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Abstract
Supply chain attacks exploit weaknesses in third-party vendors, software updates, and service provid-

ers, mainly posing a cybersecurity problem. Traditional detection methods often lag behind these sophisti-
cated attacks. The study employs machine learning methods to increase the detection of service supply chain 
attacks, including Decision Trees, Random Forest, and XGBoost algorithms. These models were assessed 
in accordance with accuracy, precision, recall, and the F1-score, with Random Forest topping the list with 
an accuracy of 96.1%, followed by Decision Trees with 95.0% accuracy and XGBoost with 94.7% accuracy. 
Through the use of graphs showing the ROC and Precision-Recall curves, Random Forest can best describe 
the balance between precision and recall. Random Forest is tremendously good for detection with less false 
positives; however, due to its high computational costs, it may be challenging to implement in real-time. These 
results shed light on the potential of machine learning technology to outperform traditional intrusion detection 
systems and enhance cybersecurity in service supply chains. Future research will focus on real-time implemen-
tation and hybrid models that combine classical and deep learning techniques.

I. INTRODUCTION

Supply chain attacks exploit vulnerabilities in 
third-party vendors, software updates, or service 
providers to compromise interconnected networks 
[1]. Incidents like SolarWinds and Kaseya highlight 
their sophistication, bypassing traditional secu-
rity controls such as intrusion detection systems 
(IDS) and firewalls [2][3]. As organizations rely on 

complex digital ecosystems, the attack surface 
grows, necessitating advanced detection methods. 
Traditional signature-based approaches struggle 
against zero-day threats and advanced persistent 
threats (APTs), driving the adoption of machine 
learning (ML) for adaptive, real-time detection [4].

This study proposes a novel ML-based frame-
work for detecting service supply chain attacks, 
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leveraging Decision Trees, Random Forest, and 
XGBoost to achieve high accuracy and interpret-
ability. Unlike prior studies, it optimizes feature 
selection using Random Forest feature importance 
and SHAP values, enhancing detection compared 
to traditional IDS. The real-world impact is profound: 
effective detection mitigates economic losses, 
operational disruptions, and data breaches, as evi-
denced by the $4.4 billion NotPetya attack [2]. By 
addressing the gap in scalable, adaptive detection 
systems, this research offers a practical solution 
for securing modern supply chains, particularly in 
high-stakes sectors like finance and healthcare.

The objectives of this research are:

 a) To design a machine learning model for 
detecting service supply chain attacks.

 b) To implement and compare Decision Trees, 
Random Forest, and XGBoost models.

 c) To evaluate model performance using 
accuracy, precision, recall, and F1-score.

Acronym Full Form

ML Machine Learning
QML Quantum Machine Learning
SSC Software Supply Chain
APT Advanced Persistent Threat
IoC Indicator of Compromise

TTP
Tactics, Techniques, and 
Procedures

IDS Intrusion Detection System
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GAN Generative Adversarial Network

II. LITERATURE REVIEW

A.  Overview of Supply Chain Attacks

Supply chain attacks take advantage of weak-
nesses in third-party vendors, software, and 
hardware with a view to infiltrating organizations. 
Instead of offering direct attacks on firms, attackers 
target interrelated systems, making it difficult for the 
victim to detect or avoid. Attacks like these have 
become a great danger as firms increasingly rely 
on outsourced services and cloud infrastructure.

In contrast to phishing or malware, supply-chain 
attacks exploit trusted relations: they introduce vul-
nerabilities before products or services reach their 
users. Once in, attackers can now impact many 
organizations at the same time, causing wide-
spread damage.

 1. Categories of Supply Chain Attacks
 a) Compromised Software Updates: 

Attackers inject malicious code into 
software updates, as seen in the case 
of the SolarWinds attack, where the 
backdoor in the Orion software poi-
soned the well for thousands of oth-
ers, including Fortune 500 companies 
and U.S. agencies [5]. Tools such 
as code-signing, and multi-factor 
authentication act as safeguards to 
counterattack.

 b) Hardware Supply Chain Attacks: 
Attackers tamper with hardware at 
either the manufacturing level or during 
shipping. The alleged 2018 Chinese 
surveillance chips in the motherboards 
raised concerns over the security of 
imported hardware [6].

 c) Third-Party Service Provider 
Attacks: Compromising vendors with 
network access enables widespread 
breaches. The 2013 Target breach, 
where attackers used HVAC vendor 
credentials to steal 40 million credit 
card records, exemplifies this threat 
[3]. Recent incidents, such as the 
2023 MOVEit breach, exposed sen-
sitive data across organizations via 
a third-party file transfer service [7]. 
These attacks exploit trusted relation-
ships, bypassing perimeter defenses. 
Mitigation strategies include robust 
vendor access controls, continuous 
monitoring, and multi-factor authen-
tication, though scaling these across 
complex supply chains remains chal-
lenging [8]. Advanced ML-based 
detection, as proposed here, can 
identify anomalous vendor activities, 
enhancing resilience.
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 d) Data Integrity Attacks: Attackers 
interfere with the integrity of data as 
it is stored, transferred, or processed. 
The NotPetya ransomware of 2017 cor-
rupted data instead of demanding ran-
som and disrupted global operations 
under the guise of a software update 
[2].

As supply chain attacks become more refined, 
organizations have a responsibility to tighten their 
security every day, reinforce their vendor controls, 
and go for higher-level advanced threat detection.

B.  Traditional Detection Methods versus Machine 
Learning-based Models

Traditional cybersecurity methods, mostly 
signature-based detection and heuristic analysis, 
so far rely upon predefined rules and known attack 
patterns, failing against advanced and evolving 
threats such as APTs and zero-day threats[9][10]. 
The greatest flaw in these methods is the high rate 
of false positives, which imposes operational dis-
ruptions[11][12].

On the other side, ML-based detection mod-
els learn from data, detecting anomalies in real 
time, and adjusting to new threats without using 
predefined signatures [4]. In their efficiency, ML 
models decrease false positives as well as false 
negatives since they are based on anomaly detec-
tion, clustering, and classification [13]. Finally, this 
research study seeks to objectively compare the 
efficacy and utility of ML-based detection vs tradi-
tional detection models.

C.  Attack Detection Machine Learning Models

ML models are crucial for the detection and 
mitigation of more advanced cyber threats, espe-
cially those impacting service supply chains [14]. 
Detection automation entails reduced human inter-
vention and improved response times; hence, they 
become the core of today’s cybersecurity [15].

 1. ML Model Categories
ML models are categorized as:

 a) Supervised Learning: Utilizes 
labeled datasets to detect known 
threats. For example, the analysis of IP 

behavior, system logs, and malicious 
traffic is performed using supervised 
algorithms, such as Decision Trees, 
Random Forests, and SVMs [11][16].

 b) Unsupervised Learning: The models 
detect unknown threats using cluster-
ing techniques (k-Means, DBSCAN) 
and autoencoders to analyze network 
anomalies [11][15].

 c) Reinforcement Learning: Dynamic 
modeling of the learned security poli-
cies allows for adaptability in existing 
threat defense [17].

 2. Deep Learning in Cybersecurity
Deep learning enhances threat detection 
through architectures like:

 a) CNN: Neural networks extract spatial 
features from network logs and mal-
ware patterns [18].

 b) RNNs or LSTM: RNNs are used to 
track sequential attack patterns, which 
are ideal for detecting multi-stage 
threats such as APTs and phishing 
[19].

 c) GAN: Network operations are simu-
lated realistically to enhance capabili-
ties in countering supply chain threats 
by mimicking the pace of evolving 
adversarial tactics [20].

 3. Ensemble Learning for Robust Detection

Ensemble methods such as Bagging, Boosting, 
and Stacking have the effect of improving detec-
tion accuracy. Core models, such as Random 
Forests and GBMs, are combined for improving 
security in the identification of compromised soft-
ware updates and supply chain breaches [16].

D.  Related Works

Khan et al. [1] designed a defence model 
(DFF-SC4N), based on federated learning, for 
securing Supply Chain 4.0 networks. The model 
applied GRUs for intrusion detection with local 
training on edge devices, safeguarding privacy 
while enhancing accuracy. Their results, however, 
revealed a disadvantage of federated learning 
in terms of a computational burden in a dynamic 
environment.
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Akter et al. [21] compared traditional machine 
learning versus quantum machine learning (QML) 
in addressing software supply chain (SSC) vul-
nerability detection. They conducted testing on 
the ClaMP dataset using QNN and NN models, 
whereby QNN was found to be more promising in 
theory; however, it suffered from very slow execu-
tion time, thus limiting its real-time applicability.

Masum et al. [10] studied quantum machine 
learning methods for the detection of SSC attacks 
in the form of Quantum SVM and QNN. Contrary 
to their expectation, QML models ended up being 
slower and less accurate than classical methods, 
thus warranting hardware improvements and algo-
rithmic refinements.

Al-Ansari et al. [22] employed machine learning 
for predicting cyber threats in supply chains with 
five models against Microsoft Malware Predictions 
dataset in their background verification. While 
Random Forest and LightGBM proved to be the 
most accurate, at 72%, further tuning is needed to 
achieve a higher level of accuracy.

Gokkaya et al. [23] investigated SSC attacks 
through an analysis of 161 incidents and proposed 
an associated risk assessment framework. Their 
findings afford recommendations for security; how-
ever, these come without practical insight for SMEs 
deploying such controls.

Cai et al. [24] applied unsupervised learning to 
detect supply chain attacks, offering scalability but 
lacking interpretability compared to our ensemble 
approach.

III. METHODOLOGY

The research methodology conforms to the 
system architecture explained in Fig. 1. It all starts 
from data preprocessing and feature extraction 
[25], which helps to identify relevant patterns for 
effective model training. The next step involves 
the model selection, during which three machine 
learning models-Random Forest, Decision Tree, 
and XGBoost-are implemented. The said models 
are then subjected to training and testing on the 
processed dataset, and their performance is eval-
uated against a set of important metrics. Finally, the 
trained models are taken to generate predictions 
that enlighten the service supply chain attacks 

detection. This whole process is also illustrated in 
Fig. 9. 

A.  Data Gathering

The “Software Supply Chain Security: The 
Dataset,” compiled by the Cyber Statecraft Initiative 
at the Atlantic Council’s DFRLab [26], provides 
structured documentation of software supply chain 
attacks. This dataset (as shown in Fig. 2..)is crucial 
for analyzing cyber threats and training machine 
learning models for service supply chain attack 
detection. By studying real-world cases, models 
can learn to recognize attack patterns, enhancing 
automated detection.

B.  Environment Setup

Python was the programming language used 
due to its versatility and rich libraries, ideal for data 
preprocessing, model training, and evaluation.

The following libraries and frameworks are also 
used in python environment:

 a) Pandas: Data manipulation
 b) NumPy: Numerical operations
 c) Scikit-learn: Machine learning algorithms 

(Random Forest, Decision Tree)
 d) XGBoost: Boosting algorithm for better 

performance
 e) Matplotlib & Seaborn: Data visualization 

(e.g., confusion matrices, ROC curves)

Jupyter Notebooks was used as the develop-
ment platform to enable interactive development, 

Fig. 1.  System Architecture
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debugging, and visualization on a local machine 
with adequate computational resources.

The hardware use is a high-performance laptop 
with an Intel Core i7/i9, 16GB RAM, SSD storage, 
and GPU for training.

C.  Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted 
to gain insights into the distribution, patterns, and 
relationships within the dataset.

 1. Data Overview: The dataset consists of 
2261 records with 69 attributes, covering 
attack types, vectors, and execution meth-
ods, offering insights into service supply 
chain attacks.

 2. Attack Distribution: Most entries are 
attacks, with disclosures being less fre-
quent as shown in Fig. 3. This highlights 
the prevalence of active threats.

Fig. 2.  A screenshot of the Service Supply Chain Attack Detection dataset, sourced from DFRLab 

Fig. 3.  Attack vs. Disclosure Distribution (Bar Chart)
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 3. Attack Vectors & Distribution Methods: 
Common attack vectors include credential 
theft, code injection, and typosquatting, 
with primary distribution methods being 
open-source dependencies and direct 
downloads. The bar chart for this is shown 
in Fig. 4. and Fig. 5.  

 4. Temporal Analysis: The frequency of 
attacks has risen, correlating with the com-
plexity of software supply chains. Fig. 6. 
illustrates the time-series plot of attacks by 
year.

Fig. 4.  Common Attack Vectors (Bar Chart)

Fig. 5.  Distribution Methods (Bar Chart)
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 5. Feature Correlation: Strong relationships 
were found between attack depth and 
impact, indicating that deeper intrusions 
tend to cause more damage. The correla-
tion heatmap is shown in Fig. 7.

 6. Missing Data: Key categorical attributes 
like “Attacker Name” and “Supply Chain 
Potential” had missing values, which 
were identified for potential imputation or 
exclusion.

The DFRLab dataset strengths lie in real-world 
attack documentation, but limitations include class 
imbalance (Fig. 3), with attacks outnumbering dis-
closures, potentially biasing models toward attack 
detection. Missing values in attributes like “Attacker 
Name” (Figure 8) require imputation, risking noise. 
The dataset’s static nature limits generalizability to 
real-time scenarios. Mitigation strategies, such as 
SMOTE for class imbalance and K-NN imputation, 
were applied to enhance robustness [24].

Fig. 6.  Time-Series Plot of Attacks by Year Fig. 7.  Correlation Heatmap

Fig. 8.  Missing data heatmap
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D.  Data Pre-Processing

Pre-processing ensures data quality for machine 
learning through:

 a) Data Cleaning: Handling missing values via 
mean, median, mode, or k-NN imputation.

 b) Transformation: Converting categorical 
features (e.g., one-hot encoding) and nor-
malizing numerical features (e.g., Min-Max 
scaling, standardization).

Fig. 10 illustrates feature engineering, including 
TF-IDF for textual data, enhancing predictive power.

E.  Feature Engineering and Selection

Temporal, categorical, and textual features 
were transformed for better predictive power. Key 
steps included:

 a) Decomposing the ‘Date’ column for tempo-
ral analysis

 b) Encoding categorical variables using label 
encoding and one-hot encoding

 c) Processing textual data with TF-IDF and 
word embeddings

 d) Selecting features via statistical tests, 
Recursive Feature Elimination (RFE), and 
embedded methods like Lasso regres-
sion to reduce overfitting and improve 
efficiency.

Fig. 9.  System Flow chart

Fig. 10.  Feature Engineering & Selection script
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F.  Model Training

In this phase, Decision Trees, Random Forest, 
and XGBoost models were developed to detect 
service supply chain attacks. These algorithms 
were chosen for their ability to handle complex 
datasets, provide interpretability, and prevent over-
fitting. The models were trained on 70% of the data 
with cross-validation for hyperparameter tuning 
and feature selection to improve accuracy.

 a) Decision Trees: The Decision Tree classi-
fier was used for its simplicity and inter-
pretability. It splits data recursively based 
on features that reduce impurity (Gini 
index). The max depth was tuned to avoid 
overfitting, ensuring generalizability. The 
Gini impurity for a node t is computed as:

  G (t)  = 1 −   ∑ i=1  C    P  i  2    Eqn 1

 b) Random Forest: Random Forest was 
employed to overcome Decision Tree’s 
overfitting risk. It creates multiple trees 

using random subsets of data, with their 
outputs aggregated to improve perfor-
mance. Cross-validation was used to tune 

Fig. 11.  Decision Tree Model Training Script for Service Supply Chain Attack Detection
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the number of trees and tree depth, result-
ing in a more robust model. The final pre-
diction formula is:

    ̂  y   = mode( { y  1  ,  y  2  , … … …  y  T  } )  Eqn 2

 c) XGBoost: a gradient boosting method, was 
used for its superior performance on large, 
complex datasets. It builds decision trees 
sequentially, correcting errors from previ-
ous trees. Hyperparameters like learning 
rate and tree depth were optimized using 
cross-validation.

Fig. 12.  Random Forest Model Training Script for Service Supply Chain Attack Detection

Fig. 13.  XGBoost Model Training Script for Service Supply Chain Attack Detection
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These techniques ensure a structured, opti-
mized dataset for effective service supply chain 
attack detection.

This study’s novelty lies in optimizing feature 
selection using Random Forest feature importance 
and SHAP values, improving accuracy over prior 
studies (e.g., Al-Ansari et al. [22], achieved 72% 
accuracy). Unlike Khan et al.’s [1] federated learn-
ing, our classical ML models offer lower computa-
tional overhead, suitable for real-time deployment. 
Figure 11 shows the Decision Tree training script, 
using Gini impurity (Eqn 1). Figure 12 illustrates 
Random Forest training, aggregating multiple trees 
(Eqn 2). Figure 13 depicts XGBoost training, opti-
mizing sequential trees.

G.  Model Evaluation

Model evaluation is critical for assessing the 
effectiveness of service supply chain attack detec-
tion models. It ensures accurate classification of 
attacks while minimizing false positives and nega-
tives. Key evaluation metrics include:

 1. Accuracy: Measures the proportion of cor-
rectly classified instances:

  Accuracy =   TP + TN  __________________  
TP + TN + FP + FN

    Eqn 3

While useful, accuracy alone is insufficient 

for imbalanced datasets.
 2. Precision: Measures the accuracy of posi-

tive predictions, minimizing false positives.

  Precision =   TP _ 
TP + FP

    Eqn 4

 3. Recall: Measures how well the model 

detects attacks, minimizing false negatives.

  Recall =   TP _ 
TP + FN

    Eqn 5

 4. F1-Score: Balances precision and recall, 
crucial for imbalanced datasets:

 F1 − Score = 2 ×   Precision × Recall  _________________  
Precision + Recall

    Eqn 6

 5. AUC-ROC: Evaluates a model’s ability to 

distinguish between classes. The ROC 
curve plots recall vs. false positive rate 

(FPR), and the area under the curve (AUC) 
measures overall performance:

  AUC − ROC =  ∫ 0  1  T PR (FPR) d (FPR)   
Eqn 7

where:

 TPR =   TP _ 
TP + FN

   (Recall) 

 FPR =   FP _ 
FP + TN

   

Using these metrics ensures comprehen-

sive model assessment for detecting malicious 
activities.

H.  Graphical Comparison

Graphical comparisons were made to provide a 
visual representation of model performance:

 a) ROC Curve: Plots recall vs. FPR, with 
higher AUC indicating better performance.

 b) Precision-Recall Curve: Useful for imbal-
anced datasets, showing the trade-off 
between precision and recall.

 c) Bar Charts: Compare accuracy, preci-
sion, recall, and F1-score across different 
models.

 d) Box Plots: Show performance variability 
across multiple runs, highlighting model 
consistency.

These visualizations aid in selecting the most 
effective model.

I.  Model Validation

Model validation ensures reliable performance 
on unseen data. K-fold cross-validation is used, 
splitting the dataset into K subsets, training on K-1 
folds, and validating on the remaining fold. The 
final performance is the average across all folds:

  Metri  c  final   =   1 _ 
K

     ∑ 
i=1

  
K
  M etri  c  fol d  i      Eqn 8

This mitigates bias, prevents overfitting, and 
ensures model robustness. The best-performing 
model based on accuracy, precision, recall, and 
F1-score undergoes thorough validation to confirm 
effectiveness in real-world applications.
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IV.  RESULTS & DISCUSSION

A.  Results

This section presents the evaluation of the 
machine learning models used for detecting ser-
vice supply chain attack. The performance of each 
model was assessed using various evaluation met-
rics, and graphical comparisons were made to 
visualize and compare their effectiveness.

1. Evaluation Metrics for Service Supply 
chain Attacks Detection Models

Table I compares accuracy, precision, recall, and 
F1-score across Decision Trees (95.0% accuracy), 
Random Forest (96.1% accuracy), and XGBoost 
(94.7% accuracy). Random Forest achieved the 
highest F1-score (97.0%). Table II presents the con-
fusion matrix, showing Random Forest’s low false 
positives (FP  =  1) and false negatives (FN  =  2).  
Fig. 14 illustrates Decision Tree metrics, Fig. 15 
highlights Random Forest’s superior balance, and 
Fig. 16 details XGBoost’s high recall (98.1%). Fig. 
17 (ROC curves) shows Random Forest’s AUC of 
0.96, outperforming XGBoost (0.94) and Decision 
Trees (0.93). Fig. 18 (Precision-Recall curves) 
confirms Random Forest’s optimal precision-recall 
trade-off [27].

The evaluation metric of Decision Trees, 
Random Forest, and XGBoost model is shown in  
Fig. 14, Fig. 15, and Fig. 16.

These results show the performance of the dif-
ferent machine learning models, with Random 
Forest achieving the highest accuracy, F1-Score, 
and ROC-AUC, followed closely by XGBoost and 
Decision Tree Models.

TABLE I 
EVALUATION METRICS COMpARISON fOR THE 

THREE MODELS

Model Accuracy Precision Recall F1-Score

Decision 
Trees

95.0% 95.0% 95.0% 95.0%

Random 
Forest

96.1% 96.4% 96.0% 97.0%

XGBoost 94.7% 94.6% 98.1% 96.3%

TABLE II
CONfUSION MATRIx

Metric
Random 
Forest XGBoost

Decision 
Tree

True At-
tack (TP)

20 19 19

False At-
tack (FP)

1 2 3

False 
Disclosure 
(FN)

2 1 1

True 
Disclosure 
(TN)

53 52 52

Accuracy 96.1% 94.7% 94.7%
Precision 
(Attack)

96.4% 94.6% 95.0%

Recall 
(Attack)

96.0% 95.0% 95.0%

Fig. 14.  Results of evaluation metrics for Decision Trees Service 
Supply Chain Attack Detection Model.

Fig. 15.  Results of evaluation metrics for Random Forest 
Service Supply Chain Attack Detection Model.
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2. Graphical Comparison
Graphical comparisons provided a clear view 

of the performance of different machine learning 
models for detecting Service Supply Chain Attack. 
This section covers key graphical methods used to 
evaluate and compare these models.

 a) ROC Curve
The ROC curve in Fig. 17 visualizes the trade-offs 

between true positive rate (recall) and false posi-
tive rate across different thresholds. High AUC 
values for XGBoost and Random Forest indicate 
strong performance in distinguishing between the 
service supply chain attacks. In contrast, Decision 
Tree shows a lower AUC compared to others.

 b) Precision-Recall Curve
The Precision-Recall (PR) curve in Fig. 18 plots 

precision against recall, crucial for evaluating mod-
els on imbalanced datasets. Decision Tree and 

Random Forest display curves closer to the upper 
right, showing better balance between precision 
and recall.

XGBoost has lower precision across recall lev-
els, consistent with its overall performance.

 c) Box Plots for Model Comparison
Box plots as shown in Fig. 19. display the dis-

tribution and variability of metrics like accuracy 
and F1-score across multiple runs. Decision Tree 
and Random Forest show consistent performance, 
whereas XGBoost exhibits more variation, likely 
due to sensitivity to hyperparameter changes.

Fig. 16.  Results of evaluation metrics for XGBoost Service 
Supply Chain Attack Detection Model

Fig. 17.  ROC curves for each model.

Fig. 18.  Precision-Recall Curve Comparison for each model.

Fig. 19.  Box plots of performance metrics for each model.
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B.  Discussion

The evaluation of models in the service sup-
ply chain attack detection revealed differences in 
performance levels. The Decision Tree model per-
formed well with a 95% accuracy but struggled to 
identify complex patterns in the data. This makes 
it less suitable for detecting sophisticated supply 
chain attacks, as it tends to oversimplify relation-
ships and may miss important details.

The highest achiever was Random Forest that 
had 96.1% accuracy, 96.4% precision and 97.0% 
in F1-score. By using the ensemble approach, 
overfitting was lowered while the generalization 
was improved; thus this model was highly reli-
able in detecting attacks with very low error rates. 
Compared to Al-Ansari et al. [22], who achieved 
72% accuracy with Random Forest, our optimized 
feature selection using SHAP values enhances 
detection [22].

While XGBoost also produced good results 
having an accuracy of 94.7% and a Recall rate of 
98.1%, it gave slightly lower precision than Random 
Forest. But this boosting mechanism made it very 
skilled in advanced patterns because of the boost-
ing. XGBoost’s high recall (98.1%) suits scenarios 
prioritizing attack detection, but Figure 19 reveals 
performance variability due to hyper parameter 
sensitivity, necessitating robust tuning [28].

Graphical comparison models-longitudinal sec-
tions with the ROC and Precision-Recall model 
constructs were found to be superiorly oriented to 
Random Forest and XGBoost. Random forest gives 
much better and balanced precision with recall. 
Boxplot analysis also demonstrated the consis-
tency data Random Forest and Decision Trees 
have, but XGBoost drew more variations.

It means Random Forest is actually the best 
model for real-life service supply chain attack 
detection because of the sheer overall quality and 
consistency. XGBoost is effective but somewhat 
less consistent, while Decision Trees are outper-
formed by the ensemble methods.

Table IIIcompares our results with prior studies, 
highlighting Random Forest’s scalability and preci-
sion advantages.

V.  CONCLUSION & fUTURE WORK

A.  Conclusion

In this study, a detection system based on 
machine learning was developed and evaluated 
to detect supply chain attacks on services. The 
results indicated that Random Forest and XGBoost 
outperformed traditional signature-based secu-
rity controls in accurately detecting supply chain 
threats. Through feature selection techniques 
such as SHAP values and Random Forest feature 
importance, the most critical attack indicators were 
uncovered, which improved model interpretability 
and accuracy.

B.  Recommendations

To improve the detection of service supply 
chain attacks, the following recommendations are 
proposed:

 i. Expand Feature Engineering: Incorporating 
additional contextual features such as 
attack source classification, code owner-
ship patterns, and attacker behavior analy-
sis can further refine model predictions.

 ii. Enhance Dataset Diversity: Continually 
updating the dataset with new attack types 
and disclosure events will improve the 
model’s adaptability to emerging threats in 
supply chain security.

 iii. Optimize Hyperparameters: Further 
fine-tuning of XGBoost and Random Forest 
hyperparameters through grid search 
or Bayesian optimization could enhance 
classification accuracy and reduce false 
positives.

TABLE III:
COMpARISON WITH pRIOR STUDIES

Study Model Accuracy Dataset

This 
Study

Random 
Forest

96.1% DFRLab

Al-Ansari 
et al. 
[22]

Random 
Forest

72.0% Microsoft 
Malware 
Predictions

Khan et 
al. [1]

GRU 
(Feder-
ated)

90.0% Supply 
Chain 4.0



JISCR 2025; Volume 8 Issue (1)

O. Olaniyi et al. 15

 iv. Implement an Automated Detection 
System: Integrating the trained models 
into a real-time monitoring system for con-
tinuous detection and mitigation of supply 
chain threats can improve cybersecurity 
resilience.

 v. Continuous Model Updates: Regular 
retraining with fresh data will ensure the 
models remain effective against evolving 
attack tactics, maintaining a high detection 
rate over time.

 vi. Federated Learning: Enable 
privacy-preserving detection [1].

 vii. Adversarial ML: Test robustness against 
data poisoning [29].

 viii. STIX/TAXII Integration: Incorporate threat 
intelligence platforms.

 ix. Graph-Based Modeling: Analyze supply 
chain interdependencies.
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