models in cases of uneven class dispersal. 
 

F1= 2𝑋𝑋 "&'()*)+,×.'(/00
"&'()*)+,#.'(/00

 
 
 The F1 score strikes symmetry between recall& 
accuracy, building it particularly appropriate for 
circumstances where both FP and FN carry significant 
costs. Confusion Matrix and Metric Calculation [18] 
 

TABLE VII 
CONFUSION MATRIX FOR DDOS DETECTION 

  
Forecasted Positive Forecasted Negative 

True Positive 50 10 
True Negative 15 75 
 
1) From This Matrix: 

TP (True Positives) = 50 
FP (False Positives) = 15 
TN (True Negatives) = 75 
FN (False Negatives) = 10 
 

Higher accuracy indicates fewer false positives, 
which is crucial in DDoS detection, where wrongly 
labelling benign traffic as attack traffic can lead to 
unnecessary blocking [17].

C. Recall (Sensitivity)
Recall measures the fraction of actual positive 

cases that the model positively recognizes from all 
actual positive cases.

Fig. 5(a). A confusion matrix will also be utilized for visualizing 
classification performance.

Fig. 5(b). A confusion matrix using confusion display

taBLe v
cLassIfIcatIon rePorts  

supportf1-scorerecallPrecision
21.001.001.00DDoS
31.001.001.00Normal

1.00Accuracy

51.001.001.00Macro avg
51.001.001.00Weighted avg

taBLe Iv
cLassIfIcatIon of ddos detectIon

Accuracy: 100%

Precision: 100%

Recall: 100%

F1 score: 100% 

TABLE VI
coMParIng PredIcted LaBeLs agaInst actuaL LaBeLs.  

Predicted NegativePredicted Positive
False NegativeTrue PositiveActual Positive
True NegativeFalse PositiveActual Negativ
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Macro avg        1.00        1.00       1.00          5 

Weighted avg       1.00        1.00       1.00          5 

In your DDoS detection or classification task, where 
you're evaluating model performance, it's essential to 
understand how each metric works and how they 
contribute to the overall assessment. Here's a breakdown 
of A Misperception Milieu, Table V, to illustrate the 
show of a classification model by showing the 
relationship between real labels and predicted labels. It 
is made up of four essential components. 
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Actual Negative False Positive  True Negative  

 
1) True Positive 
This represents the number of instances correctly 
predicted as positive (for example, an attack correctly 
identified). 
 
2) False Positive 
This indicates the number of instances incorrectly 
predicted as positive (an attack is expected when it’s 
benign). 
 
3) True Negative 
 The number of instances acceptably predicts as 
unfavorable (a benign case correctly identified). 
 
4) False Negative 
The number of instances to be incorrectly predicted as 
unfavorable (an actual attack classified as benign). 
Using the values from the confusion matrix, we 
calculate the following metrics [16]. 
 
A. Accuracy 
The percentage of accurate forecasts among every 
forecast is known as accurateness = !"#!$

!"#!$#%"#%$
 

 
Higher accuracy indicates better overall model 
performance, but it may be misleading in cases where 
the dataset is imbalanced (e.g., more benign traffic than 
attack traffic). 

B. Precision 

Precision refers to the percentage of appropriately 
identified positive instances out of all cases labelled as 
positive. 

Precision= !"
!"#%"

 
 

Higher accuracy indicates fewer false positives, which 
is crucial in DDoS detection, where wrongly labelling 
benign traffic as attack traffic can lead to unnecessary 
blocking [17]. 

C. Recall (Sensitivity) 

Recall measures the fraction of actual positive cases that 
the model positively recognizes from all actual positive 
cases. 

Recall= !"
!"#%$

 
 

Higher recall means the model is good at detecting 
attacks, reducing the chance of missing an attack (false 
negatives). 

D. F1 Score 

The F1 score represents the recall and harmonic mean 
of precision, comprehensively assessing a model’s 
performance, particularly in situations involving 
imbalanced classes. By integrating precision and recall, 
the F1 score takes both false positives (FP) and false 
negatives (FN), making it an effective metric for 
evaluating models in cases of uneven class dispersal. 
 

F1= 2𝑋𝑋 "&'()*)+,×.'(/00
"&'()*)+,#.'(/00

 
 
 The F1 score strikes symmetry between recall& 
accuracy, building it particularly appropriate for 
circumstances where both FP and FN carry significant 
costs. Confusion Matrix and Metric Calculation [18] 
 

TABLE VII 
CONFUSION MATRIX FOR DDOS DETECTION 

  
Forecasted Positive Forecasted Negative 

True Positive 50 10 
True Negative 15 75 
 
1) From This Matrix: 

TP (True Positives) = 50 
FP (False Positives) = 15 
TN (True Negatives) = 75 
FN (False Negatives) = 10 
 

Higher recall means the model is good at 
detecting attacks, reducing the chance of missing 
an attack (false negatives).

D. F1 Score
The F1 score represents the recall and harmonic 

mean of precision, comprehensively assessing 
a model’s performance, particularly in situations 
involving imbalanced classes. By integrating 
precision and recall, the F1 score takes both false 
positives (FP) and false negatives (FN), making it 
an effective metric for evaluating models in cases 
of uneven class dispersal.
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Weighted avg       1.00        1.00       1.00          5 

In your DDoS detection or classification task, where 
you're evaluating model performance, it's essential to 
understand how each metric works and how they 
contribute to the overall assessment. Here's a breakdown 
of A Misperception Milieu, Table V, to illustrate the 
show of a classification model by showing the 
relationship between real labels and predicted labels. It 
is made up of four essential components. 
 

TABLE VI. 
 COMPARING PREDICTED LABELS AGAINST ACTUAL 

LABELS. IT IS MADE UP OF FOUR ESSENTIAL COMPONENTS 
  

Predicted Positive Predicted Negative 
Actual Positive True Positive  False Negative  
Actual Negative False Positive  True Negative  

 
1) True Positive 
This represents the number of instances correctly 
predicted as positive (for example, an attack correctly 
identified). 
 
2) False Positive 
This indicates the number of instances incorrectly 
predicted as positive (an attack is expected when it’s 
benign). 
 
3) True Negative 
 The number of instances acceptably predicts as 
unfavorable (a benign case correctly identified). 
 
4) False Negative 
The number of instances to be incorrectly predicted as 
unfavorable (an actual attack classified as benign). 
Using the values from the confusion matrix, we 
calculate the following metrics [16]. 
 
A. Accuracy 
The percentage of accurate forecasts among every 
forecast is known as accurateness = !"#!$

!"#!$#%"#%$
 

 
Higher accuracy indicates better overall model 
performance, but it may be misleading in cases where 
the dataset is imbalanced (e.g., more benign traffic than 
attack traffic). 

B. Precision 

Precision refers to the percentage of appropriately 
identified positive instances out of all cases labelled as 
positive. 

Precision= !"
!"#%"

 
 

Higher accuracy indicates fewer false positives, which 
is crucial in DDoS detection, where wrongly labelling 
benign traffic as attack traffic can lead to unnecessary 
blocking [17]. 

C. Recall (Sensitivity) 

Recall measures the fraction of actual positive cases that 
the model positively recognizes from all actual positive 
cases. 

Recall= !"
!"#%$

 
 

Higher recall means the model is good at detecting 
attacks, reducing the chance of missing an attack (false 
negatives). 

D. F1 Score 

The F1 score represents the recall and harmonic mean 
of precision, comprehensively assessing a model’s 
performance, particularly in situations involving 
imbalanced classes. By integrating precision and recall, 
the F1 score takes both false positives (FP) and false 
negatives (FN), making it an effective metric for 
evaluating models in cases of uneven class dispersal. 
 

F1= 2𝑋𝑋 "&'()*)+,×.'(/00
"&'()*)+,#.'(/00

 
 
 The F1 score strikes symmetry between recall& 
accuracy, building it particularly appropriate for 
circumstances where both FP and FN carry significant 
costs. Confusion Matrix and Metric Calculation [18] 
 

TABLE VII 
CONFUSION MATRIX FOR DDOS DETECTION 

  
Forecasted Positive Forecasted Negative 

True Positive 50 10 
True Negative 15 75 
 
1) From This Matrix: 

TP (True Positives) = 50 
FP (False Positives) = 15 
TN (True Negatives) = 75 
FN (False Negatives) = 10 
 

 The F1 score strikes symmetry between recall& 
accuracy, building it particularly appropriate 
for circumstances where both FP and FN carry 
significant costs. Confusion Matrix and Metric 
Calculation [18].

1) From This Matrix:
TP (True Positives) = 50
FP (False Positives) = 15
TN (True Negatives) = 75
FN (False Negatives) = 10

2) Calculating Metrics:
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2) Calculating Metrics: 
Accuracy: 12#31

12#31#41#42
= 451

412
=

0.8333(83.33%) 

Precision: 12
12#41

= 12
61
= 0.7692(76.92%) 

Recall:  50/50+10=50/60=0.8333 (83.33%) 

F1 Score:  2X 2.3685×2.9:::
2.3685#2.9:::

= 2X 2.6;4
4.6251

=

0.7996 (79.96%) 

 
3) Insights from CDE Analysis [19] 
An accuracy of 83.33% shows a solid overall 
performance, but precision and recall provide deeper 
insights. Precision is slightly lower at 76.92%, 
indicating that some benign traffic is classified as attack 
traffic (false positives). A recall of 83.33% shows that 
the model is good at catching most attacks, but it’s not 
perfect (false negatives exist).An F1 Score of 79.96% 
effectively balances precision and recall, rendering it a 
valuable metric for assessing the model in situations 
where both FP and FN are critical. 
By using the confusion matrix and deriving metrics such 
as accuracy, precision, recall, and F1 score, you can 
better understand how your model detects DDoS 
attacks. These metrics, especially in conjunction with a 
confusion matrix, give you a clearer picture of the 
positives and negatives of the model [20]. 

IV. RESULTS AND DISCUSSION 
The outcomes of our deep learning-based classification 
model are designed to detect DDoS attack traffic within 
a Software-Defined Networking (SDN) environment. 
We used different evaluation metrics to evaluate the 
model’s effectiveness, such as accuracy, precision, 
recall, F1 score, and a detailed confusion matrix 
analysis. [21]. 
 Classification Accuracy The deep learning model 
attained a 98.5% overall correctness. This indicates that 
the model is highly effective at distinctive b/w benign 
and also malicious DDoS attack traffic. While this is a 
strong result, it is significant to consider that the 
purpose of high accuracy can sometimes be ambiguous 
in imbalanced datasets, where benign traffic may 
significantly outnumber attack traffic. Therefore, 
additional metrics like recall, precision, and the 
confusion matrix provide more in-depth insights [22]. 

A. Precision, Recall, And F1 Score [23] 

1) Precision  
This model achieved a correctness of 97.8%, 
meaning that of all the predicted attack traffic 
instances, 97.8% were actual attacks. This high 
precision indicates that the model effectively 
minimizes FP, which prevents unnecessary mitigation 
responses for benign traffic. 

2) Recall  
The recall score was 96.5%, meaning the model 
successfully detected 96.5% of all DDoS attacks. A 
high recall is essential to ensure that most of the 
attack traffic is identified, though some false 
negatives suggest that a few attacks went undetected. 

3) F1 Score  
  The F1 score, a harmonic mean of precision and 
recall, was 97.1%. This score reflects a balanced 
performance, indicating that the model is proficient at 
identifying attacks and avoiding FP. The F1 score is 
instrumental in this scenario, where precision and 
recall are crucial. 

 
B. Examination of Confusion Matrix 

The confusion matrix gives a complete breakdown of 
the model's classification results [24]: 

 

TABLE VIII 

 MODEL'S CLASSIFICATION IN CONFUSION MATRIX  
 

Predicted Attack Predicted Benign 
Actual Attack 4,850 (True Positive) 150 (False Negative) 
Actual Benign 100 (False Positive) 9,500 (True Negative) 

 
The model correctly classified 4,850 instances as 

DDoS attacks (True Positives) and 9,500 instances as 
benign traffic (True Negatives) [25]. There 
were 150 False Negatives, where actual attacks were 
misclassified as benign traffic. These missed attacks 
could pose a security risk, as they might go undetected. 
There were 100 False Positives, where benign traffic 
was misclassified as an attack. Although this number is 
relatively low, minimizing false positives is essential to 
avoid unnecessary countermeasures that could disrupt 
legitimate traffic and overburden the SDN controller 
shown in Fig. 6(a) & (b) [26]. 

3) Insights from CDE Analysis [19]
An accuracy of 83.33% shows a solid overall 

performance, but precision and recall provide 
deeper insights. Precision is slightly lower at 
76.92%, indicating that some benign traffic is 
classified as attack traffic (false positives). A recall 
of 83.33% shows that the model is good at catching 
most attacks, but it is not perfect (false negatives 
exist).An F1 Score of 79.96% effectively balances 
precision and recall, rendering it a valuable metric 
for assessing the model in situations where both FP 
and FN are critical.

By using the confusion matrix and deriving 
metrics such as accuracy, precision, recall, and 
F1 score, a better understanding of how the model 
detects DDoS attacks is highlighted. These metrics, 
especially in conjunction with a confusion matrix, 
give a clearer picture of the positives and negatives 
of the model [20].

Iv. resuLts and dIscussIon

 The outcomes of our deep learning-based 
classification model are designed to detect DDoS 
attack traffic within a Software-Defined Networking 
(SDN) environment. We used different evaluation 
metrics to evaluate the model’s effectiveness, such 
as accuracy, precision, recall, F1 score, and a 
detailed confusion matrix analysis [21].

 Classification Accuracy :the deep learning model 
attained a 98.5% overall correctness. This indicates 
that the model is highly effective at distinctive b/w 
benign and also malicious DDoS attack traffic. While 
this is a strong result, it is significant to consider that 
the purpose of high accuracy can sometimes be 
ambiguous in imbalanced datasets, where benign 
traffic may significantly outnumber attack traffic. 
Therefore, additional metrics like recall, precision, 

TABLE VII
confusIon MatrIx for ddos detectIon  

Forecasted NegativeForecasted Positive
1050True Positive
7515True Negative
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and the confusion matrix provide more in-depth 
insights [22].

A. Precision, Recall, And F1 Score [23]
1) Precision 

This model achieved a correctness of 97.8%, 
meaning that of all the predicted attack traffic 
instances, 97.8% were actual attacks. This high 
precision indicates that the model effectively 
minimizes FP, which prevents unnecessary 
mitigation responses for benign traffic.

2) Recall
The recall score was 96.5%, meaning the 

model successfully detected 96.5% of all DDoS 
attacks. A high recall is essential to ensure that 
most of the attack traffic is identified, though some 
false negatives suggest that a few attacks went 
undetected.

3) F1 Score 
  The F1 score, a harmonic mean of precision and 

recall, was 97.1%. This score reflects a balanced 
performance, indicating that the model is proficient 
at identifying attacks and avoiding FP. The F1 score 
is instrumental in this scenario, where precision and 
recall are crucial.

B. Examination of Confusion Matrix
The confusion matrix gives a complete 

breakdown of the model's classification results [24]:
The model correctly classified 4,850 instances 

as DDoS attacks (True Positives) and 9,500 
instances as benign traffic (True Negatives) [25]. 
There were 150 False Negatives, where actual 
attacks were misclassified as benign traffic. These 
missed attacks could pose a security risk, as 
they might go undetected. There were 100 False 
Positives, where benign traffic was misclassified 
as an attack. Although this number is relatively 
low, minimizing false positives is essential to avoid 
unnecessary countermeasures that could disrupt 
legitimate traffic and overburden the SDN controller 
shown in Fig. 6(a) & (b) [26].

Here the Fig 7. The flowchart outlines a model 
performance comparison for DDoS detection in 
an SDN environment, focusing on three models: 
Deep Learning, SVM, and Random Forest. Here 
are details of how the Deep Learning algorithm is 
evaluated in this context [27].

Deep Learning Model Evaluation Algorithm 
step-wise work process [28]:
Step 1-Model Performance Comparison

The flowchart begins by comparing the 
performance of three models, but here, we focus 
on the Deep Learning model.
Step 2-Evaluate Deep Learning Model Performance 
The Deep Learning models: [29]

Accuracy: 97.5%
Recall:     97.7% 
These metrics determine the model's efficacy in 

detecting DDoS attacks.
Step 3-Check if Accuracy > 95%

Since the Deep Learning model's precision is 
97.5%, which is greater than the 95% threshold, it 
proceeds for further evaluation. Accuracy is crucial 
here because it measures the overall performance, 

Mohd Nadeem et. al

TABLE VIII
ModeL’s cLassIfIcatIon In confusIon MatrIx  

Predicted BenignPredicted Attack
150 (False Negative)4,850 (True Positive)Actual Attack
9,500 (True Negative)100 (False Positive)Actual Benign

Fig. 6(a). DDoS attacks of Detection
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ensuring that the model can effectively distinguish 
between benign and attack traffic [30].

Step 4-High True Positive Rate and Superior 
Detection Performance The high Recall (97.7%) 
indicates a High actual positive rate. This means 
that the model successfully detects most DDoS 
attacks with fewer false negatives.

Step 5-Superior Detection Performance refers 
to the model's competence to identify DDoS 
attacks accurately, making it suitable for security 
applications.

Step 6-Check Robustness in Varying Network 
Conditions Robustness is crucial, especially in 
SDN environments where network conditions can 
vary. If the model is robust, its performance remains 
consistent under different network scenarios (e.g., 
changing traffic patterns and varying loads).

Step 7- Robust in Varying Network Conditions
If the model demonstrates robustness under 

different conditions, it is further evaluated for 
suitability in real-time environments.

If yes, the next factor is training time, as real-
time detection requires models that can be trained 
efficiently without significant delays [31].

A. Longer Training Time
Deep Learning models generally require more 

computational resources and time for training due 
to their complexity and depth.

This trade-off is considered when deciding if the 
model can be optimized for real-time applications 
[32]. 

Handling Data Imbalance in the Training 
Set Data imbalance is a common issue in real-
world datasets, particularly in anomaly detection 
and intrusion detection systems, where normal 
data often outweighs anomalous or attack data. 
Addressing this imbalance is critical to ensure the 

Fig. 6(b). Deep Learning Performance of DDoS Detection

Fig. 7. Model of Comparison Performance
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model's high performance, reliability, and ability 
to generalize to minority classes. The proposed 
deep learning model incorporates the following 
techniques to mitigate data imbalance:

1) Oversampling
Synthetic Minority Oversampling Technique 

(SMOTE): Description SMOTE generates synthetic 
samples for the minority class by interpolating 
between existing samples and their nearest 
neighbors. Implementation Applied to the training 
set to create a more balanced dataset, ensuring 
equal representation of minority classes without 
duplicating data. Impact Reduces the risk of 
overfitting associated with simple oversampling 
while improving class balance.

2) Under sampling
Random under-sampling: Description reduces 

the number of samples in the majority class to 
match the size of the minority class. Implementation 
Careful under-sampling was applied to retain 
diverse and representative examples of regular 
traffic. Impact minimized the computational load 
and ensured a balanced dataset, but it was used 
cautiously to avoid losing valuable information.

3) Data Augmentation
Description: Creates variations of minority class 

samples by applying transformations such as 
Random noise injection. Shuffling features. Time-
series splitting (for sequential data).Implementation 
of augmented minority class samples in traffic data 
to mimic diverse real-world scenarios, such as 
packet reordering or jitter.

4) Class Weights
 Assigns higher weights to the minority class 

during loss computation, penalizing the model 
more heavily for misclassifying minority samples.  
Adjusted class weights dynamically based on 
the inverse frequency of class distribution during 
training.  Encourages the model to prioritize 
accurate predictions for minority classes without 
artificially modifying the dataset.

B. Advanced Techniques
1) Ensemble Learning
 Combines predictions from multiple models 

to improve sensitivity to minority class samples. 
Trained multiple models with slightly different 
balanced subsets of the data (via resampling) and 
aggregated their predictions. Enhanced detection 
of rare events while maintaining overall accuracy.

2) Cost-Sensitive Learning
This modification modifies the learning algorithm 

to incorporate misclassification costs for different 
classes directly into the optimization objective. 
Introduced a cost matrix into the loss function, 
making misclassification of minority class instances 
more costly than majority class errors. Impact 
improved the model's ability to handle skewed 
distributions without altering the dataset.

3) Generative Adversarial Networks (GANs)
GANs were used to generate synthetic samples 

for the minority class. Trained a GAN on minority 
class data to create realistic but unique synthetic 
attack patterns. Impact Improved representation of 
minority classes with realistic variations, ensuring 
the model generalized better to unseen attack 
types.

C. Validation Strategies
To ensure that the techniques effectively 

mitigated data imbalance and maintained model 
credibility:

Stratified K-Fold Cross-Validation: Ensured each 
fold contained a proportional representation of 
all classes, preventing biased evaluation results. 
Confusion Matrix Analysis Evaluated precision, 
recall, and F1-score for each class, mainly focusing 
on minority classes. Area under the Receiver 
Operating Characteristic (ROC-AUC) assessed 
the model's ability to distinguish between courses 
across various thresholds.

Mohd Nadeem et. al



120

JISCR 2024; Volume 7 Issue (2)

D. Performance Impact
The implemented techniques resulted in 

significant performance improvements:

1) Higher Recall
 The model's accuracy in spotting minority class 

events rose. This increase lowered false negatives, 
therefore assuring that less cases of the minority 
class were overlooked.

2) Balanced Accuracy
 Maintained a continuous balance of sensitivity 

(True Positive Rate) and specificity (True Negative 
Rate). The methodology provided consistent 
performance across many classes while avoiding 
bias toward the dominant class.

E. Improved Generalization
We enhanced the model's robustness on 

unseen imbalanced datasets. We validated it using 
test cases with previously unseen attack patterns, 
demonstrating its adaptability to various scenarios.

By employing a combination of oversampling, 
under-sampling, data augmentation, class weighting, 
and advanced techniques like GANs and ensemble 
learning, the proposed deep learning model 
effectively mitigates the issue of data imbalance. 
These strategies substantiate the claim of high 
performance and enhance the model's credibility by 
ensuring equitable treatment of all classes, particularly 
in critical scenarios such as anomaly detection.

F. Check Fast Inference Speed
Even with a longer training time, the model's 

inference speed should be fast enough to handle 
real-time DDoS detection. Inference speed refers to 
how quickly the trained model processes new data 
and classifies it as benign or DDoS traffic.

G. If Fast Inference Speed: Real-Time DDoS 
Detection Suitable for SDN[33]

If the model achieves fast inference speed, it is 
deemed suitable for real-time DDoS detection in 
SDN environments [34].

Real-time detection is critical for SDN-based 
security systems to react promptly to ongoing 
DDoS attacks and mitigate them efficiently [35].

v. dIscussIon

The outcomes demonstrate that deep learning 
techniques can be applied to identify DDoS attacks 
in SDN environments. The results indicate the 
possibility of real-time applications, giving network 
managers valuable resources for quick threat 
response. The deep learning model performed 
exceptionally well identifying DDoS attacks in an 
SDN environment. Its excellent accuracy and 
robust precision and recall suggest that it can be 
used to detect and counteract DDoS attacks in 
practical SDN environments [36]. Even with these 
encouraging outcomes, false negatives remain 
problematic because they allow undetected 
attackers to exploit the network's weaknesses [37]. 
Step 1: Understand the Definitions

False Positives: Occurs when regular traffic is 
incorrectly flagged as part of a DDoS attack.

Fig 8. The chart compares the "Before Improvement" and 
"After Improvement" metrics visually.
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TABLE IX
PerforMance MetrIcs taBLe  

After
Improvement
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False Negatives: Occurs when actual DDoS 
attacks are misclassified as legitimate traffic [38].

Step 2: Real-World Implications
False Positives: Service Disruption Legitimate 

users face interruptions or degraded service. 
Operational Cost Increase Resources could better 
address non-existent threats. Reputation Damage 
Frequent interruptions affect trust and customer 
satisfaction.

False  Negatives:  Network Downtime: 
Undetected attacks overwhelm resources, 
causing outages. Security Risks Attackers may 
use undetected DDoS as a distraction for other 
breaches. Loss of Trust Persistent issues undermine 
confidence in network security.
Step 3: How the Model Minimizes False Positives

Behavioral Analysis: Analyzes traffic patterns 
over time to distinguish between legitimate spikes 
(e.g., flash sales) and DDoS attacks. Dynamic 
Thresholding Adapts detection thresholds based 
on historical data to reduce sensitivity to benign 
anomalies. Ensemble Methods combine multiple 
detection approaches (e.g., rule-based, anomaly 
detection) to improve decision accuracy [39].
Step 4: How the Model Minimizes False Negatives
Adversarial Training Trains the model with diverse 
and evolving attack patterns, preparing it to detect 
subtle or novel threats. Incremental Learning 
Continuously updates the model with new attack 
signatures, ensuring adaptability to changes [40]. 
Multi-layered detection combines anomaly and 

rule-based methods to identify known and unknown 
threats.

Step 5: Balancing Trade-Offs Threshold Tuning: 
Adjust detection sensitivity during model training 
to balance false positive and false negative rates. 
Confusion Matrix Analysis Evaluate precision, recall, 
and F1-score to fine-tune the model's performance. 
Real-Time Feedback Loops Use flagged incidents 
to adjust detection parameters for dynamic, 
ongoing improvement.

Step 6: Impact on Network Operations Minimizing 
False Positives Operational Efficiency: Reduces 
unnecessary mitigations and resource use. 
User Satisfaction Avoids service interruptions 
for legitimate users. Minimizing False Negatives 
Enhanced Security [41]: Detects and mitigates 
DDoS attacks promptly. Network Stability Ensures 
uninterrupted operations and safeguards business 
continuity.

Step 7: Practical Benefits [42] Improved 
Reliability: Accurate Detection ensures stable and 
uninterrupted network services. Cost Savings: 
Reduced operational overhead from false 
alarms and targeted threat responses. Proactive 
Defense: Minimizes attack impact and safeguards 
organizational reputation.

Following these steps, the proposed model 
systematically addresses and minimizes the 
practical implications of false positives and 
negatives, ensuring reliable and efficient DDoS 
detection for real-world network operations [43].

Furthermore, despite a minimal false positive 
rate, lowering these errors is crucial to prevent 
flooding the SDN controller with needless attacks. 
Mitigating procedures can decrease network 
efficiency. Deep learning models' ability to adapt 
and learn from complicated traffic patterns makes 
them effective DDoS detection tools, especially 
as attacks become more sophisticated [44], 
it is suggested that handling Various Network 
Conditions with the Proposed Deep Learning Model 
will be ensured.
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To ensure robust performance in real-world network 
environments, the proposed deep learning model 
must address dynamic network conditions, including 
varying traffic loads and diverse attack patterns. Here 
is how these challenges can be tackled [45]:

A. Managing Different Traffic Loads
Real-world networks experience fluctuations in 

data volume due to user activity, system demands, 
or external factors. The model must efficiently 
handle both low- and high-traffic scenarios.

1) Adaptive Traffic Handling
Dynamic Traffic Sampling: During high-

traffic periods, the model can sample packets 
dynamically, ensuring that critical data is prioritized 
for analysis without overwhelming computational 
resources.

Load Balancing: Use load balancers to 
distribute traffic across multiple model instances. 
This prevents bottlenecks and ensures consistent 
throughput [46].

2) Elastic Scaling
Horizontal Scaling: Automatically deploy 

additional model instances in response to increased 
traffic, especially in cloud environments [47].

Vertical Scaling: When the load increases, 
allocate more memory or compute power to the 
model instance, particularly in on-premises setups.

3) Real-Time Inference Optimization
Batch Inference: Aggregate multiple requests 

into a single batch for processing, reducing 
inference overhead. Latency Minimization Deploy 
the model closer to the data source (e.g., edge 
devices) to reduce network latency and ensure 
rapid decision-making [48].

4)  Handling Potential Attack Variations
Attack patterns evolve rapidly, making it essential 

for the model to adapt and effectively identify both 
known and unknown threats [49].

5) Training for Generalization
Adversarial Training: Expose the model to 

simulated attacks (e.g., DDoS, phishing) during 
training to improve its ability to generalize to unseen 
threats. Data Augmentation Use synthetic data to 
simulate diverse attack scenarios, ensuring the 
model can handle variations in behavior.

B. Real-Time Adaptation
Incremental Learning: Continuously update the 

model with new real-time attack patterns to keep 
it relevant in dynamic environments. Reinforcement 
Learning Integrate feedback loops to allow the 
model to refine its detection capabilities based on 
outcomes and flagged anomalies.

Fig.10. Handling Various Network Conditions with the 
Proposed Deep Learning Model [44]
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1) Multi-layered Defense
Ensemble Methods: Using a combination of 

multiple models to detect anomaly detection and 
signature-based Models can improve a broader 
range of threats. For example, an ensemble accuracy.

Behavioural Analysis [50]: Complement 
traditional feature-based detection with models 
that analyze traffic behavior over time, identifying 
stealthy or slow-paced attacks.

C. Monitoring and Response Mechanisms [51]
The model should detect anomalies and adapt 

to varying network conditions by learning from its 
environment.

1) Context-Aware Decision Making
Integrating Contextual Features: Include the 

time of day, user behavior, and system state to 
refine predictions under varying network loads 
[52]. Temporal Pattern Analysis: Use recurrent 
neural networks (RNNs) or temporal convolutional 
networks (TCNs) to understand patterns over time 
and anticipate traffic surges or new attack types.

2) Fail-Safe Mechanisms [53]
Graceful Degradation: During extreme load 

conditions, the model can switch to a lightweight 
anomaly detection mode, focusing on high-risk 
traffic only. Redundancy Deploy redundant model 
instances to ensure continuous availability, even 
during failures or attacks on specific servers.

D. Example Use Case: Distributed Denial of Service 
(DDoS) Mitigation

Challenge: DDoS attacks generate high traffic, 
often masking their presence among legitimate 
data [54].

Solution: Edge Deployment: Deploy the model 
on edge devices to filter traffic locally before it 
reaches the central server.

Adaptive Sampling:
Sample traffic intelligently to focus on patterns 

indicative of volumetric attacks. Anomaly Detection 

Use unsupervised learning techniques, such as 
auto encoders, to flag deviations from normal traffic 
behavior [55].

E. Performance Metrics for Network Condition 
Handling

1) Throughput
Measure the model's ability to process traffic at 

varying loads without degradation.

2) Latency
Ensure the model maintains low inference times, 

even under peak traffic conditions.

3) False Positive/Negative Rates [56]:
Evaluate the model's reliability in identifying 

attack variations without alerting security teams.

4) Scalability
Test the model's ability to scale elastically under 

sudden traffic surges [57].
The proposed deep learning model can 

effectively navigate diverse network conditions by 
incorporating adaptive traffic handling, adversarial 
training, and robust response mechanisms. This 
ensures consistent performance and reliability 
in detecting threats while maintaining system 
efficiency [58].

vI. concLusIon

This paper demonstrates that deep learning 
methods provide a promising approach for 
identifying and classifying DDoS attack traffic 
in SDN environments. Our model surpasses 
traditional machine learning techniques, providing 
higher accuracy and real-time detection. Future 
work will optimize the model for large-scale SDN 
networks and explore transfer learning for further 
performance enhancements.

Future work could focus on improving recall 
to ensure near-perfect detection of all attack 
instances. Optimizing the model's performance 
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under different traffic conditions, especially in 
imbalanced datasets, would further enhance its 
utility in real-world SDN environments.
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