Journal of Information Security and Cybercrimes Research 2025; Volume 8 Issue (2), 147-166

Original Article 147

Naif Arab University for Security Sciences

Journal of Information Security and Cybercrimes Research
il] @il g loglat! cpol Ergay dsns
https://journals.nauss.edu.sa/index.php/JISCR

CrossMark

Assessing the Effectiveness of Open-Source Network Intrusion
Detection Systems for Small-to-Medium-Sized Enterprises

Ghadi M. A. Alzahrani', Nizar H. Alsharif', and Moez Krichen?3*

1Faculty of Computing and Information, Department of Computer Science, Al-Baha University, Al-Baha, Saudi Arabia
2Faculty of Computing and Information, Al-Baha University, Al-Baha, Saudi Arabia

3ReDCAD Laboratory; Sfax University, Sfax, Tunisia.

Received 11 Dec. 2025; Accepted 27 Dec. 2025; Available Online 30 Dec. 2025

Abstract

Network security is a critical concern for small and medium-sized enterprises (SMEs), often lacking
resources for comprehensive solutions. This study evaluates three open-source network intrusion detection
systems (NIDS): Snort, Suricata, and Zeek, to assess their suitability for SMEs. Using a controlled, virtualized
environment, we simulated realistic SME network conditions and subjected each NIDS to tests measuring
their ability to handle high traffic volumes and various attack types, including DoS, malware, ransomware, and
phishing. Results showed that Suricata consistently outperformed the others in scalability, resource efficiency,
and detection accuracy, achieving high true positive rates while minimizing false positives, which is essential for
reducing alert fatigue among SME users. Snort 3, optimized with afpacket and hyperscan, also demonstrated
strong capabilities but required more resources, while Snort 2 struggled with high-volume traffic. Although
Zeek is lightweight, it was less effective in signature-based detection but excelled in monitoring anomalies.
This study provides insights to guide SMEs in selecting appropriate NIDS based on their specific requirements
and emphasizes the need for ongoing optimization and further research in physical environments.

|. INTRODUCTION

Technological advancements have significantly
transformed business operations, with the
internet enhancing communication, collaboration,
e-commerce, and remote work for companies.
However, this reliance on interconnected networks
has also amplified the risks of cyberattacks [1]. The
cybersecurity threat landscape continues to evolve,
becoming increasingly complex and diverse as

various malicious actors employ sophisticated
strategies to breach networks and systems.
Phishing attacks, ransomware, and other advanced
persistent threats have become commonplace,
posing significant challenges for organizations of
all sizes.

Small and medium enterprises (SMEs) are
particularly vulnerable to these cyber threats. Unlike
larger organizations with specialized security teams

Keywords: Network intrusion detection, open-source, small-to-medium-sized enterprises

Production and hosting by NAUSS

* Corresponding Author: Moez Krichen

Email: m.krichen@redcad.org

doi: 10.26735/EW0S4922

1658-7782© 2025. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

https://doi.org/10.26735/EWOS4922
https://crossmark.crossref.org/dialog/?doi=10.26735/LQEZ4186&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/EWOS4922
https://crossmark.crossref.org/dialog/?doi=10.26735/EWOS4922&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR

gt Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

and substantial financial resources, SMEs often
struggle toimplement comprehensive cybersecurity
measures [2]. These enterprises typically lack the
necessary expertise to maintain robust security
infrastructures and often view cybersecurity as an
expense rather than an essential investment. While
basic protective measures such as firewalls and
antivirus programs offer some defense, they may
not effectively detect advanced threats, leaving
SMEs exposed to potential breaches [3].

Network intrusion detection systems (NIDS) have
emerged as a vital component of cybersecurity,
enhancing an organization’s security posture by
monitoring network traffic in real-time to identify
potential threats [4]. By actively analyzing incoming
and outgoing traffic, NIDS can detect malicious
activities and provide alerts, enabling organizations
to respond swiftly to security incidents.

Although commercial NIDS products offer robust
protection, they often come with high financial
costs, creating a security gap for SMEs with limited
IT budgets [5]. The financial burden associated
with licensing and maintenance can be prohibitive
for many SMEs, leading them to overlook critical
cybersecurity measures. Open-source NIDS,
such as Snort, Suricata, and Zeek, present a cost-
effective alternative, allowing SMEs to leverage
advanced intrusion detection capabilities without
incurring licensing fees [6]. These tools also foster
a communitydriven approach to security, where
users can benefit from shared intelligence and
constant updates.

However, selectingthemostsuitableopen-source
NIDS for an SME involves careful consideration of
various factors, including performance, detection
capabilities, and ease of management. Each
NIDS has its strengths and weaknesses, and
understanding how these tools perform in real-
world scenarios is crucial for making informed
decisions. Furthermore, SMEs must assess their
specific needs and resource constraints to identify
the best fit for their operational environments.

This research aims to evaluate three widely used
open-source NIDS—Snort, Suricata, and Zeek—
enabling SMEs to make informed choices based on
their specific needs and resource constraints. The

comparative analysis will provide valuable insights
by examining the features of each NIDS, focusing
on ease of deployment, performance under varying
network conditions, and detection efficacy against
prevalent cyberattacks targeting SMEs.

This work contributes significantly to the field of
NIDS by offering:

e Acomprehensive review of existing NIDS tools,
highlighting their strengths and weaknesses in
various deployment scenarios.

e A standardized methodology for evaluating
the performance of Snort, Suricata, and Zeek,
providing a framework for future research.

e Empirical analysis of performance metrics
under varying network conditions, offering
insights into operational efficiency.

e An assessment of detection capabilities
against common cyber threats, evaluating
effectiveness for SMEs.

e Practical recommendations for SMEs on
selecting and implementing NIDS solutions
tailored to their technical expertise and
resource availability.

This paper is organized into five sections to
provide a comprehensive overview of the research.
Section Il reviews the background and related
work, establishing context and significance
within the existing literature. Section [l details
the methodology and experiments conducted,
outlining the procedures used to evaluate the NIDS
under consideration. Following this, Section IV
presents performance evaluation results, analyzing
the effectiveness and efficiency of each system.
Section V assesses the detection capabilities
against various cyber threats, highlighting strengths
and limitations. Finally, Section VI concludes with
recommendations and directions for future research,
summarizing key findings and implications.

II. BAckGROUND AND RELATED WORK
SMEs, despite being the backbone of many
economies, face significant vulnerabilities due
to limited resources, exposing them to various
cyberattacks. Key challenges include:

e [imited IT Budget and Expertise. SMEs

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. [EEe]

typically operate with constrained budgets
and smaller IT teams, making it challenging to
establish robust cybersecurity measures.

e Increased Reliance on Third-Party Vendors:
Heavy dependence on third-party services
(e.g., cloud computing and software solutions)
can introduce vulnerabilities that compromise
the SME’s overall security.

e Cloud Security Concerns: While cloud services
offer flexibility, they also present security risks.
SMEs may lack the resources to configure and
manage cloud security effectively, increasing
their exposure to breaches.

e Prevalent Social Engineering and Phishing
Attacks: Cybercriminals frequently target
SMEs through social engineering and phishing,
exploiting potential gaps in employee security
awareness to gain sensitive information.

e Limited Security Awareness Training: Budget
constraints often hinder SMEs from providing
comprehensive security training, leaving
employees ill-equipped to recognize and
respond to cyber threats.

SMEs are increasingly targeted by cyberattacks
due to their perceived vulnerabilities, including
limited cybersecurity resources and outdated
practices. The most prevalent cyberattack threats
that SMEs face are:

e General Malware: This includes viruses,
worms, trojans, spyware, and adware
designed to infiltrate and damage systems.
Malware can compromise sensitive data,
disrupt operations, and incur substantial
financial costs due to recovery and lost
customer trust.

e Ransomware: A destructive form of
malware that encrypts data, rendering it
inaccessible until a ransom is paid, typically
in cryptocurrency. SMEs are attractive targets
due to often lacking sophisticated defenses,
leading to operational downtime and high
recovery costs.

e Phishing: A social engineering attack that
deceives individuals into revealing sensitive
information through fraudulent emails or
websites. SMEs may be particularly vulnerable

due to inadequate cybersecurity training,
leading to unauthorized access and potential
financial fraud.

e Web Application Attacks: These attacks
exploit vulnerabilities in online services, such
as e-commerce platforms. Common methods
include SQL injection and cross-site scripting
(XSS), which can compromise sensitive
information and disrupt business operations.

e Denial-of-Service (DoS) Attacks: DoS attacks
aim to overwhelm services with excessive
traffic, making them unavailable to legitimate
users. SMEs, especially those dependent
on online interactions, can suffer significant
losses due to downtime, including lost sales
and damage to brand reputation.

Intrusion Detection Systems (IDS) are software
applications that monitor network traffic for
potentially malicious activities. IDS can operate in
two main modes: alerting on suspicious activities
(IDS) or actively blocking harmful traffic (Intrusion
Prevention Systems, IPS). There are two primary
categories of IDS: Network IDS (NIDS), which
monitor traffic across an entire network, and Host
IDS (HIDS), which focus on individual devices. IDS
can also be classified by their detection methods:
anomalybased systems that identify deviations
from established traffic patterns and signature-
based systems that trigger alerts based on known
patterns of malicious activity [7]. This study focuses
on open-source NIDS. Open-source NIDS provide
flexible and customizable options for enhancing
network security. Notable examples include Snort,
which is a widely used NIDPS that operates on a
signature-based model. It supports both IDS and
IPS modes, allowing for traffic monitoring and alert
generation. Snort’'s architecture includes packet
capturing, decoding, normalization, detection, and
output generation. Although it lacks a graphical
user interface, visualization tools like Snorby
can enhance its usability. The release of Snort
3 introduced multithreading, improving packet
processing capabilities. Another notable system
is Suricata, developed by the Open Information
Security Foundation (OISF) as an IDS/IPS and
network monitoring tool. Unlike Snort, Suricata
uses a multi-threaded architecture, enabling

IESI08l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

efficient packet processing. Its architecture
comprises packet capture, decoding, detection,
and output alert modules, allowing for concurrent
detection. Zeek operates solely in IDS mode and
is maintained by the Zeek Project. It features a
scalable architecture that includes workers for
log transmission to a manager, which processes
events and applies detection rules. Zeek supports
anomaly-based detection, setting it apart from Snort
and Suricata, which focus on misuse detection.
Despite its efficiency, Zeek has a limited number
of default signatures, which may affect its adoption
compared to Snort and Suricata [8].

The use of Network Intrusion Detection Systems
(NIDS) is crucial for organizations to protect their
networks and data from attacks. However, their
performance can be significantly affected by
hardware issues, leading to dropped packets
and potential vulnerabilities [9]. Consequently,
performance testing of NIDS has become a
prominent area of research [10], [11]. Many studies
have focused on open-source NIDS, particularly
comparing the performance of Snort and Suricata.
In [12], Snort and Suricata were analyzed on
different platforms at traffic rates up to 2 Ghbps,
revealing that Suricata outperformed Snort on
Linux, especially at high speeds, though Zeek
was not included in the comparison. Research
in [13] found that Snort outperformed Suricata in
single-core setups, while Suricata excelled in multi-
core environments, highlighting its scalability. A
comparison in [14] indicated that Suricata had a
lower packet drop rate and better performance than
Snort but required more computational resources.
The introduction of BSnort in [15], a modified
Snort, showed improved performance against DoS
attacks, but focused solely on Snort. Stress testing
conducted in [16] revealed high packet drop rates
for Snort under heavy traffic, leading to a proposed
parallel architecture. In [17], Snort and Suricata
were tested under stress, with results favoring
Suricata. Additional studies [18] and [19] confirmed
Suricata’s superior performance, particularly under
high traffic conditions, although neither included
comparisons with Zeek. Various research efforts,
including [20], consistently found that Suricata
outperformed Snort in terms of processing higher
loads, though Snort maintained better accuracy. A

Recent study [21] evaluated both Snort and Suricata
in virtualized environments, with findings indicating
that Suricata generally outperformed Snort across
various parameters. However, these evaluations
often neglected Zeek and did not assess conditions
relevant to small and medium-sized enterprises
(SMEs). Research in [22] highlighted performance
metrics during simulated DDoS attacks, showcasing
Snort’s effectiveness against ICMP floods and
Suricata’s against SYN floods, yet did not consider
usability for non-technical SME staff. The study [23]
demonstrated improvements in Snort 3 over Snort
2, particularly in memory management and reduced
packet loss, but noted that Suricata remains more
suitable for large networks.

In conclusion, there are notable gaps in the
current knowledge base regarding the latest
versions of Snort, Suricata, and Zeek, as well as new
open-source signature rule sets, advancements in
software and hardware technologies, and emerging
attack methods. Additionally, comprehensive
evaluations of these three prominent open-source
solutions are lacking. This research aims to
address these gaps by utilizing the most recent
versions of Snort, Suricata, and Zeek, along
with updated signature rule sets and new attack
strategies to assess performance. In this context,
our study focuses on evaluating open-source
NIDS specifically in the context of SME networks,
emphasizing the following aspects:

e Fase of Deployment and Management:
Assessing the installation, configuration,
and management simplicity for each IDS,
considering the typical technical expertise of
SME staff.

e Performance Evaluation under SME Network
Conditions: Evaluating CPU, memory, and
bandwidth usage under simulated network
traffic patterns representative of typical SME
activity to provide a realistic picture of resource
demands.

e Detection Capability Assessment for Common
SME Threats: Focusing on cyberattacks
frequently encountered by SMEs, such as
phishing attempts, malware downloads,
ransomware, web application attacks, and
DoS attacks.

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. [REX!

By addressing these gaps, this research will offer
practical guidance for SME network administrators
in selecting opensource NIDS. The findings will
assist in choosing an NIDS that balances ease
of use, resource efficiency, and effective threat
detection relevant to SME network environments.

I1l. MeTHODOLOGY AND EXPERIMENTS

This research employs an experimental
methodology to assess the effectiveness of three
open-source NIDS: Snort (versions 2 and 3),
Suricata, and Zeek, within the context of SMEs. It
addresses three key aspects: ease of deployment
and management, performance under varying
network conditions, and detection accuracy for
common SME cyber threats. A series of controlled
experiments were conducted in a virtualized
environment simulating realistic SME network
conditions and attack scenarios. The selected NIDS
were chosen for their widespread use, community
support, and open-source nature, which eliminates
licensing costs. These tools will collectively be
referred to as NIDS Under Test (NUTs). The
experimental design aimed to systematically
evaluate the performance of the NUTs. Each
scenario was crafted to address specific research
questions, focusing on detection capability,
resource utilization (CPU and memory), and packet
drop rates. A diverse set of attack scenarios was
selected to evaluate the robustness of each NUT,
with varying network traffic intensity and volume.
To ensure objective comparisons, each NUT was
tested under identical conditions, with performance
metrics monitored and recorded during simulations.
The experiments were conducted 10 times to
ensure reliability, and results were averaged to
provide consistent findings.

The experiment setup is designed to create a
controlled environment that closely mimics real-
world network conditions while ensuring consistency
and repeatability across all experiments. To achieve
this, virtualization technology was utilized to create
a virtualized environment where each experiment
component could be isolated and managed
independently. This approach offers flexibility,
scalability, and ease of deployment while minimizing
the risk of interference between components. The

Suricata Zeek

Attack
Machine
P—
—
@ —
Target
Machine
Legitimate
Traffic
m Generation

Snort 2 Snort 3

Fig. 1: Test-bed network

environment used was VMware Workstation 16 Pro
running on a laptop

with an Intel® Core™ i7-8650U CPU, 32GB of
RAM, and 1TB SSD storage, running Windows 10
Pro version 22H2. The testbed network, illustrated in
Figure 1, consisted of seven virtual machines (VMs)
connected to a virtual switch with a 1Gbps link to
replicate real-world SME network speeds. Each VM
was provisioned with adequate resources to ensure
optimal performance during the experiments.

While manual downloading and installation
of rules is feasible, using a management tool is
advisable. PulledPork is a Perl-based utility that
automates Snort rule management, facilitating the
download, update, and maintenance of rule sets
and IP block-list updates. It offers flexible policies
(connectivity, balanced, security, or max-detect)
and provides comprehensive feedback. PulledPork
is compatible with Proofpoint ET and Cisco Snort
rules, licensed under the GNU General Public
License for commercial use, and can also be used
with Suricata. With the release of Snort 3, PulledPork
was redeveloped in Python 3 as PulledPork3. This
version utilizes the LightSPD package and allows
a single ruleset package to adjust its rules based
on the engine version operating on the system,
enabling users to choose a default policy for the
ruleset. Suricata features a specialized tool for rule
set management called suricata-update. This tool
is the official method for updating and managing
Suricata’s rules andisincluded with Suricata starting
from version 4.1. The Zeek Package Manager
allows Zeek users to install third-party scripts and

gEsY28l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

plugins, functioning as a command-line script that
requires Zeek to be installed locally. PulledPork and
PulledPork 3 were selected for Snort 2 and Snort
3, respectively, to automate rule management due
to their compatibility with Snort’s rulesets. Suricata-
update was utilized for Suricata, as it is the official
tool for managing Suricata rulesets.

The selection of appropriate evaluation metrics
is crucial for effectively assessing the strengths and
weaknesses of the NUTs. The chosen metrics align
with the research objectives of identifying the most
suitable NUT for SMEs. The ease of deployment
and management of each NUT will be assessed
through the following criteria:

e |nstallation Complexity: Evaluation of how
straightforward or challenging it is to install
the IDS, including the number of steps,
dependencies, and potential issues.

e Configuration Complexity: Assessment of
the user interface and configuration options
for intuitiveness and ease of use, covering
aspects like rule management and alert
generation.

e Management Overhead: Evaluation of the
ongoing effort required to manage the NUT,
considering the typical technical expertise
available in SMEs.

The evaluation method includes installing and
configuring each NUT on the virtual machine acting
as the NIDS sensor, documenting the time taken
for installation and configuration, and evaluating
ongoing management tasks such as updates and
rule management. The resource consumption of
each NUT will be measured under simulated network
traffic loads typical of SME activity, monitoring the
following metrics:

e (CPU Utilization: Percentage of CPU utilization
by the NUT process, as high usage may
indicate performance bottlenecks.

e Memory Usage: Amount of memory consumed
by the NUT process; excessive usage could
delay threat detection.

e Packet Drop Rate: Percentage of packets
dropped by the NUT, where a higher rate
indicates poorer performance.

For performance evaluation, resource

consumption metrics (CPU and memory) will be
monitored during network traffic simulations using
the htop tool. Packet drop rates will be retrieved from
the NUT outputs after each run, and custom bash
scripts will be developed to parse and aggregate
data from the logs. The collected data will be
analyzed to determine the impact of traffic load
on resource consumption and packet dropping for
each NUT. The detection capability of each NUT
is influenced by the availability of corresponding
rules within the default rule set. This evaluation
assesses how well the default rules cover a range
of attacks by simulating various attack scenarios
and analyzing the NUT’s responses. The detection
capabilities will be evaluated based on the following
metrics:

e TPR: This measures how accurately each NUT
detects real attacks, crucial for evaluating its
efficiency in recognizing harmful activity.

e FNR: This metric addresses the failure to detect
attacks, critical for preventing significant risks,
especially forransomware.

For detection capability evaluation, alerts
generated during traffic replay will be collected and
analyzedforeachscenario,confirmingtheiralignment
with the identified attack type and documenting any
missed detections. The performance evaluation
experiments aim to assess the NUTs in terms of
CPU utilization, memory consumption, and packet
drop rate under various conditions. Key factors
influencing NIDS performance include traffic rate,
packet size, capturing methods, detection engine
algorithms, ruleset size, and network flow types.
The following scenarios were implemented for
performance evaluation:

e Scenario 1: Baseline Performance Assessment
establishes a baseline for employing NIDS
within an SME network using a standard
configuration and ruleset for each NUT. A
TCP stream was generated using Iperf with a
packet size of 1500 bytes, and performance
was assessed as throughput increased from
100 Mbps to 1000 Mbps.

e Scenario 2: Ruleset Size Standardization
addresses the varying sizes of the default
rulesets across NUTs, implementing a
standardized size of 10,000 rules for fair

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. [HE]

comparison. Zeek was excluded due to its
limited default ruleset.

e Scenario 3: Packet Capture Technique
Evaluation explores the impact of different
packet capture techniques (libpcap and
afpacket) on performance, selecting the
method with the least packet drop rate for
further tests.

e Scenario 4: Detection Engine Optimization
modifies the detection engine using the
best-performing packet capture technique
identified previously. The top three algorithms
for each system were evaluated under the
same network traffic conditions.

e Scenario 5: Impact of Ruleset Size on
Performance examines how varying ruleset
sizes (from 10,000 to 50,000 rules) affect NUT
performance under different traffic loads (100
Mbps, 500 Mbps, and 1000 Mbps), excluding
Zeek due to its ruleset limitations.

e Scenario 6: Real-World Traffic Simulation
simulates daily activities using the BigFlows.
pcap dataset, capturing typical TCP and UDP
traffic. Traffic was redirected at 100 Mbps
throughput to the NUTs.

For detection capability assessment, various
scenarios were designed to evaluate the NUTs
against common cyberattacks targeting SMEs.
Each scenario focused on specific attack types:

e Scenario 1: DoS and Port Scanning Attacks
involved simulating DoS attacks (SYN, ICMP,
and UDP flooding) and a port scan using
NMAP.

e Scenario 2: General Malware tested detection
capabilities against a wide range of malware
using 420 small pcap files containing malicious
traffic.

e Scenario 3: Ransomware Attacks focused on
detecting ransomware using 17 pcap files
representing typical ransomware traffic.

e Scenario 4: Web Application Attacks
evaluated responses to web-based attacks
using OWASP ZAP and Metasploit, focusing
on vulnerabilities such as SQL injection.

e Scenario 5: Phishing Attacks simulated
phishing attempts, capturing traffic to assess

the NUTs’ ability to identify malicious URLs
and domain spoofing.

Each scenario was executed for 180 seconds,
with detection capability scenarios run until all
related traffic was replayed. All experiments were
repeated 10 times to ensure statistical significance,
averaging results to mitigate the impact of outliers
and provide a comprehensive understanding of the
NUTs’ performance under consistent conditions.

The Universe repository for Ubuntu 22.04
currently does not include the latest version of
Snort 2. As shown in Figure 2, the repository’s latest
version is (2.9.15.1), whereas the Snort website
offers version (2.9.20). Consequently, we will
proceed to install the most recent version of Snort 2
directly from the source code.

The installation of Snort 2 follows these five steps:
1) Update Ubuntu packages.

$ sudo apt update && sudo apt dist-upgrade -y

2) Install dependencies, Snort 2 has some
prerequisites that need to be installed.

$ sudo apt update && sudo apt dist-upgrade -y
,— libdumbnet-dev build-essential flex

,— bison zlib1g-dev libluajit-5.1-dev
,— openssl libssl-dev liblzma-dev
,— libnghttp2-dev

3) Download some source tarballs and other
files and store them in a folder for easy
management.

$ mkdir snort-src
$ cd snort-src/

4) Install dag, Download and install the latest
version of DAQ from the Snort website.

$ wget https://www.snort.org/downloads/snort/
-, dag-2.0.7.tar.gz

$ tar -zxvf dag-2.0.7 tar.gz

$ cd dag-2.0.7/

$./configure

$ make

JEsY‘8l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

M ghadi@snort2: ~

:-$ apt-cache policy snort
snort:
Installed: (none)
Candidate: 2.9.15.1-6build1
Version table:
2.9.15.1-6build1l 560

500 http://ye.archive.ubuntu.com/ubuntu jammy/universe amd64 Packages

Fig. 2: Screenshot: latest Snort 2 release available in Ubuntu
repository

$ sudo make install
$cd ../

5) Install Snort 2, Download and install the latest
version of Snort 2 from the Snort website.
The last version is 2.9.20, which released on
2022/05/13.

$ wget https://www.snort.org/downloads/snort/
-, snort-2.9.20.tar.gz

$ tar -xzvf snort-2.9.20.tar.gz

$ cd snort-2.9.20

$./configure --enable-sourcefire

$ make

$ sudo make install

Table | summarizes the key metrics observed
during the implementation of each NUT, reflecting
the practical challenges faced during deployment.

TABLE |
SUMMARY OF IMPLEMENTATION METRICS

Criteria Snort 2 Snort3 Suricata Zeek

Installation Time mins 35 mins 77 mins 11 mins 19

Configuration Com- Moderate Moderate Easy Difficult
plexity

Management High
Overhead

Moderate Low High

Key observations indicate the following regarding
the installation process:

e Snort 2: Installation took approximately 35
minutes due to manual compilation and
dependencyissues, which may be challenging
for users with limited experience.

e Snort 3: Installation was longer at about 77

minutes, due to complex dependencies and
configuration steps, making it less suitable for

rapid deployment.

e Suricata: The fastest installation at only 11
minutes, benefiting from standard repositories
and automated dependency management,
ideal for SMEs needing quick setups.

e Zeek: Took around 19 minutes, relatively
straightforward but required familiarity with
network interface setup.

Regarding configuration complexity, the findings
are as follows:

e Snort 2 and 3: Both versions rated as having
moderate complexity. Snort 2 required manual
edits, while Snort 3 needed knowledge of Lua-
based adjustments.

e Suricata: Easiest to configure with a clear
YAML-based setup, allowing simple
adjustments of critical parameters.

e Zeek: Most complex due to its script-driven
configuration, posing a significant barrier for
SMEs without scripting knowledge.

In terms of management overhead:

e Snort 2: High management overhead due to
frequent manual updates and maintenance of
rulesets, which can be burdensome for SMEs.

e Snort 3: Reduced overhead compared to
Snort 2 but still required moderate effort to
maintain rulesets.

e GSuricata: Lowest management overhead,
with the suricataupdate tool automating rule
updates, making it ideal for SMEs.

e Zeek: High management overhead due to the
need for manual updates and maintenance
of custom scripts, overwhelming for users
lacking specialized skills.

The analysis indicates that Suricata is the
most straightforward NUT to deploy and manage,
making it an excellent choice for SMEs due to its
ease of deployment and minimal management
overhead. Specifically, Suricata’s 11-minute
installation ~ and userfriendly configuration
demonstrate its accessibility, while automated rule
updates significantly reduce ongoing management
efforts. Conversely, Snort and Zeek present higher
barriers to entry due to complex configurations and
management overhead. Snort demands more from

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. RIS

users, while Zeek’s reliance on custom scripting
limits accessibility without dedicated security staff.

IV. PERFORMANCE EVALUATION

This section addresses the second research
question (RQ2), examining the performance
differences among open-source NIDS solutions
Snort 2, Snort 3, Suricata, and Zeek, particularly
in CPU usage, memory consumption, and packet
dropping rates under diverse network conditions.
Through a systematic evaluation of these metrics in
various scenarios, the section delivers an in-depth
analysis of each NIDS’s resource efficiency and
scalability, aiding in identifying the most appropriate
solution for SMEs with limited resources.

A. Baseline Performance Assessment

In this scenario, each NUT was evaluated using
its default configuration and ruleset as network
throughput increased from 100 Mbps to 1000
Mbps.

As shown in Figure 3, Snort 2 displayed a steady
rise in CPU utilization, peaking at approximately
22.8% at 1000 Mbps. Its memory usage remained
stable at 8.8%, but the packet drop rate rose
significantly, from 0% at 100 Mbps to about 9.9%
at 1000 Mbps. These results indicate that Snort 2
struggles under heavier loads, leading to packet
drops and decreased detection capabilities. This
issue stems largely from its single-threaded design,
which restricts efficient packet processing.

In contrast, Snort 3 (Figure 3) recorded higher
CPU utilization across all throughput levels, peaking
ataround 25.5% at 1000 Mbps. Although its memory
usage was low at 1.76%, it also experienced packet
drops—albeit less severe than Snort 2—starting at
0% and rising to 5.26% at maximum throughput.
This indicates that while more memory-efficient,
Snort 3 still relies heavily on CPU resources and
has challenges with high traffic volume due to its
default single-threaded processing. Nonetheless,
it outperformed Snort 2 even in this constrained
mode.

Suricata’s multi-threaded architecture delivered
a balanced performance, with CPU usage climbing
to about 19% at 1000 Mbps while keeping memory

Snort 2
—&— Snort 3
—8— Suricata
—— Zeek

///

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

25

. N
o} S

CPU Utilization(%)

"
1

(a) CPU utilization

Snort 2
—&— Snort 3
8 —&— Suricata
—— Zeek

Memory Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

10 Snort 2
—&— Snort 3
—8— Suricata
—— Zeek

Packets Dropping(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 3: Performance comparison of NIDS tools
with default settings

usage low at approximately 4.7% (Figure 3).
Remarkably, Suricata avoided any packet drops,
even with the largest default ruleset among the
NUTs, showcasing its capability to handle heavy
traffic effectively.

Zeek excelled with extremely low CPU utilization,
beginning at 3.2% and reaching only 8.3% at the
highest throughput, alongside consistent memory

IESIel| Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

usage at 3.1%. Zeek maintained a 0% packet drop
rate across all throughput levels, demonstrating
its robustness without performance degradation
(Figure 3). However, its lighter ruleset likely
contributes to its lower resource consumption and
negligible packet drops.

B. Ruleset Size Standardization

To ensure a fair comparison, the rule set sizes for
Snort 2, Snort 3, and Suricata were standardized to
10,000 rules each. As shown in Figure 4, Snort 2
experienced a slight decrease in CPU and memory
usages compared to the baseline, with 22.0% at
1,000 Mbps, while its memory usage was constant
at 8%. With the reduced rule set size, there was
a slight improvement in the packet drop rate, yet
it remained high at 9.1% at maximum throughput,
indicating that rule set size impacts Snort 2’'s
efficiency.

Snort 3 also exhibited reduced CPU and
memory utilization compared to the baseline,
reaching 25.4% at 1000 Mbps, while its memory
decreased to 1.6%. The packet drop rate showed
a modest improvement, with a final rate of 5.1% at
maximum throughput. These results indicate that
while Snort 3 benefits from ruleset standardization,
it still struggles with high throughput scenarios,
similar to Snort 2.

Suricata continued to perform well, with CPU
utilization slightly lower than in the baseline,
reaching 15.9% at 1000 Mbps. Memory usage was
even more efficient at 2.05%, and it still recorded
zero packet drops across all throughput levels.
This reinforces Suricata’s scalability and efficiency,
making it particularly suitable for environments
where high traffic and large rulesets are common.

C. Packet Capture Technique Evaluation

This scenario examined the effects of two
prevalent packet capture methods, libpcap and
afpacket, on the performance of each NUT.

Figure 5 indicates that Snort 2 experienced
an enhancement with the use of afpacket, as
evidenced by a minor reduction in CPU utilization
and a significant decrease in packet drop rates. At
a network speed of 1000 Mbps, CPU usage was

Snort 2
—&— Snort 3
—&— Suricata

CPU Utilization(%)
&

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

Snort 2
—&— Snort 3
~#— Suricata

Memory Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

Snort 2
—&— Snort 3
—— Suricata

Packets Dropping(%)

0 .

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 4: Comparison of NIDS solutions with the
same ruleset size

approximately 22.5%, and the packet drop rate was
reduced to 0.39%, a substantial improvement from
the 9.1% observed with libpcap. Although there
was a slight increase in memory usage to 11.2%,
packet handling was notably improved, with no
drops occurring up to 700 Mbps. This demonstrates
that despite afpacket’s marginally higher memory
requirement, the trade-off is justified by the gains in

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

r=ERREE I 157

—&— Libpcap
227 —4— AF_Packet
20
§ 18
c
L6
©
N
T
=)
z
S 12
10
8
100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)
(a) CPU utilization
11.0
—~ 10.5
g
c
2 100
©
2 = Libpcap
5 95 —4— AF_Packet
>
2
=}
£ 90
[
=
85
8.0
100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)
(b) Memory utilization
—=— Libpcap
—— AF_Packet
8
2
o6
£
Q
Q
5
@ 4
8
3
£
=3
©
a
2
o

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 5: Performance of Snort 2 with libpcap
and afpacket

throughput and the reduction in packet loss.

Figure 6 demonstrates that Snort 3 has
significantly advanced with afpacket, showing
greater CPU utilization than libpcap, reaching
48.7% at 1000 Mbps and a rise in memory usage
to 15.3%, while successfully reducing packet drops
at almost all throughput levels. Due to libpcap
missing proper load balancing for Snort 3 packet
processing threads, it was not a valid choice for
Snort 3 multi-threading.

figurable detection engine, and therefore,
nfiguration.

50

—=— Libpcap
—4— AF_Packet

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

-& Libpcap
8 —4— AF_Packet

Memory Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

—— Libpcap
—4— AF_Packet

Packets Dropping(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 6: Performance of Snort 3 with
libpcap and afpacket

Snort 3 utilizes afpacket for load balancing
network traffic between each packet processing
thread, which was the only option for Snort 3 multi-
threading when using Snort 3 to analyze realtime
network traffic. It can be configured in the Snort 3
config file or command line, as seen in Section ??.

This balance between heightened CPU and
memory usage against decreased packet loss
suggests that afpacket enhances Snort 3’s
detection abilities notwithstanding the increased
consumption of resources.

gEstell Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

1 greatly Improve tne ermciency ot

= Libpcap

16{ = AF_Packet
—~ 14
8
c
2
® 12
N
S
E
=)
a. 10
]

8

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)
(a) CPU utilization

2.063

2.062
g
f=4
S 2.061
g
= 2,060 ~&- Libpcap
S —4— AF_Packet
>
s 2.059
g2
()
=

2.058

2.057

R S S S}

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

0.10 { —#- Libpcap
—4— AF_Packet

° ° °
> ° >
2 S 2

Packets Dropping(%)

°
S
S

0.00

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 7: Performance of Suricata with
libpcap and afpacket

both capture techniques, showing very low CPU
utilization (15.9% with afpacket), maintaining its low
memory usage (around 2%), and zero packet drops
throughout. This indicates that Suricata’s efficiency
is less dependent on the packet capture method,
underscoring its overall robustness.

Figure 8 shows, that Zeek sustained outstanding
performance with afpacket, demonstrating very
low CPU and memory usage, along with zero
packet drops. The negligible impact of the capture
method on Zeek’s performance underscores its

—=— Libpcap
—4— AF_Packet

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

—&- Libpcap
—— AF_Packet

w
N
&

w
N
S

w
G

3101 #————————————————

Memory Utilization(%)
w
5
2

°
8

~
©
&

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

—&— Libpcap
—— AF_Packet

0.00 #B—#—#—#—%— % —%—%—%—%

Packets Dropping(%)

-0.02

-0.04

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 8: Performance of Zeek with libpcap
and afpacket

appropriateness for settings where stable and
reliable detection is paramount.

The comparative performance of all NUTs with
afpacket is further highlighted in Figure 9, which
emphasizes the importance of selecting optimal
packet capture methods. For SMEs, implementing
afpacket with their chosen NIDS could be a
straightforward adjustment to improve overall
network security performance.

D. Detection Engine Optimization

The detection engine optimization experiments
explore the impact of different detection engine

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. K]

0 Snort 2

—&— Snort 3
& Suricata
—4— Zeek

40

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

=

]

5

Snort 2
—— Snort 3
~#— Suricata
—— Zeek

®

Memory Utilization(%)
e

IS

¢+ + + + + + + + + \

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

Snort 2
—&— Snort 3
0351 - Suricata
—4— Zeek

°
N
&

Packets Dropping(%)
8

0.00{ L * - - L o # #

100 200 300 400 500 600 700 800 9200 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 9: Performance comparison of NIDS
tools with afpacket

configurations on the performance of Snort 2,
Snort 3, and Suricata, each using afpacket as the
efficient packet capture method determined in the
preceding scenario. Itis important to note that Zeek
was not included in this assessment due to its non-
configurable detection engine, and therefore, it was
kept in its default configuration.

While the ac option in Snort 2 did lead to a
modest reduction in CPU usage, down to 20.0% at
1000 Mbps, and a decrease in packet drop rate to
0.21%, indicating improved efficiency and packet
processing capacity, it also caused a significant
increase in memory usage as shown in Figure 10.
Our testings showed that Snort configured with

—e— ac-split
22 —® acbnfa
—4 ac

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

}

=

-
S

©

—— ac-split
—& ac_bnfa
—+ ac

Memory Utilization(%)
-

£y

«

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

—o— ac-split
—=- ac_bnfa
—4+ ac

Packets Dropping(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 10: Performance of Snort 2 with
different detection engine

the ac option experienced substantial memory
consumption, which worsened with larger rule sets.
An attempt to run Snort with a 50,000 rule set failed
due to memory limitations. Resulting in, switching to
the alternative ac-split option.

As shown in Figure 11, Snort 3's hyperscan
configuration provided substantial performance
benefits, with CPU utilization greatly reduced
and memory usage stabilized at 15.9%. This
configuration enabled Snort 3 to handle high
throughput without packet loss, making it more
competitive with Suricata’s consistently low memory
and CPU usage.

IIG]08l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

—e— ac-bnfa
& ac_ful
—#— hyperscan

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

26

22 —e— ac-bnfa
-=— ac_full
—4— hyperscan

Memory Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

—e— ac-bnfa
0.201 —#~ ac_full
—4 hyperscan

°
&

Packets Dropping(%)
°
s

°
°
&

0.00

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 11: Performance of Snort 3 with
different detection engine

Figure 12 illustrates that the default Suricata
configuration, utilizing afpacket with hyperscan,
maintained optimal performance, further confirming
the efficiency of the default Suricata setup as
previously discussed.

The comparative performance of all NUTs,
paired with the optimal detection engine for each, is
further illustrated in Figure 13. This underscores the
criticality of choosing the optimal detection engine.
For SMEs, the adoption of advanced detection
engines such as hyperscan can greatly improve
the efficiency of NIDS, particularly in scenarios
with high traffic volumes and sophisticated attack
vectors.

30— ac
& acks
—— hyperscan

CPU Utilization(%)

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

—o— ac
—- ac-ks
—4 hyperscan

Memory Utilization(%)

—

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(b) Memory utilization

0.051 —= ac
- acks
—4— hyperscan

0.02

Packets Dropping(%)

0.01

0.00

100 200 300 400 500 600 700 800 9200 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 12: Performance of Suricata with
different detection engine

E. Impact of Ruleset Size

The results of this scenario highlight the
significantimpact of ruleset size on the performance
of Snort 2, Snort 3, and Suricata under various
traffic conditions, including low, moderate, and
peak throughput. As the ruleset size increased from
10,000 to 50,000 rules, all NIDS solutions showed
a rise in CPU utilization and memory consumption,
with Snort 2 experiencing the most pronounced
increase in packet dropping rates, particularly at
higher traffic loads.

Under low throughput (100 Mbps), Figure 14,
Snort 2’'s CPU usage gradually rose from 7.49% with
10,000 rules to 10.33% with 50,000 rules, while its

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. [REsk

Snort 2
204 —— Snort 3
—4— Suricata

18

CPU Utilization(%)
IS

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(a) CPU utilization

14

Snort 2
—— Snort 3
8 —4— Suricata

Memory Utilization(%)

24 A

100 200 300 400 500 600 700 800 9200 1000
Throughput (Mbps)

(b) Memory utilization

Snort 2
0.20 1 —k— Snort 3
—4— Suricata

Packets Dropping(%)

0,001 —4—4—4—4—4—4+——4—4—4

100 200 300 400 500 600 700 800 900 1000
Throughput (Mbps)

(c) Packet dropping

Fig. 13: Performance comparison of NIDS
tools with optimized configuration

memory usage increased significantly, indicating a
more resource-intensive operation as ruleset sizes
expanded. Notably, Snort 2 maintained zero packet
drops under low traffic conditions but exhibited a
rising trend in memory usage that could impact
performance at higher loads. Snort 3 demonstrated
similar trends in CPU and memory usage, though
it managed to maintain no packet drops across
all ruleset sizes under low throughput, indicating
a better efficiency in handling increasing rulesets
compared to Snort 2. Suricata exhibited the lowest

16 Snort2 mem snort3 mEm Suricata

Z7L 725 742

CPU Utilization(%)

[oz o 5o suran) 23 2z

Memory Utilization(5)

008 Snort2 mem Snort3 mem Suricata

Packets Dropping(%)

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10000 20000 30000 40000 50000

Fig. 14:. Performance comparison of NIDS tools against
ruleset size under low throughput (100 Mbps)

2007

Snort2 _mmm Snort3 mem Suricate 2061 2
20

1o
162915 03

CPUtizaton)

3533

1550 1501 1coz
1 . (e} —
10
s
o

2 mm snon s wem surcota | 23235 3327

Memory Uizaten®)

10000 20000

Fig. 15: Performance comparison of NIDS tools against
ruleset size under moderate throughput (500 Mbps)

CPU and memory usage under the same conditions,
maintaining zero packet drops, suggesting a high
level of efficiency even with larger rulesets.

At moderate throughput (500 Mbps), Figure
15, the performance gaps widened. Snort 2
began showing packet drops starting from the
20,000-rule size, escalating to 2% at 50,000 rules,
which is concerning for environments requiring
high reliability. The increase in packet drop rates
suggests that Snort 2 struggles with scalability
under increased traffic loads and larger rulesets,
making it less suitable for high-performance
requirements without significant tuning. Snort 3
managed to avoid packet drops until the largest
ruleset size, demonstrating better adaptability and
scalability under moderate conditions. Suricata
continued to show the most efficient performance,

§IsP28l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

12.42

25 195
109
939 00 00 00 00 00 00 00 00 00 00

10000 20000 30000 40000 50000
Rule set size

Fig. 16: Performance comparison of NIDS tools against
ruleset size under peak throughput (1000 Mbps)

maintaining zero packet drops and relatively low
CPU and memory usage, further confirming its
capability to handle large rule sets and moderate
traffic without performance degradation.

Under peak throughput (1000 Mbps), Figure
16, the differences became starkly apparent.
Snort 2’'s packet drop rate surged dramatically
to 17.46% at the largest ruleset size, highlighting
severe limitations in high-traffic scenarios. This
performance suggests that Snort 2's detection
engine struggles under heavy loads, particularly
when coupled with extensive rulesets, potentially
compromising security in high-traffic environments.
Snort 3 and Suricata demonstrated much better
resilience, with Suricata maintaining zero packet
drops and only moderate increases in resource
consumption. This performance underscores
Suricata’s robust architecture, making it particularly
suitable for highthroughput environments typical
of larger SMEs or those with intensive security
monitoring requirements.

F. Performance Comparison with Real-World Traffic

This scenario evaluated the performance of
Snort 2, Snort 3, and Suricata using the BigFlows.
pcap dataset, which replicates realistic network
conditions with diverse traffic types, including HTTP
browsing, file transfers, and chat applications. The
dataset featured over 40,686 distinct flows with a
range of packet sizes from 60 to 1514 bytes, and an

1% Snot2 mEm Snort3 mEm Suricata

1006

20

087
047 oo o5 o

40000 50000

00 00 001 00

10000 20000 30000
Ruleset Size

Fig. 17: Performance comparison of NIDS solutions against
the BigFlow.pcap dataset with different ruleset size

average packet length of 449 bytes. This scenario
allowed for a comprehensive assessment of how
each NIDS handles complex, mixed traffic patterns
typical of SME environments. Key factors affecting
performance were the number and variety of flows
and the variability in packet size, both of which
significantly influence resource consumption, and
packet drop rates.

The combination of numerous, varied flows
and diverse packet sizes directly challenged the
detection engines of Snort 2, Snort 3, and Suricata,
highlighting their strengths and weaknesses in
handling real-world traffic dynamics.

Figure 17 illustrates that Snort 2 had difficulties
handling the growing number and diversity of flows,
along with the variability in packet sizes. At a ruleset
size of 10,000, Snort 2 maintained acceptable
performance with a CPU utilization of 17.08% and
memory usage at 11.2%, alongside a packet drop
rate of 2%. However, as the ruleset size grew to
50,000, CPU utilization increased to 22.86%, and
memory consumption surged to 35.4%. More
critically, the packet dropping rate escalated
sharply to 14.56%, indicating a significant decline
in Snort 2’s ability to process traffic effectively. This
steep increase in packet drops suggests that Snort
2 may struggle with the dynamic nature of actual
network traffic, where multiple concurrent flows and
varying packet sizes can challenge its detection
capabilities. The pronounced performance

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. [}

degradation with larger rulesets poses a risk of
undetected threats, making Snort2 less suitable
for SMEs that require reliable threat monitoring with
minimal packet loss.

Snort 3 Performance Analysis: Snort 3 showed
a more robust performance profile compared to
Snort 2, although it still faced challenges at higher
ruleset sizes. At 10,000 rules, Snort 3 exhibited a
CPU utilization of 18.65% and memory usage of
16.65%, with no packet drops, indicating efficient
handling of traffic with relatively light computational
demands. As the ruleset expanded to 50,000,
CPU utilization increased significantly to 41.27%,
and memory usage reached 22.42%. Despite
this increase in resource consumption, Snort 3
managed to keep packet drops to a minimum, only
recording a drop rate of 0.87% at the highest ruleset
size. This low packet drops rate highlights Snort 3’s
enhanced detection engine and better resource
optimization, which allows it to handle complex
traffic with higher detection accuracy and minimal
loss. However, the elevated CPU usage underlines
potential performance bottlenecks, suggesting that
while Snort 3 can manage large rulesets effectively,
it does so at the cost of significantly increased
processing power, which could impact overall
system performance if not adequately provisioned.

Suricata Performance Analysis: Suricata
consistently outperformed both versions of Snort
across all metrics, maintaining superior detection
capabilities with minimal resource consumption and
packet drops. At a ruleset size of 10,000, Suricata’s
CPU utilization was remarkably low at 5.65%, and
memory usage was 3.74%, with zero packet drops,
showcasing its highly efficient architecture. As the
ruleset size increased to 50,000, Suricata’s CPU usage
rose to 25.59%, and memory consumption increased
moderately to 5.39%. Despite the larger ruleset,
Suricata maintained a perfect record with zero packet
drops, demonstrating its ability to efficiently scale and
process high volumes of traffic without compromising
performance. This robust performance can be
attributed to Suricata’s multi-threaded processing
and optimized detection algorithms, which allow it
to balance load effectively across system resources,
making it particularly wellsuited for real-world
deployments in SMEs where reliability and efficiency
are paramount.

V. DeTECTION CAPABILITY ASSESSMENT

This section explores the third research
question (RQ3), focusing on the efficacy of Snort
2, Snort 3, Suricata, and Zeek in detecting common
cyberattacks that frequently target SMEs. It
assesses each NIDS detection accuracy through
controlled attack scenarios, such as DoS, malware,
ransomware, web application attacks, and phishing.
The evaluation measures the TPR and FNR of
each NIDS. The findings provide insights into the
strengths and weaknesses of each tool’s ability to
protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning Attacks

The results of this scenario show significant
differences in how each NUT handles DoS and port
scanning attacks. Suricata outperformed the other
systems, achieving an impressive TPR of 85% with
a relatively low FNR of 15%. This reflects Suricata’s
superior ability to manage high-throughput traffic
and accurately detect patterns associated with DoS
and scanning activities. Snort 3 followed with a TPR
of 80%, showing improvements over Snort 2, which
only managed a TPR of 75%. Zeek, on the other
hand, displayed a lower TPR of 60%, with a high
FNR of 40%, which can be attributed to its focus
on behavioral analysis rather than signature-based
detection. Zeek’s relative under-performance in this
scenario indicates its limitations in detecting rapid,
highvolume attacks like DoS, where signature-
based systems like Suricata excel.

B. Scenario 2: General Malware

In the general malware detection scenario,
Suricata once again demonstrated its strength,
achieving the highest TPR of 90% with only a
10% FNR. This result highlights the effectiveness
of Suricata’s robust signature-based detection,
which allows it to identify a wide range of malware
threats. Snort 3 performed well with a TPR of 86%,
significantly outperforming Snort 2, which had a
TPR of 77%. The improved detection rate in Snort
3 can be attributed to enhancements in its rule
set and detection engine. Zeek, with its behavior-
based approach, achieved a TPR of 78%, which
is slightly higher than Snort 2 but lower than Snort

BIGI‘8l Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

3 and Suricata. Zeek’s detection capabilities
in this scenario were hampered by its reliance
on behavioral indicators rather than signature
matching, which limited its ability to identify malware
without clear behavioral anomalies.

C. Scenario 3: Ransomware Attacks

The ransomware attack scenario underscores
Suricata’s capability to detect sophisticated
threats, with a TPR of 94% and the lowest FNR at
6%. This demonstrates Suricata’s effectiveness in
recognizing ransomware-specific traffic patterns,
including command and control, data exfiltration,
and encryption activities. Snort 3 also performed
well with a TPR of 87%, while Snort 2 lagged slightly
behind at 81%. Zeek’s performance was notable,
with a TPR of 88%, indicating that its behavioral
detection approach is particularly useful in
identifying ransomware traffic, which often exhibits
distinctive behaviors. However, Zeek’s slightly
higher FNR (12%) compared to Suricata suggests
that it might miss more subtle or encrypted
ransomware activities that rely less on obvious
behavioral signatures.

D. Scenario 4: Web Application Attacks

Web application attacks, such as SQL Injection
and CrossSite Scripting, were well detected by most
NUTs, but Suricata continued to lead with a TPR of
91% and an FNR of 9%. Snort 3 followed closely
with a TPR of 88%, highlighting its competence in
handling web-based threats. Snort 2 trailed with a
TPR of 85%, indicating that while it is effective, it
is not as finely tuned as its successor or Suricata.
Zeek’s performance in this scenario was strong,
with a TPR of 89%, reflecting its proficiency in
monitoring HTTP traffic and identifying anomalous
behaviors associated with web application exploits.
However, the slight variation in FNR between Zeek
(11%) and Suricata (9%) indicates that signature-
based systems may still have a slight edge in
detecting web vulnerabilities.

E. Scenario 5: Phishing Attacks

In the phishing scenario, Suricata demonstrated
exceptional accuracy with the highest TPR of

95% and the lowest FNR of 5%, confirming its
effectiveness in detecting malicious URLs, domain
spoofing, and suspicious email traffic. Snort 3
performed similarly well, achieving a TPR of 90%
and an FNR of 10%, outperforming Snort 2 (TPR
83%, FNR 17%). This indicates that while both
versions of Snort are effective in detecting phishing
attempts, Snort 3 offers better accuracy. Zeek also
achieved strong results with a TPR of 89% and an
FNR of 11%, showing its capability in identifying
phishing-related behaviors such as credential
harvesting and anomalous domain access.
However, Suricata’s higher TPR and lower FNR
make it the most reliable NUT in detecting phishing
threats, likely due to its extensive rule set coverage
for domain-related attacks.

VI. ConcLusION, RECOMMENDATIONS, AND
Future WORKs

This study aimed to evaluate the effectiveness
of three opensource network intrusion detection
systems (NIDS): Snort 2, Snort 3, Suricata, and
Zeek, in the context of small and mediumsized
enterprises (SMEs). The research focused on ease
of deployment, performance under varying network
conditions, and detection accuracy for common
SME cyber threats. Through controlled experiments
in a virtualized environment simulating realistic SME
conditions, we assessed the performance of these
NIDS solutions.

The findings revealed that Suricata consistently
outperformed the others in scalability, efficiency,
and low packet drop rates, making it highly suitable
for SMEs. Snort 3, when optimized with afpacket
and hyperscan, demonstrated significant potential
but is best suited for resource-rich environments.
Snort 2 exhibited limitations under heavy traffic,
while Zeek, though efficient, may not address all
security needs due to its lighter ruleset.

These findings have important implications for
SME NIDS deployment, highlighting the strengths
of Suricata as a scalable solution. Snort 3 can
benefit SMEs with sufficient hardware, while Snort
2 requires careful consideration in high-traffic
scenarios. Future research should validate these
findings in real-world environments to better
understand NIDS performance dynamics.

JISCR 2025; Volume 8 Issue (2)

JISCR 2025; Volume 8 Issue (2)

Alzahrani et al. RIS

This study offers valuable insights for SMEs
aiming to enhance their cybersecurity posture.
By clarifying the strengths and limitations of these
NIDS, we contribute to improving network security
in small and medium-sized enterprises.

Based on the study’s findings, the following
recommendations are proposed:

1. Prioritize Suricata for Performance and
Scalability: SMEs should consider deploying
Suricata due to its consistent performance
and efficiency.

2. Deploy Snort3in Resource-Rich Settings: Snort
3 is best for powerful hardware environments,
ensuring high detection accuracy.

3. Use Snort 2 for Low-Traffic Environments:
This NIDS is Suited for simpler networks,
but caution is advised in more Demanding
scenarios.

4. Leverage Zeek for Light weight Monitoring:
Zeek is ideal For basic Vvisibility and
monitoring in environments where Extensive
detection is less critical.

5. Regularly Update and Optimize NIDS:
SMEs should keep Their NIDS updated and
optimized for performance.

6. Consider Hybrid Approaches: Combining
different NIDS Can enhance overall security
coverage.

7. Invest in Staff Training: Training IT staff is
crucial for effective NIDS deployment and
management.

Future research could explore integrating
machine learning with NIDS to enhance detection
capabilities, customize rule sets for specific
industries, and develop user-friendly interfaces
for non-technical users. Additionally, longitudinal
studies examining the long-term impact of NIDS
deployment in SMEs would provide valuable
insights into their adaptability and sustainability
over time.

FunDING

This article did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

CONFLICT OF INTEREST

Authors declare that they have no conflict of
interest.

REFERENCES

[1] W. Park and S. Ahn, “Performance comparison and
detection analysis in snort and suricata environment,”
Wireless Personal Communications, vol. 94, pp. 241-
252, 2017.

[2] N. Rawindaran, A. Jayal, E. Prakash, and C. Hewage,
“Perspective of small and medium enterprise (sme’s)
and their relationship with government in overcoming
cybersecurity challenges and barriers in wales,”
International Journal of Information Management Data
Insights, vol. 3, no. 2, p. 100191, 2023.

[3] F. A. Logic, “What is a network ids and why do you need
it?” 10 2020. [Online]. Available: https://www.alertlogic.
com/blog/what-isa-network-ids-and-why-do-you-need-it/

[4] E. Tsukerman, “What is an intrusion detection system
(ids),” Designing a Machine Learning Intrusion Detection
System, 2020.

[5] A. Chidukwani, S. Zander, and P. Koutsakis, “A survey
on the cyber security of small-to-medium businesses:
Challenges, research focus and recommendations,”
IEEE Access, vol. 10, p. 85701-85719, 2022.

[6] Y. Tayyebi and D. Bhilare, “A comparative study of open
source network based intrusion detection systems,” Int.
J. Comput. Sci. Inf. Technol. [JCSIT, vol. 9, no. 2, pp.
23-26, 2018.

[7] C. Hoover, “Comparative study of snort 3 and
suricata intrusion detection systems,” Master’s thesis,
Undergraduate Honors Theses, Computer Science and
Computer Engineering, 2022.

[8] A. Waleed, A. F. Jamali, and A. Masood, “Which open-
source ids? snort, suricata or zeek,” Computer Networks,
vol. 213, p. 109116, 2022.

[9] S. A. R. Shah and B. Issac, “Performance comparison of
intrusion detection systems and application of machine
learning to snort system,” Future Generation Computer
Systems, vol. 80, pp. 157-170, 2018.

[10] O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K. Saheed,
“A systematic literature review for network intrusion
detection system (ids),” International Journal of
Information Security, vol. 22, no. 5, pp. 1125-1162, 2023.

[11] S. B. Chalmers, “Comparison of different security tools
to detect risks in networks,” International Journal Of
Computer Sciences and Mathematics Engineering, vol.
1,no. 1, pp. 13-19, 2022.

BIGIsHl Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

[12]

[13]

(14]

[15]

[16]

[17]

A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-
Dhelaan, “Performance evaluation study of intrusion
detection systems,” Procedia Computer Science, vol. 5,
pp. 173-180, 2011.

D. Day and B. Burns, “A performance analysis of snort
and suricata network intrusion detection and prevention
engines,” in Fifth International Conference on Digital
Society, Gosier, Guadeloupe, 2011, pp. 187-192.

E. Albin and N. C. Rowe, “A realistic experimental
comparison of the suricata and snort intrusion-detection
systems,” in 2012 26th International Conference on
Advanced Information Networking and Applications
Workshops, 2012, pp. 122-127.

R. Padmashani, S. Sathyadevan, and D. Dath, “Bsnort
IPS better snort intrusion detection/prevention system,”
in 2012 12th International Conference on Intelligent
Systems Design and Applications (ISDA). |IEEE, 2012,
pp. 46-51.

W. Bulajoul, A. James, and M. Pannu, “Network intrusion
detection systems in high-speed traffic in computer
networks,” in 2013 IEEE 10th International Conference
on E-Business Engineering, 2013, pp. 168-175.

J. S. White, T. Fitzsimmons, and J. N. Matthews,
“Quantitative analysis of intrusion detection systems:
Snort and suricata,” in Cyber Sensing 2013, vol. 8757.
International Society for Optics and Photonics, 2013, p.
875704.

(18]

[19]

[20]

(21]

[22]

M. Saber, M. G. Belkasmi, S. Chadli, M. Emharraf, and I. El
Farissi, “Implementation and performance evaluation of
intrusion detection systems under high-speed networks,”
in Proceedings of the 2nd International Conference on
Big Data, Cloud and Applications, 2017, pp. 1-6.

A. Gupta and L. S. Sharma, “Performance evaluation of
snort and suricata intrusion detection systems on ubuntu
server,” in Proceedings of ICRIC 2019, 2020, pp. 811-
821.

Q. Hu, M. R. Asghar, and N. Brownlee, “Evaluating
network intrusion detection systems for high-speed
networks,” in 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC). |EEE,
2017, pp. 1-6.

Q. Hu, S.-Y. Yu, and M. R. Asghar, “Analysing
performance issues of open-source intrusion detection
systems in high-speed networks,” Journal of Information
Security and Applications, vol. 51, p. 102426, 2020.

A. P. Wahyu, K. Fauziah, A. S. Nahrowi, M. N. Faiz, and
A. W. Muhammad, “Strengthening network security:
Evaluation of intrusion detection and prevention systems
tools in networking systems,” International Journal of
Advanced Computer Science and Applications, vol. 14,
no. 9, 2023.

A. A. E. Boukebous, M. I. Fettache, G. Bendiab, and S.
Shiaeles, “A comparative analysis of snort 3 and suricata,”
in 2023 |EEE IAS Global Conference on Emerging
Technologies (GlobConET). IEEE, 2023, pp. 1-6.

JISCR 2025; Volume 8 Issue (2)

