
147

Assessing the Effectiveness of Open-Source Network Intrusion
Detection Systems for Small-to-Medium-Sized Enterprises
Ghadi M. A. Alzahrani1, Nizar H. Alsharif1, and Moez Krichen2,3,*
1Faculty of Computing and Information, Department of Computer Science, Al-Baha University, Al-Baha, Saudi Arabia
2Faculty of Computing and Information, Al-Baha University, Al-Baha, Saudi Arabia
3ReDCAD Laboratory; Sfax University, Sfax, Tunisia.
Received 11 Dec. 2025; Accepted 27 Dec. 2025; Available Online 30 Dec. 2025

Abstract
Network security is a critical concern for small and medium-sized enterprises (SMEs), often lacking

resources for comprehensive solutions. This study evaluates three open-source network intrusion detection
systems (NIDS): Snort, Suricata, and Zeek, to assess their suitability for SMEs. Using a controlled, virtualized
environment, we simulated realistic SME network conditions and subjected each NIDS to tests measuring
their ability to handle high traffic volumes and various attack types, including DoS, malware, ransomware, and
phishing. Results showed that Suricata consistently outperformed the others in scalability, resource efficiency,
and detection accuracy, achieving high true positive rates while minimizing false positives, which is essential for
reducing alert fatigue among SME users. Snort 3, optimized with afpacket and hyperscan, also demonstrated
strong capabilities but required more resources, while Snort 2 struggled with high-volume traffic. Although
Zeek is lightweight, it was less effective in signature-based detection but excelled in monitoring anomalies.
This study provides insights to guide SMEs in selecting appropriate NIDS based on their specific requirements
and emphasizes the need for ongoing optimization and further research in physical environments.

* Corresponding Author: Moez Krichen
Email: m.krichen@redcad.org
doi: 10.26735/EWOS4922

Keywords: Network intrusion detection, open-source, small-to-medium-sized enterprises

Production and hosting by NAUSS

1658-7782© 2025. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Journal of Information Security and Cybercrimes Research 2025; Volume 8 Issue (2), 147-166 Original Article

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

I. Introduction

Technological advancements have significantly
transformed business operations, with the
internet enhancing communication, collaboration,
e-commerce, and remote work for companies.
However, this reliance on interconnected networks
has also amplified the risks of cyberattacks [1]. The
cybersecurity threat landscape continues to evolve,
becoming increasingly complex and diverse as

various malicious actors employ sophisticated
strategies to breach networks and systems.
Phishing attacks, ransomware, and other advanced
persistent threats have become commonplace,
posing significant challenges for organizations of
all sizes.

Small and medium enterprises (SMEs) are
particularly vulnerable to these cyber threats. Unlike
larger organizations with specialized security teams

https://doi.org/10.26735/EWOS4922
https://crossmark.crossref.org/dialog/?doi=10.26735/LQEZ4186&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/EWOS4922
https://crossmark.crossref.org/dialog/?doi=10.26735/EWOS4922&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR

148

JISCR 2025; Volume 8 Issue (2)

comparative analysis will provide valuable insights
by examining the features of each NIDS, focusing
on ease of deployment, performance under varying
network conditions, and detection efficacy against
prevalent cyberattacks targeting SMEs.

This work contributes significantly to the field of
NIDS by offering:

•	 A comprehensive review of existing NIDS tools,
highlighting their strengths and weaknesses in
various deployment scenarios.

•	 A standardized methodology for evaluating
the performance of Snort, Suricata, and Zeek,
providing a framework for future research.

•	 Empirical analysis of performance metrics
under varying network conditions, offering
insights into operational efficiency.

•	 An assessment of detection capabilities
against common cyber threats, evaluating
effectiveness for SMEs.

•	 Practical recommendations for SMEs on
selecting and implementing NIDS solutions
tailored to their technical expertise and
resource availability.

This paper is organized into five sections to
provide a comprehensive overview of the research.
Section II reviews the background and related
work, establishing context and significance
within the existing literature. Section III details
the methodology and experiments conducted,
outlining the procedures used to evaluate the NIDS
under consideration. Following this, Section IV
presents performance evaluation results, analyzing
the effectiveness and efficiency of each system.
Section V assesses the detection capabilities
against various cyber threats, highlighting strengths
and limitations. Finally, Section VI concludes with
recommendations and directions for future research,
summarizing key findings and implications.

II. Background and Related Work

SMEs, despite being the backbone of many
economies, face significant vulnerabilities due
to limited resources, exposing them to various
cyberattacks. Key challenges include:

•	 Limited IT Budget and Expertise: SMEs

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

and substantial financial resources, SMEs often
struggle to implement comprehensive cybersecurity
measures [2]. These enterprises typically lack the
necessary expertise to maintain robust security
infrastructures and often view cybersecurity as an
expense rather than an essential investment. While
basic protective measures such as firewalls and
antivirus programs offer some defense, they may
not effectively detect advanced threats, leaving
SMEs exposed to potential breaches [3].

Network intrusion detection systems (NIDS) have
emerged as a vital component of cybersecurity,
enhancing an organization’s security posture by
monitoring network traffic in real-time to identify
potential threats [4]. By actively analyzing incoming
and outgoing traffic, NIDS can detect malicious
activities and provide alerts, enabling organizations
to respond swiftly to security incidents.

Although commercial NIDS products offer robust
protection, they often come with high financial
costs, creating a security gap for SMEs with limited
IT budgets [5]. The financial burden associated
with licensing and maintenance can be prohibitive
for many SMEs, leading them to overlook critical
cybersecurity measures. Open-source NIDS,
such as Snort, Suricata, and Zeek, present a cost-
effective alternative, allowing SMEs to leverage
advanced intrusion detection capabilities without
incurring licensing fees [6]. These tools also foster
a communitydriven approach to security, where
users can benefit from shared intelligence and
constant updates.

However, selecting the most suitable open-source
NIDS for an SME involves careful consideration of
various factors, including performance, detection
capabilities, and ease of management. Each
NIDS has its strengths and weaknesses, and
understanding how these tools perform in real-
world scenarios is crucial for making informed
decisions. Furthermore, SMEs must assess their
specific needs and resource constraints to identify
the best fit for their operational environments.

This research aims to evaluate three widely used
open-source NIDS—Snort, Suricata, and Zeek—
enabling SMEs to make informed choices based on
their specific needs and resource constraints. The

149

JISCR 2025; Volume 8 Issue (2)

typically operate with constrained budgets
and smaller IT teams, making it challenging to
establish robust cybersecurity measures.

•	 Increased Reliance on Third-Party Vendors:
Heavy dependence on third-party services
(e.g., cloud computing and software solutions)
can introduce vulnerabilities that compromise
the SME’s overall security.

•	 Cloud Security Concerns: While cloud services
offer flexibility, they also present security risks.
SMEs may lack the resources to configure and
manage cloud security effectively, increasing
their exposure to breaches.

•	 Prevalent Social Engineering and Phishing
Attacks: Cybercriminals frequently target
SMEs through social engineering and phishing,
exploiting potential gaps in employee security
awareness to gain sensitive information.

•	 Limited Security Awareness Training: Budget
constraints often hinder SMEs from providing
comprehensive security training, leaving
employees ill-equipped to recognize and
respond to cyber threats.

SMEs are increasingly targeted by cyberattacks
due to their perceived vulnerabilities, including
limited cybersecurity resources and outdated
practices. The most prevalent cyberattack threats
that SMEs face are:

•	 General Malware: This includes viruses,
worms, trojans, spyware, and adware
designed to infiltrate and damage systems.
Malware can compromise sensitive data,
disrupt operations, and incur substantial
financial costs due to recovery and lost
customer trust.

•	 Ransomware: A destructive form of
malware that encrypts data, rendering it
inaccessible until a ransom is paid, typically
in cryptocurrency. SMEs are attractive targets
due to often lacking sophisticated defenses,
leading to operational downtime and high
recovery costs.

•	 Phishing: A social engineering attack that
deceives individuals into revealing sensitive
information through fraudulent emails or
websites. SMEs may be particularly vulnerable

due to inadequate cybersecurity training,
leading to unauthorized access and potential
financial fraud.

•	 Web Application Attacks: These attacks
exploit vulnerabilities in online services, such
as e-commerce platforms. Common methods
include SQL injection and cross-site scripting
(XSS), which can compromise sensitive
information and disrupt business operations.

•	 Denial-of-Service (DoS) Attacks: DoS attacks
aim to overwhelm services with excessive
traffic, making them unavailable to legitimate
users. SMEs, especially those dependent
on online interactions, can suffer significant
losses due to downtime, including lost sales
and damage to brand reputation.

Intrusion Detection Systems (IDS) are software
applications that monitor network traffic for
potentially malicious activities. IDS can operate in
two main modes: alerting on suspicious activities
(IDS) or actively blocking harmful traffic (Intrusion
Prevention Systems, IPS). There are two primary
categories of IDS: Network IDS (NIDS), which
monitor traffic across an entire network, and Host
IDS (HIDS), which focus on individual devices. IDS
can also be classified by their detection methods:
anomalybased systems that identify deviations
from established traffic patterns and signature-
based systems that trigger alerts based on known
patterns of malicious activity [7]. This study focuses
on open-source NIDS. Open-source NIDS provide
flexible and customizable options for enhancing
network security. Notable examples include Snort,
which is a widely used NIDPS that operates on a
signature-based model. It supports both IDS and
IPS modes, allowing for traffic monitoring and alert
generation. Snort’s architecture includes packet
capturing, decoding, normalization, detection, and
output generation. Although it lacks a graphical
user interface, visualization tools like Snorby
can enhance its usability. The release of Snort
3 introduced multithreading, improving packet
processing capabilities. Another notable system
is Suricata, developed by the Open Information
Security Foundation (OISF) as an IDS/IPS and
network monitoring tool. Unlike Snort, Suricata
uses a multi-threaded architecture, enabling

Alzahrani et al.

150

JISCR 2025; Volume 8 Issue (2)

efficient packet processing. Its architecture
comprises packet capture, decoding, detection,
and output alert modules, allowing for concurrent
detection. Zeek operates solely in IDS mode and
is maintained by the Zeek Project. It features a
scalable architecture that includes workers for
log transmission to a manager, which processes
events and applies detection rules. Zeek supports
anomaly-based detection, setting it apart from Snort
and Suricata, which focus on misuse detection.
Despite its efficiency, Zeek has a limited number
of default signatures, which may affect its adoption
compared to Snort and Suricata [8].

The use of Network Intrusion Detection Systems
(NIDS) is crucial for organizations to protect their
networks and data from attacks. However, their
performance can be significantly affected by
hardware issues, leading to dropped packets
and potential vulnerabilities [9]. Consequently,
performance testing of NIDS has become a
prominent area of research [10], [11]. Many studies
have focused on open-source NIDS, particularly
comparing the performance of Snort and Suricata.
In [12], Snort and Suricata were analyzed on
different platforms at traffic rates up to 2 Gbps,
revealing that Suricata outperformed Snort on
Linux, especially at high speeds, though Zeek
was not included in the comparison. Research
in [13] found that Snort outperformed Suricata in
single-core setups, while Suricata excelled in multi-
core environments, highlighting its scalability. A
comparison in [14] indicated that Suricata had a
lower packet drop rate and better performance than
Snort but required more computational resources.
The introduction of BSnort in [15], a modified
Snort, showed improved performance against DoS
attacks, but focused solely on Snort. Stress testing
conducted in [16] revealed high packet drop rates
for Snort under heavy traffic, leading to a proposed
parallel architecture. In [17], Snort and Suricata
were tested under stress, with results favoring
Suricata. Additional studies [18] and [19] confirmed
Suricata’s superior performance, particularly under
high traffic conditions, although neither included
comparisons with Zeek. Various research efforts,
including [20], consistently found that Suricata
outperformed Snort in terms of processing higher
loads, though Snort maintained better accuracy. A

Recent study [21] evaluated both Snort and Suricata
in virtualized environments, with findings indicating
that Suricata generally outperformed Snort across
various parameters. However, these evaluations
often neglected Zeek and did not assess conditions
relevant to small and medium-sized enterprises
(SMEs). Research in [22] highlighted performance
metrics during simulated DDoS attacks, showcasing
Snort’s effectiveness against ICMP floods and
Suricata’s against SYN floods, yet did not consider
usability for non-technical SME staff. The study [23]
demonstrated improvements in Snort 3 over Snort
2, particularly in memory management and reduced
packet loss, but noted that Suricata remains more
suitable for large networks.

In conclusion, there are notable gaps in the
current knowledge base regarding the latest
versions of Snort, Suricata, and Zeek, as well as new
open-source signature rule sets, advancements in
software and hardware technologies, and emerging
attack methods. Additionally, comprehensive
evaluations of these three prominent open-source
solutions are lacking. This research aims to
address these gaps by utilizing the most recent
versions of Snort, Suricata, and Zeek, along
with updated signature rule sets and new attack
strategies to assess performance. In this context,
our study focuses on evaluating open-source
NIDS specifically in the context of SME networks,
emphasizing the following aspects:

•	 Ease of Deployment and Management:
Assessing the installation, configuration,
and management simplicity for each IDS,
considering the typical technical expertise of
SME staff.

•	 Performance Evaluation under SME Network
Conditions: Evaluating CPU, memory, and
bandwidth usage under simulated network
traffic patterns representative of typical SME
activity to provide a realistic picture of resource
demands.

•	 Detection Capability Assessment for Common
SME Threats: Focusing on cyberattacks
frequently encountered by SMEs, such as
phishing attempts, malware downloads,
ransomware, web application attacks, and
DoS attacks.

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

151

JISCR 2025; Volume 8 Issue (2)

By addressing these gaps, this research will offer
practical guidance for SME network administrators
in selecting opensource NIDS. The findings will
assist in choosing an NIDS that balances ease
of use, resource efficiency, and effective threat
detection relevant to SME network environments.

III. Methodology And Experiments

This research employs an experimental
methodology to assess the effectiveness of three
open-source NIDS: Snort (versions 2 and 3),
Suricata, and Zeek, within the context of SMEs. It
addresses three key aspects: ease of deployment
and management, performance under varying
network conditions, and detection accuracy for
common SME cyber threats. A series of controlled
experiments were conducted in a virtualized
environment simulating realistic SME network
conditions and attack scenarios. The selected NIDS
were chosen for their widespread use, community
support, and open-source nature, which eliminates
licensing costs. These tools will collectively be
referred to as NIDS Under Test (NUTs). The
experimental design aimed to systematically
evaluate the performance of the NUTs. Each
scenario was crafted to address specific research
questions, focusing on detection capability,
resource utilization (CPU and memory), and packet
drop rates. A diverse set of attack scenarios was
selected to evaluate the robustness of each NUT,
with varying network traffic intensity and volume.
To ensure objective comparisons, each NUT was
tested under identical conditions, with performance
metrics monitored and recorded during simulations.
The experiments were conducted 10 times to
ensure reliability, and results were averaged to
provide consistent findings.

The experiment setup is designed to create a
controlled environment that closely mimics real-
world network conditions while ensuring consistency
and repeatability across all experiments. To achieve
this, virtualization technology was utilized to create
a virtualized environment where each experiment
component could be isolated and managed
independently. This approach offers flexibility,
scalability, and ease of deployment while minimizing
the risk of interference between components. The

environment used was VMware Workstation 16 Pro
running on a laptop

with an Intel® Core™ i7-8650U CPU, 32GB of
RAM, and 1TB SSD storage, running Windows 10
Pro version 22H2. The testbed network, illustrated in
Figure 1, consisted of seven virtual machines (VMs)
connected to a virtual switch with a 1Gbps link to
replicate real-world SME network speeds. Each VM
was provisioned with adequate resources to ensure
optimal performance during the experiments.

While manual downloading and installation
of rules is feasible, using a management tool is
advisable. PulledPork is a Perl-based utility that
automates Snort rule management, facilitating the
download, update, and maintenance of rule sets
and IP block-list updates. It offers flexible policies
(connectivity, balanced, security, or max-detect)
and provides comprehensive feedback. PulledPork
is compatible with Proofpoint ET and Cisco Snort
rules, licensed under the GNU General Public
License for commercial use, and can also be used
with Suricata. With the release of Snort 3, PulledPork
was redeveloped in Python 3 as PulledPork3. This
version utilizes the LightSPD package and allows
a single ruleset package to adjust its rules based
on the engine version operating on the system,
enabling users to choose a default policy for the
ruleset. Suricata features a specialized tool for rule
set management called suricata-update. This tool
is the official method for updating and managing
Suricata’s rules and is included with Suricata starting
from version 4.1. The Zeek Package Manager
allows Zeek users to install third-party scripts and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

maintained beOer accuracy. A Recent study [21] evaluated both Snort
and Suricata in virtualized environments, with findings indica9ng that
Suricata generally outperformed Snort across various parameters.
However, these evalua9ons oCen neglected Zeek and did not assess
condi9ons relevant to small and medium-sized enterprises (SMEs).
Research in [22] highlighted performance metrics during simulated
DDoS aOacks, showcasing Snort’s effec9veness against ICMP floods
and Suricata’s against SYN floods, yet did not consider usability for
non-technical SME staff. The study [23] demonstrated improvements
in Snort 3 over Snort 2, par9cularly in memory management and
reduced packet loss, but noted that Suricata remains more suitable
for large networks.

In conclusion, there are notable gaps in the current knowledge base
regarding the latest versions of Snort, Suricata, and Zeek, as well as
new open-source signature rule sets, advancements in soCware and
hardware technologies, and emerging aOack methods. Addi9onally,
comprehensive evalua9ons of these three prominent open-source
solu9ons are lacking. This research aims to address these gaps by
u9lizing the most recent versions of Snort, Suricata, and Zeek, along
with updated signature rule sets and new aOack strategies to assess
performance. In this context, our study focuses on evalua9ng open-
source NIDS specifically in the context of SME networks, emphasizing
the following aspects:
• Ease of Deployment and Management: Assessing the
installa9on, configura9on, and management simplicity for each IDS,
considering the typical technical exper9se of SME staff. •	

Performance Evalua9on under SME Network Condi9ons: Evalua9ng
CPU, memory, and bandwidth usage under simulated network traffic
paOerns representa9ve of typical SME ac9vity to provide a realis9c
picture of resource demands.
• Detec9on Capability Assessment for
 Common SME

Threats: Focusing on cyberaOacks frequently encountered by
SMEs, such as phishing aOempts, malware downloads,
ransomware, web applica9on aOacks, and DoS aOacks.

By addressing these gaps, this research will offer prac9cal guidance
for SME network administrators in selec9ng opensource NIDS. The
findings will assist in choosing an NIDS that balances ease of use,
resource efficiency, and effec9ve threat detec9on relevant to SME
network environments.

III. METHODOLOGY AND EXPERIMENTS

This research employs an experimental methodology to assess the
effec9veness of three open-source NIDS: Snort (versions 2 and 3),
Suricata, and Zeek, within the context of SMEs. It addresses three key
aspects: ease of deployment and management, performance under
varying network condi9ons, and detec9on accuracy for common SME
cyber threats. A series of controlled experiments were conducted in a
virtualized environment simula9ng realis9c SME network condi9ons
and aOack scenarios. The selected NIDS were chosen for their
widespread use, community support, and open-source nature, which
eliminates licensing costs. These tools will collec9vely be referred to
as NIDS Under Test (NUTs). The experimental design aimed to
systema9cally evaluate the performance of the NUTs. Each scenario
was craCed to address specific research ques9ons, focusing on
detec9on capability, resource u9liza9on (CPU and memory), and
packet drop rates. A diverse set of aOack scenarios was selected to
evaluate the robustness of each NUT, with varying network traffic
intensity and volume. To ensure objec9ve comparisons, each NUT was
tested under iden9cal condi9ons, with performance metrics
monitored and recorded during simula9ons. The experiments were
conducted 10 9mes to ensure reliability, and results were averaged to
provide consistent findings.

The experiment setup is designed to create a controlled
environment that closely mimics real-world network condi9ons while
ensuring consistency and repeatability across all experiments. To
achieve this, virtualiza9on technology was u9lized to create a
virtualized environment where each experiment component could be
isolated and managed independently. This approach offers flexibility,
scalability, and ease of deployment while minimizing the risk of
interference between components. The environment used was
VMware Worksta9on 16 Pro running on a laptop

Fig. 1: Test-bed network

with an Intel® Core™ i7-8650U CPU, 32GB of RAM, and 1TB SSD
storage, running Windows 10 Pro version 22H2. The testbed network,
illustrated in Figure 1, consisted of seven virtual machines (VMs)
connected to a virtual switch with a 1Gbps link to replicate real-world
SME network speeds. Each VM was provisioned with adequate
resources to ensure op9mal performance during the experiments.

While manual downloading and installa9on of rules is feasible,
using a management tool is advisable. PulledPork is a Perl-based
u9lity that automates Snort rule management, facilita9ng the
download, update, and maintenance of rule sets and IP block-list
updates. It offers flexible policies (connec9vity, balanced, security, or
max-detect) and provides comprehensive feedback. PulledPork is
compa9ble with Proofpoint ET and Cisco Snort rules, licensed under
the GNU General Public License for commercial use, and can also be
used with Suricata. With the release of Snort 3, PulledPork was
redeveloped in Python 3 as PulledPork3. This version u9lizes the
LightSPD package and allows a single ruleset package to adjust its
rules based on the engine version opera9ng on the system, enabling
users to choose a default policy for the ruleset. Suricata features a
specialized tool for rule set management called suricata-update. This
tool is the official method for upda9ng and managing Suricata’s rules
and is included with Suricata star9ng from version 4.1. The Zeek
Package Manager allows Zeek users to install third-party scripts and
plugins, func9oning as a command-line script that requires Zeek to be
installed locally. PulledPork and PulledPork 3 were selected for Snort
2 and Snort 3, respec9vely, to automate rule management due to
their compa9bility with Snort’s rulesets. Suricata-update was u9lized
for Suricata, as it is the official tool for managing Suricata rulesets.

The selec9on of appropriate evalua9on metrics is crucial for
effec9vely assessing the strengths and weaknesses of the NUTs. The
chosen metrics align with the research objec9ves of iden9fying the
most suitable NUT for SMEs. The ease of deployment and
management of each NUT will be assessed through the following
criteria:

Fig. 1: Test-bed network

Alzahrani et al.

152

JISCR 2025; Volume 8 Issue (2)

plugins, functioning as a command-line script that
requires Zeek to be installed locally. PulledPork and
PulledPork 3 were selected for Snort 2 and Snort
3, respectively, to automate rule management due
to their compatibility with Snort’s rulesets. Suricata-
update was utilized for Suricata, as it is the official
tool for managing Suricata rulesets.

The selection of appropriate evaluation metrics
is crucial for effectively assessing the strengths and
weaknesses of the NUTs. The chosen metrics align
with the research objectives of identifying the most
suitable NUT for SMEs. The ease of deployment
and management of each NUT will be assessed
through the following criteria:

•	 Installation Complexity: Evaluation of how
straightforward or challenging it is to install
the IDS, including the number of steps,
dependencies, and potential issues.

•	 Configuration Complexity: Assessment of
the user interface and configuration options
for intuitiveness and ease of use, covering
aspects like rule management and alert
generation.

•	 Management Overhead: Evaluation of the
ongoing effort required to manage the NUT,
considering the typical technical expertise
available in SMEs.

The evaluation method includes installing and
configuring each NUT on the virtual machine acting
as the NIDS sensor, documenting the time taken
for installation and configuration, and evaluating
ongoing management tasks such as updates and
rule management. The resource consumption of
each NUT will be measured under simulated network
traffic loads typical of SME activity, monitoring the
following metrics:

•	 CPU Utilization: Percentage of CPU utilization
by the NUT process, as high usage may
indicate performance bottlenecks.

•	 Memory Usage: Amount of memory consumed
by the NUT process; excessive usage could
delay threat detection.

•	 Packet Drop Rate: Percentage of packets
dropped by the NUT, where a higher rate
indicates poorer performance.

For performance evaluation, resource

consumption metrics (CPU and memory) will be
monitored during network traffic simulations using
the htop tool. Packet drop rates will be retrieved from
the NUT outputs after each run, and custom bash
scripts will be developed to parse and aggregate
data from the logs. The collected data will be
analyzed to determine the impact of traffic load
on resource consumption and packet dropping for
each NUT. The detection capability of each NUT
is influenced by the availability of corresponding
rules within the default rule set. This evaluation
assesses how well the default rules cover a range
of attacks by simulating various attack scenarios
and analyzing the NUT’s responses. The detection
capabilities will be evaluated based on the following
metrics:

•	 TPR: This measures how accurately each NUT
detects real attacks, crucial for evaluating its
efficiency in recognizing harmful activity.

•	 FNR: This metric addresses the failure to detect
attacks, critical for preventing significant risks,
especially for ransomware.

For detection capability evaluation, alerts
generated during traffic replay will be collected and
analyzed for each scenario, confirming their alignment
with the identified attack type and documenting any
missed detections. The performance evaluation
experiments aim to assess the NUTs in terms of
CPU utilization, memory consumption, and packet
drop rate under various conditions. Key factors
influencing NIDS performance include traffic rate,
packet size, capturing methods, detection engine
algorithms, ruleset size, and network flow types.
The following scenarios were implemented for
performance evaluation:

•	 Scenario 1: Baseline Performance Assessment
establishes a baseline for employing NIDS
within an SME network using a standard
configuration and ruleset for each NUT. A
TCP stream was generated using Iperf with a
packet size of 1500 bytes, and performance
was assessed as throughput increased from
100 Mbps to 1000 Mbps.

•	 Scenario 2: Ruleset Size Standardization
addresses the varying sizes of the default
rulesets across NUTs, implementing a
standardized size of 10,000 rules for fair

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

153

JISCR 2025; Volume 8 Issue (2)

comparison. Zeek was excluded due to its
limited default ruleset.

•	 Scenario 3: Packet Capture Technique
Evaluation explores the impact of different
packet capture techniques (libpcap and
afpacket) on performance, selecting the
method with the least packet drop rate for
further tests.

•	 Scenario 4: Detection Engine Optimization
modifies the detection engine using the
best-performing packet capture technique
identified previously. The top three algorithms
for each system were evaluated under the
same network traffic conditions.

•	 Scenario 5: Impact of Ruleset Size on
Performance examines how varying ruleset
sizes (from 10,000 to 50,000 rules) affect NUT
performance under different traffic loads (100
Mbps, 500 Mbps, and 1000 Mbps), excluding
Zeek due to its ruleset limitations.

•	 Scenario 6: Real-World Traffic Simulation
simulates daily activities using the BigFlows.
pcap dataset, capturing typical TCP and UDP
traffic. Traffic was redirected at 100 Mbps
throughput to the NUTs.

For detection capability assessment, various
scenarios were designed to evaluate the NUTs
against common cyberattacks targeting SMEs.
Each scenario focused on specific attack types:

•	 Scenario 1: DoS and Port Scanning Attacks
involved simulating DoS attacks (SYN, ICMP,
and UDP flooding) and a port scan using
NMAP.

•	 Scenario 2: General Malware tested detection
capabilities against a wide range of malware
using 420 small pcap files containing malicious
traffic.

•	 Scenario 3: Ransomware Attacks focused on
detecting ransomware using 17 pcap files
representing typical ransomware traffic.

•	 Scenario 4: Web Application Attacks
evaluated responses to web-based attacks
using OWASP ZAP and Metasploit, focusing
on vulnerabilities such as SQL injection.

•	 Scenario 5: Phishing Attacks simulated
phishing attempts, capturing traffic to assess

the NUTs’ ability to identify malicious URLs
and domain spoofing.

Each scenario was executed for 180 seconds,
with detection capability scenarios run until all
related traffic was replayed. All experiments were
repeated 10 times to ensure statistical significance,
averaging results to mitigate the impact of outliers
and provide a comprehensive understanding of the
NUTs’ performance under consistent conditions.

The Universe repository for Ubuntu 22.04
currently does not include the latest version of
Snort 2. As shown in Figure 2, the repository’s latest
version is (2.9.15.1), whereas the Snort website
offers version (2.9.20). Consequently, we will
proceed to install the most recent version of Snort 2
directly from the source code.

The installation of Snort 2 follows these five steps:
1) Update Ubuntu packages.

$ sudo apt update && sudo apt dist-upgrade -y

2) Install dependencies, Snort 2 has some
prerequisites that need to be installed.

$ sudo apt update && sudo apt dist-upgrade -y
,→ libdumbnet-dev build-essential flex

,→ bison zlib1g-dev libluajit-5.1-dev
,→ openssl libssl-dev liblzma-dev
,→ libnghttp2-dev

3) Download some source tarballs and other
files and store them in a folder for easy
management.

$ mkdir snort-src
$ cd snort-src/

4) Install daq, Download and install the latest
version of DAQ from the Snort website.

$ wget https://www.snort.org/downloads/snort/
→ , daq-2.0.7.tar.gz
$ tar -zxvf daq-2.0.7.tar.gz
$ cd daq-2.0.7/
$./configure
$ make

Alzahrani et al.

154

JISCR 2025; Volume 8 Issue (2)

$ sudo make install
$ cd ../

5) Install Snort 2, Download and install the latest
version of Snort 2 from the Snort website.
The last version is 2.9.20, which released on
2022/05/13.

$ wget https://www.snort.org/downloads/snort/
→ , snort-2.9.20.tar.gz
$ tar -xzvf snort-2.9.20.tar.gz
$ cd snort-2.9.20
$./configure --enable-sourcefire
$ make
$ sudo make install
Table I summarizes the key metrics observed

during the implementation of each NUT, reflecting
the practical challenges faced during deployment.

TABLE I
Summary of Implementation Metrics

Criteria Snort 2 Snort 3 Suricata Zeek

Installation Time mins 35 mins 77 mins 11 mins 19

Configuration Com-
plexity

Moderate Moderate Easy Difficult

 Management
Overhead

High Moderate Low High

Key observations indicate the following regarding
the installation process:

•	 Snort 2: Installation took approximately 35
minutes due to manual compilation and
dependency issues, which may be challenging
for users with limited experience.

•	 Snort 3: Installation was longer at about 77
minutes, due to complex dependencies and
configuration steps, making it less suitable for

rapid deployment.
•	 Suricata: The fastest installation at only 11

minutes, benefiting from standard repositories
and automated dependency management,
ideal for SMEs needing quick setups.

•	 Zeek: Took around 19 minutes, relatively
straightforward but required familiarity with
network interface setup.

Regarding configuration complexity, the findings
are as follows:

•	 Snort 2 and 3: Both versions rated as having
moderate complexity. Snort 2 required manual
edits, while Snort 3 needed knowledge of Lua-
based adjustments.

•	 Suricata: Easiest to configure with a clear
YAML-based setup, allowing simple
adjustments of critical parameters.

•	 Zeek: Most complex due to its script-driven
configuration, posing a significant barrier for
SMEs without scripting knowledge.

In terms of management overhead:
•	 Snort 2: High management overhead due to

frequent manual updates and maintenance of
rulesets, which can be burdensome for SMEs.

•	 Snort 3: Reduced overhead compared to
Snort 2 but still required moderate effort to
maintain rulesets.

•	 Suricata: Lowest management overhead,
with the suricataupdate tool automating rule
updates, making it ideal for SMEs.

•	 Zeek: High management overhead due to the
need for manual updates and maintenance
of custom scripts, overwhelming for users
lacking specialized skills.

The analysis indicates that Suricata is the
most straightforward NUT to deploy and manage,
making it an excellent choice for SMEs due to its
ease of deployment and minimal management
overhead. Specifically, Suricata’s 11-minute
installation and userfriendly configuration
demonstrate its accessibility, while automated rule
updates significantly reduce ongoing management
efforts. Conversely, Snort and Zeek present higher
barriers to entry due to complex configurations and
management overhead. Snort demands more from

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

• Installa9on Complexity: Evalua9on of how straighiorward or
challenging it is to install the IDS, including the number of steps,
dependencies, and poten9al issues.

• Configura9on Complexity: Assessment of the user interface and
configura9on op9ons for intui9veness and ease of use, covering
aspects like rule management and alert genera9on.

• Management Overhead: Evalua9on of the ongoing effort
required to manage the NUT, considering the typical technical
exper9se available in SMEs.

The evalua9on method includes installing and configuring each
NUT on the virtual machine ac9ng as the NIDS sensor, documen9ng
the 9me taken for installa9on and configura9on, and evalua9ng
ongoing management tasks such as updates and rule management.
The resource consump9on of each NUT will be measured under
simulated network traffic loads typical of SME ac9vity, monitoring the
following metrics:

• CPU U9liza9on: Percentage of CPU u9liza9on by the NUT
process, as high usage may indicate performance boOlenecks.

• Memory Usage: Amount of memory consumed by the NUT
process; excessive usage could delay threat detec9on.

• Packet Drop Rate: Percentage of packets dropped by the NUT,
where a higher rate indicates poorer performance.

For performance evalua9on, resource consump9on metrics (CPU
and memory) will be monitored during network traffic simula9ons
using the htop tool. Packet drop rates will be retrieved from the NUT
outputs aCer each run, and custom bash scripts will be developed to
parse and aggregate data from the logs. The collected data will be
analyzed to determine the impact of traffic load on resource
consump9on and packet dropping for each NUT. The detec9on
capability of each NUT is influenced by the availability of
corresponding rules within the default rule set. This evalua9on
assesses how well the default rules cover a range of aOacks by
simula9ng various aOack scenarios and analyzing the NUT’s
responses. The detec9on capabili9es will be evaluated based on the
following metrics:

• TPR: This measures how accurately each NUT detects real
aOacks, crucial for evalua9ng its efficiency in recognizing
harmful ac9vity.

• FNR: This metric addresses the failure to detect aOacks, cri9cal
for preven9ng significant risks, especially for ransomware.

For detec9on capability evalua9on, alerts generated during traffic
replay will be collected and analyzed for each scenario, confirming
their alignment with the iden9fied aOack type and documen9ng any
missed detec9ons. The performance evalua9on experiments aim to
assess the NUTs in terms of CPU u9liza9on, memory consump9on,
and packet drop rate under various condi9ons. Key factors influencing
NIDS performance include traffic rate, packet size, capturing methods,
detec9on engine algorithms, ruleset size, and network flow types. The
following scenarios were implemented for performance evalua9on:

• Scenario 1: Baseline Performance Assessment establishes a
baseline for employing NIDS within an SME network using a
standard configura9on and ruleset for each NUT. A TCP stream
was generated using Iperf with a packet size of 1500 bytes, and
performance was assessed as throughput increased from 100
Mbps to 1000 Mbps.

• Scenario 2: Ruleset Size Standardiza9on addresses the varying
sizes of the default rulesets across NUTs, implemen9ng a
standardized size of 10,000 rules for fair comparison. Zeek was
excluded due to its limited default ruleset.

• Scenario 3: Packet Capture Technique Evalua9on explores the
impact of different packet capture techniques (libpcap and
afpacket) on performance, selec9ng the method with the least
packet drop rate for further tests.

• Scenario 4: Detec9on Engine Op9miza9on modifies the
detec9on engine using the best-performing packet capture

technique iden9fied previously. The top three algorithms for
each system were evaluated under the same network traffic
condi9ons.

• Scenario 5: Impact of Ruleset Size on Performance examines
how varying ruleset sizes (from 10,000 to 50,000 rules) affect
NUT performance under different traffic loads (100 Mbps,
500 Mbps, and 1000 Mbps), excluding Zeek due to its ruleset
limita9ons.

• Scenario 6: Real-World Traffic Simula9on simulates daily
ac9vi9es using the BigFlows.pcap dataset, capturing typical TCP
and UDP traffic. Traffic was redirected at 100 Mbps throughput
to the NUTs.

For detec9on capability assessment, various scenarios were
designed to evaluate the NUTs against common cyberaOacks targe9ng
SMEs. Each scenario focused on specific aOack types:

• Scenario 1: DoS and Port Scanning AOacks involved simula9ng
DoS aOacks (SYN, ICMP, and UDP flooding) and a port scan using
NMAP.

• Scenario 2: General Malware tested detec9on capabili9es
against a wide range of malware using 420 small pcap files
containing malicious traffic.

• Scenario 3: Ransomware AOacks focused on detec9ng
ransomware using 17 pcap files represen9ng typical
ransomware traffic.

• Scenario 4: Web Applica9on AOacks evaluated responses to
web-based aOacks using OWASP ZAP and Metasploit, focusing
on vulnerabili9es such as SQL injec9on.

• Scenario 5: Phishing AOacks simulated phishing aOempts,
capturing traffic to assess the NUTs’ ability to iden9fy malicious
URLs and domain spoofing.

Each scenario was executed for 180 seconds, with detec9on
capability scenarios run un9l all related traffic was replayed. All
experiments were repeated 10 9mes to ensure sta9s9cal significance,
averaging results to mi9gate the impact of outliers and provide a
comprehensive understanding of the NUTs’ performance under
consistent condi9ons.

The Universe repository for Ubuntu 22.04 currently does not
include the latest version of Snort 2. As shown in Figure 2, the
repository’s latest version is (2.9.15.1), whereas the Snort website
offers version (2.9.20). Consequently, we will proceed to install the
most recent version of Snort 2 directly from the source code.

Fig. 2: Screenshot: latest Snort 2 release available in Ubuntu
repository.

The installa9on of Snort 2 follows these five steps:

1) Update Ubuntu packages.

2) Install dependencies, Snort 2 has some prerequisites that need
to be installed.

$ sudo apt install -y libpcap-dev libpcre3-dev
,→	libdumbnet-dev build-essen5al flex

Fig. 2: Screenshot: latest Snort 2 release available in Ubuntu
repository

155

JISCR 2025; Volume 8 Issue (2)

users, while Zeek’s reliance on custom scripting
limits accessibility without dedicated security staff.

IV. Performance Evaluation

This section addresses the second research
question (RQ2), examining the performance
differences among open-source NIDS solutions
Snort 2, Snort 3, Suricata, and Zeek, particularly
in CPU usage, memory consumption, and packet
dropping rates under diverse network conditions.
Through a systematic evaluation of these metrics in
various scenarios, the section delivers an in-depth
analysis of each NIDS’s resource efficiency and
scalability, aiding in identifying the most appropriate
solution for SMEs with limited resources.

A. Baseline Performance Assessment
In this scenario, each NUT was evaluated using

its default configuration and ruleset as network
throughput increased from 100 Mbps to 1000
Mbps.

As shown in Figure 3, Snort 2 displayed a steady
rise in CPU utilization, peaking at approximately
22.8% at 1000 Mbps. Its memory usage remained
stable at 8.8%, but the packet drop rate rose
significantly, from 0% at 100 Mbps to about 9.9%
at 1000 Mbps. These results indicate that Snort 2
struggles under heavier loads, leading to packet
drops and decreased detection capabilities. This
issue stems largely from its single-threaded design,
which restricts efficient packet processing.

In contrast, Snort 3 (Figure 3) recorded higher
CPU utilization across all throughput levels, peaking
at around 25.5% at 1000 Mbps. Although its memory
usage was low at 1.76%, it also experienced packet
drops—albeit less severe than Snort 2—starting at
0% and rising to 5.26% at maximum throughput.
This indicates that while more memory-efficient,
Snort 3 still relies heavily on CPU resources and
has challenges with high traffic volume due to its
default single-threaded processing. Nonetheless,
it outperformed Snort 2 even in this constrained
mode.

Suricata’s multi-threaded architecture delivered
a balanced performance, with CPU usage climbing
to about 19% at 1000 Mbps while keeping memory

usage low at approximately 4.7% (Figure 3).
Remarkably, Suricata avoided any packet drops,
even with the largest default ruleset among the
NUTs, showcasing its capability to handle heavy
traffic effectively.

Zeek excelled with extremely low CPU utilization,
beginning at 3.2% and reaching only 8.3% at the
highest throughput, alongside consistent memory

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

without performance degrada9on (Figure 3). However, its lighter
ruleset likely contributes to its lower resource consump9on and
negligible packet drops.

B. Ruleset Size Standardiza7on
To ensure a fair comparison, the rule set sizes for Snort 2, Snort 3,

and Suricata were standardized to 10,000 rules each. As shown in
Figure 4, Snort 2 experienced a slight decrease in
CPU and memory usages compared to the baseline, with 22.0% at
1,000 Mbps, while its memory usage was constant at 8%. With the
reduced rule set size, there was a slight improvement in the packet
drop rate, yet it remained high at 9.1% at maximum throughput,
indica9ng that rule set size impacts Snort 2’s efficiency.

Snort 3 also exhibited reduced CPU and memory u9liza9on
compared to the baseline, reaching 25.4% at 1000 Mbps, while

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 3: Performance comparison of NIDS tools with default
seOngs.

its memory decreased to 1.6%. The packet drop rate showed a modest
improvement, with a final rate of 5.1% at maximum throughput.
These results indicate that while Snort 3 benefits from ruleset
standardiza9on, it s9ll struggles with high throughput scenarios,
similar to Snort 2.

Suricata con9nued to perform well, with CPU u9liza9on slightly
lower than in the baseline, reaching 15.9% at 1000 Mbps. Memory
usage was even more efficient at 2.05%, and it s9ll recorded zero
packet drops across all throughput levels. This reinforces Suricata’s
scalability and efficiency, making it par9cularly suitable for
environments where high traffic and large rulesets are common.

C. Packet Capture Technique Evalua7on
This scenario examined the effects of two prevalent packet capture

methods, libpcap and afpacket, on the performance of each NUT.
Figure 5 indicates that Snort 2 experienced an enhancement with

the use of afpacket, as evidenced by a minor reduc9on in CPU
u9liza9on and a significant decrease in packet drop rates. At a
network speed of 1000 Mbps, CPU usage was approximately 22.5%,
and the packet drop rate was reduced to 0.39%, a substan9al
improvement from the 9.1% observed

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 4: Comparison of NIDS soluIons with the same ruleset
size.

with libpcap. Although there was a slight increase in memory usage
to 11.2%, packet handling was notably improved, with no drops
occurring up to 700 Mbps. This demonstrates that despite afpacket’s

Fig. 3: Performance comparison of NIDS tools
with default settings

Alzahrani et al.

156

JISCR 2025; Volume 8 Issue (2)

usage at 3.1%. Zeek maintained a 0% packet drop
rate across all throughput levels, demonstrating
its robustness without performance degradation
(Figure 3). However, its lighter ruleset likely
contributes to its lower resource consumption and
negligible packet drops.

B. Ruleset Size Standardization
To ensure a fair comparison, the rule set sizes for

Snort 2, Snort 3, and Suricata were standardized to
10,000 rules each. As shown in Figure 4, Snort 2
experienced a slight decrease in CPU and memory
usages compared to the baseline, with 22.0% at
1,000 Mbps, while its memory usage was constant
at 8%. With the reduced rule set size, there was
a slight improvement in the packet drop rate, yet
it remained high at 9.1% at maximum throughput,
indicating that rule set size impacts Snort 2’s
efficiency.

Snort 3 also exhibited reduced CPU and
memory utilization compared to the baseline,
reaching 25.4% at 1000 Mbps, while its memory
decreased to 1.6%. The packet drop rate showed
a modest improvement, with a final rate of 5.1% at
maximum throughput. These results indicate that
while Snort 3 benefits from ruleset standardization,
it still struggles with high throughput scenarios,
similar to Snort 2.

Suricata continued to perform well, with CPU
utilization slightly lower than in the baseline,
reaching 15.9% at 1000 Mbps. Memory usage was
even more efficient at 2.05%, and it still recorded
zero packet drops across all throughput levels.
This reinforces Suricata’s scalability and efficiency,
making it particularly suitable for environments
where high traffic and large rulesets are common.

C. Packet Capture Technique Evaluation
This scenario examined the effects of two

prevalent packet capture methods, libpcap and
afpacket, on the performance of each NUT.

Figure 5 indicates that Snort 2 experienced
an enhancement with the use of afpacket, as
evidenced by a minor reduction in CPU utilization
and a significant decrease in packet drop rates. At
a network speed of 1000 Mbps, CPU usage was

approximately 22.5%, and the packet drop rate was
reduced to 0.39%, a substantial improvement from
the 9.1% observed with libpcap. Although there
was a slight increase in memory usage to 11.2%,
packet handling was notably improved, with no
drops occurring up to 700 Mbps. This demonstrates
that despite afpacket’s marginally higher memory
requirement, the trade-off is justified by the gains in

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

without performance degrada9on (Figure 3). However, its lighter
ruleset likely contributes to its lower resource consump9on and
negligible packet drops.

B. Ruleset Size Standardiza7on
To ensure a fair comparison, the rule set sizes for Snort 2, Snort 3,

and Suricata were standardized to 10,000 rules each. As shown in
Figure 4, Snort 2 experienced a slight decrease in
CPU and memory usages compared to the baseline, with 22.0% at
1,000 Mbps, while its memory usage was constant at 8%. With the
reduced rule set size, there was a slight improvement in the packet
drop rate, yet it remained high at 9.1% at maximum throughput,
indica9ng that rule set size impacts Snort 2’s efficiency.

Snort 3 also exhibited reduced CPU and memory u9liza9on
compared to the baseline, reaching 25.4% at 1000 Mbps, while

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 3: Performance comparison of NIDS tools with default
seOngs.

its memory decreased to 1.6%. The packet drop rate showed a modest
improvement, with a final rate of 5.1% at maximum throughput.
These results indicate that while Snort 3 benefits from ruleset
standardiza9on, it s9ll struggles with high throughput scenarios,
similar to Snort 2.

Suricata con9nued to perform well, with CPU u9liza9on slightly
lower than in the baseline, reaching 15.9% at 1000 Mbps. Memory
usage was even more efficient at 2.05%, and it s9ll recorded zero
packet drops across all throughput levels. This reinforces Suricata’s
scalability and efficiency, making it par9cularly suitable for
environments where high traffic and large rulesets are common.

C. Packet Capture Technique Evalua7on
This scenario examined the effects of two prevalent packet capture

methods, libpcap and afpacket, on the performance of each NUT.
Figure 5 indicates that Snort 2 experienced an enhancement with

the use of afpacket, as evidenced by a minor reduc9on in CPU
u9liza9on and a significant decrease in packet drop rates. At a
network speed of 1000 Mbps, CPU usage was approximately 22.5%,
and the packet drop rate was reduced to 0.39%, a substan9al
improvement from the 9.1% observed

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 4: Comparison of NIDS soluIons with the same ruleset
size.

with libpcap. Although there was a slight increase in memory usage
to 11.2%, packet handling was notably improved, with no drops
occurring up to 700 Mbps. This demonstrates that despite afpacket’s

Fig. 4: Comparison of NIDS solutions with the
same ruleset size

157

JISCR 2025; Volume 8 Issue (2)

throughput and the reduction in packet loss.
Figure 6 demonstrates that Snort 3 has

significantly advanced with afpacket, showing
greater CPU utilization than libpcap, reaching
48.7% at 1000 Mbps and a rise in memory usage
to 15.3%, while successfully reducing packet drops
at almost all throughput levels. Due to libpcap
missing proper load balancing for Snort 3 packet
processing threads, it was not a valid choice for
Snort 3 multi-threading.

Snort 3 utilizes afpacket for load balancing
network traffic between each packet processing
thread, which was the only option for Snort 3 multi-
threading when using Snort 3 to analyze realtime
network traffic. It can be configured in the Snort 3
config file or command line, as seen in Section ??.

This balance between heightened CPU and
memory usage against decreased packet loss
suggests that afpacket enhances Snort 3’s
detection abilities notwithstanding the increased
consumption of resources.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

marginally higher memory requirement, the trade-off is jus9fied by
the gains in throughput and the reduc9on in packet loss.

Figure 6 demonstrates that Snort 3 has significantly advanced with
afpacket, showing greater CPU u9liza9on than libpcap, reaching
48.7% at 1000 Mbps and a rise in memory usage to 15.3%, while
successfully reducing packet drops at almost all throughput levels.
Due to libpcap missing proper load balancing for Snort 3 packet
processing threads, it was not a valid choice for Snort 3 mul9-
threading.

Snort 3 u9lizes afpacket for load balancing network traffic between
each packet processing thread, which was the only op9on for Snort 3
mul9-threading when using Snort 3 to analyze real9me network
traffic. It can be configured in the Snort 3 config file or command line,
as seen in Sec9on ??.

This balance between heightened CPU and memory usage against
decreased packet loss suggests that afpacket enhances Snort 3’s
detec9on abili9es notwithstanding the increased consump9on of
resources.

Figure 7 shows that Suricata performed similarly well with

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 5: Performance of Snort 2 with libpcap and afpacket.

both capture techniques, showing very low CPU u9liza9on (15.9%
with afpacket), maintaining its low memory usage (around 2%), and
zero packet drops throughout. This indicates that Suricata’s efficiency

is less dependent on the packet capture method, underscoring its
overall robustness.

Figure 8 shows, that Zeek sustained outstanding performance with
afpacket, demonstra9ng very low CPU and memory usage, along with
zero packet drops. The negligible impact of the capture method on
Zeek’s performance underscores its appropriateness for senngs
where stable and reliable detec9on is paramount.

The compara9ve performance of all NUTs with afpacket is further
highlighted in Figure 9, which emphasizes the importance of selec9ng
op9mal packet capture methods. For SMEs, implemen9ng afpacket
with their chosen NIDS could be a straighiorward adjustment to
improve overall network security performance.

D. Detec7on Engine Op7miza7on
The detec9on engine op9miza9on experiments explore the impact

of different detec9on engine configura9ons on the performance of
Snort 2, Snort 3, and Suricata, each using afpacket as the efficient
packet capture method determined in the preceding scenario. It is
important to note that Zeek was not included in this assessment due
to its non-configurable detec9on engine, and therefore, it was kept in
its default configura9on.

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 6: Performance of Snort 3 with libpcap and afpacket.

Fig. 5: Performance of Snort 2 with libpcap
and afpacket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

marginally higher memory requirement, the trade-off is jus9fied by
the gains in throughput and the reduc9on in packet loss.

Figure 6 demonstrates that Snort 3 has significantly advanced with
afpacket, showing greater CPU u9liza9on than libpcap, reaching
48.7% at 1000 Mbps and a rise in memory usage to 15.3%, while
successfully reducing packet drops at almost all throughput levels.
Due to libpcap missing proper load balancing for Snort 3 packet
processing threads, it was not a valid choice for Snort 3 mul9-
threading.

Snort 3 u9lizes afpacket for load balancing network traffic between
each packet processing thread, which was the only op9on for Snort 3
mul9-threading when using Snort 3 to analyze real9me network
traffic. It can be configured in the Snort 3 config file or command line,
as seen in Sec9on ??.

This balance between heightened CPU and memory usage against
decreased packet loss suggests that afpacket enhances Snort 3’s
detec9on abili9es notwithstanding the increased consump9on of
resources.

Figure 7 shows that Suricata performed similarly well with

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 5: Performance of Snort 2 with libpcap and afpacket.

both capture techniques, showing very low CPU u9liza9on (15.9%
with afpacket), maintaining its low memory usage (around 2%), and
zero packet drops throughout. This indicates that Suricata’s efficiency

is less dependent on the packet capture method, underscoring its
overall robustness.

Figure 8 shows, that Zeek sustained outstanding performance with
afpacket, demonstra9ng very low CPU and memory usage, along with
zero packet drops. The negligible impact of the capture method on
Zeek’s performance underscores its appropriateness for senngs
where stable and reliable detec9on is paramount.

The compara9ve performance of all NUTs with afpacket is further
highlighted in Figure 9, which emphasizes the importance of selec9ng
op9mal packet capture methods. For SMEs, implemen9ng afpacket
with their chosen NIDS could be a straighiorward adjustment to
improve overall network security performance.

D. Detec7on Engine Op7miza7on
The detec9on engine op9miza9on experiments explore the impact

of different detec9on engine configura9ons on the performance of
Snort 2, Snort 3, and Suricata, each using afpacket as the efficient
packet capture method determined in the preceding scenario. It is
important to note that Zeek was not included in this assessment due
to its non-configurable detec9on engine, and therefore, it was kept in
its default configura9on.

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 6: Performance of Snort 3 with libpcap and afpacket. Fig. 6: Performance of Snort 3 with
libpcap and afpacket

Alzahrani et al.

158

JISCR 2025; Volume 8 Issue (2)

both capture techniques, showing very low CPU
utilization (15.9% with afpacket), maintaining its low
memory usage (around 2%), and zero packet drops
throughout. This indicates that Suricata’s efficiency
is less dependent on the packet capture method,
underscoring its overall robustness.

Figure 8 shows, that Zeek sustained outstanding
performance with afpacket, demonstrating very
low CPU and memory usage, along with zero
packet drops. The negligible impact of the capture
method on Zeek’s performance underscores its

appropriateness for settings where stable and
reliable detection is paramount.

The comparative performance of all NUTs with
afpacket is further highlighted in Figure 9, which
emphasizes the importance of selecting optimal
packet capture methods. For SMEs, implementing
afpacket with their chosen NIDS could be a
straightforward adjustment to improve overall
network security performance.

D. Detection Engine Optimization
The detection engine optimization experiments

explore the impact of different detection engine

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

Fig. 7: Performance of Suricata with
libpcap and afpacket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

While the ac op9on in Snort 2 did lead to a modest reduc9on in
CPU usage, down to 20.0% at 1000 Mbps, and a decrease in packet
drop rate to 0.21%, indica9ng improved efficiency and packet
processing capacity, it also caused a significant increase in memory
usage as shown in Figure 10. Our tes9ngs showed that Snort
configured with the ac op9on experienced substan9al memory
consump9on, which worsened with larger rule sets. An aOempt to run
Snort with a 50,000 rule set failed due to memory limita9ons.
Resul9ng in, switching to the alterna9ve ac-split op9on.

As shown in Figure 11, Snort 3’s hyperscan configura9on provided
substan9al performance benefits, with CPU u9liza9on greatly
reduced and memory usage stabilized at 15.9%. This configura9on
enabled Snort 3 to handle high throughput without packet loss,
making it more compe99ve with Suricata’s consistently low memory
and CPU usage.

Figure 12 illustrates that the default Suricata configura9on, u9lizing
afpacket with hyperscan, maintained op9mal performance, further
confirming the efficiency of the default Suricata setup as previously
discussed.

The compara9ve performance of all NUTs, paired with the op9mal
detec9on engine for each, is further illustrated in Figure 13. This
underscores the cri9cality of choosing the op9mal detec9on engine.
For SMEs, the adop9on of advanced detec9on engines such as
hyperscan can greatly improve the efficiency of

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 7: Performance of Suricata with libpcap and afpacket.

NIDS, par9cularly in scenarios with high traffic volumes and
sophis9cated aOack vectors.

E. Impact of Ruleset Size
The results of this scenario highlight the significant impact of

ruleset size on the performance of Snort 2, Snort 3, and Suricata under
various traffic condi9ons, including low, moderate, and peak
throughput. As the ruleset size increased from 10,000 to 50,000 rules,
all NIDS solu9ons showed a rise in CPU u9liza9on and memory
consump9on, with Snort 2 experiencing the most pronounced
increase in packet dropping rates, par9cularly at higher traffic loads.

Under low throughput (100 Mbps), Figure 14, Snort 2’s CPU usage
gradually rose from 7.49% with 10,000 rules to 10.33% with 50,000
rules, while its memory usage increased significantly, indica9ng a
more resource-intensive opera9on as ruleset sizes expanded. Notably,
Snort 2 maintained zero packet drops under low traffic condi9ons but
exhibited a rising trend in memory usage that could impact
performance at higher loads. Snort 3 demonstrated similar trends in
CPU and memory usage, though it managed to maintain no packet
drops across all ruleset sizes under low throughput, indica9ng a beOer
efficiency in handling increasing rulesets compared to Snort 2.
Suricata exhibited the lowest CPU and memory usage under the same

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 8: Performance of Zeek with libpcap and afpacket.

Fig. 8: Performance of Zeek with libpcap
and afpacket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

While the ac op9on in Snort 2 did lead to a modest reduc9on in
CPU usage, down to 20.0% at 1000 Mbps, and a decrease in packet
drop rate to 0.21%, indica9ng improved efficiency and packet
processing capacity, it also caused a significant increase in memory
usage as shown in Figure 10. Our tes9ngs showed that Snort
configured with the ac op9on experienced substan9al memory
consump9on, which worsened with larger rule sets. An aOempt to run
Snort with a 50,000 rule set failed due to memory limita9ons.
Resul9ng in, switching to the alterna9ve ac-split op9on.

As shown in Figure 11, Snort 3’s hyperscan configura9on provided
substan9al performance benefits, with CPU u9liza9on greatly
reduced and memory usage stabilized at 15.9%. This configura9on
enabled Snort 3 to handle high throughput without packet loss,
making it more compe99ve with Suricata’s consistently low memory
and CPU usage.

Figure 12 illustrates that the default Suricata configura9on, u9lizing
afpacket with hyperscan, maintained op9mal performance, further
confirming the efficiency of the default Suricata setup as previously
discussed.

The compara9ve performance of all NUTs, paired with the op9mal
detec9on engine for each, is further illustrated in Figure 13. This
underscores the cri9cality of choosing the op9mal detec9on engine.
For SMEs, the adop9on of advanced detec9on engines such as
hyperscan can greatly improve the efficiency of

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 7: Performance of Suricata with libpcap and afpacket.

NIDS, par9cularly in scenarios with high traffic volumes and
sophis9cated aOack vectors.

E. Impact of Ruleset Size
The results of this scenario highlight the significant impact of

ruleset size on the performance of Snort 2, Snort 3, and Suricata under
various traffic condi9ons, including low, moderate, and peak
throughput. As the ruleset size increased from 10,000 to 50,000 rules,
all NIDS solu9ons showed a rise in CPU u9liza9on and memory
consump9on, with Snort 2 experiencing the most pronounced
increase in packet dropping rates, par9cularly at higher traffic loads.

Under low throughput (100 Mbps), Figure 14, Snort 2’s CPU usage
gradually rose from 7.49% with 10,000 rules to 10.33% with 50,000
rules, while its memory usage increased significantly, indica9ng a
more resource-intensive opera9on as ruleset sizes expanded. Notably,
Snort 2 maintained zero packet drops under low traffic condi9ons but
exhibited a rising trend in memory usage that could impact
performance at higher loads. Snort 3 demonstrated similar trends in
CPU and memory usage, though it managed to maintain no packet
drops across all ruleset sizes under low throughput, indica9ng a beOer
efficiency in handling increasing rulesets compared to Snort 2.
Suricata exhibited the lowest CPU and memory usage under the same

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 8: Performance of Zeek with libpcap and afpacket.

159

JISCR 2025; Volume 8 Issue (2)

configurations on the performance of Snort 2,
Snort 3, and Suricata, each using afpacket as the
efficient packet capture method determined in the
preceding scenario. It is important to note that Zeek
was not included in this assessment due to its non-
configurable detection engine, and therefore, it was
kept in its default configuration.

While the ac option in Snort 2 did lead to a
modest reduction in CPU usage, down to 20.0% at
1000 Mbps, and a decrease in packet drop rate to
0.21%, indicating improved efficiency and packet
processing capacity, it also caused a significant
increase in memory usage as shown in Figure 10.
Our testings showed that Snort configured with

the ac option experienced substantial memory
consumption, which worsened with larger rule sets.
An attempt to run Snort with a 50,000 rule set failed
due to memory limitations. Resulting in, switching to
the alternative ac-split option.

As shown in Figure 11, Snort 3’s hyperscan
configuration provided substantial performance
benefits, with CPU utilization greatly reduced
and memory usage stabilized at 15.9%. This
configuration enabled Snort 3 to handle high
throughput without packet loss, making it more
competitive with Suricata’s consistently low memory
and CPU usage.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

condi9ons, maintaining zero packet drops, sugges9ng a high level of
efficiency even with larger rulesets.

At moderate throughput (500 Mbps), Figure 15, the performance
gaps widened. Snort 2 began showing packet drops star9ng from the
20,000-rule size, escala9ng to 2% at 50,000 rules, which is concerning
for environments requiring high reliability. The increase in packet drop
rates suggests that Snort 2 struggles with scalability under increased
traffic loads and larger rulesets, making it less suitable for high-
performance requirements without significant tuning. Snort 3
managed to avoid packet drops un9l the largest ruleset size,
demonstra9ng beOer adaptability and scalability under moderate
condi9ons. Suricata con9nued to show the most efficient
performance, maintaining zero packet drops and rela9vely low CPU
and memory usage, further confirming its capability to handle large
rule sets and moderate traffic without performance degrada9on.

Under peak throughput (1000 Mbps), Figure 16, the differences
became starkly apparent. Snort 2’s packet drop rate surged
drama9cally to 17.46% at the largest ruleset size, highligh9ng severe
limita9ons in high-traffic scenarios. This performance suggests that
Snort 2’s detec9on engine struggles under heavy loads, par9cularly
when coupled with extensive rulesets, poten9ally compromising
security in high-traffic environments. Snort 3 and Suricata
demonstrated much beOer resilience, with Suricata maintaining zero
packet drops and only moderate increases in

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 9: Performance comparison of NIDS tools with afpacket.

resource consump9on. This performance underscores Suricata’s
robust architecture, making it par9cularly suitable for highthroughput
environments typical of larger SMEs or those with intensive security
monitoring requirements.

F. Performance Comparison with Real-World Traffic
This scenario evaluated the performance of Snort 2, Snort 3, and

Suricata using the BigFlows.pcap dataset, which replicates realis9c
network condi9ons with diverse traffic types, including HTTP
browsing, file transfers, and chat applica9ons. The dataset featured
over 40,686 dis9nct flows with a range of packet sizes from 60 to 1514
bytes, and an average packet length of 449 bytes. This scenario
allowed for a comprehensive assessment of how each NIDS handles
complex, mixed traffic paOerns typical of SME environments. Key
factors affec9ng performance were the number and variety of flows
and the variability in packet size, both of which significantly influence
resource consump9on, and packet drop rates.

The combina9on of numerous, varied flows and diverse packet
sizes directly challenged the detec9on engines of Snort 2, Snort 3, and
Suricata, highligh9ng their strengths and weaknesses in handling real-
world traffic dynamics.

Figure 17 illustrates that Snort 2 had difficul9es handling the
growing number and diversity of flows, along with the variability

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 10: Performance of Snort 2 with different detecIon
engine.

Fig. 9: Performance comparison of NIDS
tools with afpacket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

condi9ons, maintaining zero packet drops, sugges9ng a high level of
efficiency even with larger rulesets.

At moderate throughput (500 Mbps), Figure 15, the performance
gaps widened. Snort 2 began showing packet drops star9ng from the
20,000-rule size, escala9ng to 2% at 50,000 rules, which is concerning
for environments requiring high reliability. The increase in packet drop
rates suggests that Snort 2 struggles with scalability under increased
traffic loads and larger rulesets, making it less suitable for high-
performance requirements without significant tuning. Snort 3
managed to avoid packet drops un9l the largest ruleset size,
demonstra9ng beOer adaptability and scalability under moderate
condi9ons. Suricata con9nued to show the most efficient
performance, maintaining zero packet drops and rela9vely low CPU
and memory usage, further confirming its capability to handle large
rule sets and moderate traffic without performance degrada9on.

Under peak throughput (1000 Mbps), Figure 16, the differences
became starkly apparent. Snort 2’s packet drop rate surged
drama9cally to 17.46% at the largest ruleset size, highligh9ng severe
limita9ons in high-traffic scenarios. This performance suggests that
Snort 2’s detec9on engine struggles under heavy loads, par9cularly
when coupled with extensive rulesets, poten9ally compromising
security in high-traffic environments. Snort 3 and Suricata
demonstrated much beOer resilience, with Suricata maintaining zero
packet drops and only moderate increases in

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 9: Performance comparison of NIDS tools with afpacket.

resource consump9on. This performance underscores Suricata’s
robust architecture, making it par9cularly suitable for highthroughput
environments typical of larger SMEs or those with intensive security
monitoring requirements.

F. Performance Comparison with Real-World Traffic
This scenario evaluated the performance of Snort 2, Snort 3, and

Suricata using the BigFlows.pcap dataset, which replicates realis9c
network condi9ons with diverse traffic types, including HTTP
browsing, file transfers, and chat applica9ons. The dataset featured
over 40,686 dis9nct flows with a range of packet sizes from 60 to 1514
bytes, and an average packet length of 449 bytes. This scenario
allowed for a comprehensive assessment of how each NIDS handles
complex, mixed traffic paOerns typical of SME environments. Key
factors affec9ng performance were the number and variety of flows
and the variability in packet size, both of which significantly influence
resource consump9on, and packet drop rates.

The combina9on of numerous, varied flows and diverse packet
sizes directly challenged the detec9on engines of Snort 2, Snort 3, and
Suricata, highligh9ng their strengths and weaknesses in handling real-
world traffic dynamics.

Figure 17 illustrates that Snort 2 had difficul9es handling the
growing number and diversity of flows, along with the variability

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 10: Performance of Snort 2 with different detecIon
engine.

Fig. 10: Performance of Snort 2 with
different detection engine

Alzahrani et al.

160

JISCR 2025; Volume 8 Issue (2)

Figure 12 illustrates that the default Suricata
configuration, utilizing afpacket with hyperscan,
maintained optimal performance, further confirming
the efficiency of the default Suricata setup as
previously discussed.

The comparative performance of all NUTs,
paired with the optimal detection engine for each, is
further illustrated in Figure 13. This underscores the
criticality of choosing the optimal detection engine.
For SMEs, the adoption of advanced detection
engines such as hyperscan can greatly improve
the efficiency of NIDS, particularly in scenarios
with high traffic volumes and sophisticated attack
vectors.

E. Impact of Ruleset Size
The results of this scenario highlight the

significant impact of ruleset size on the performance
of Snort 2, Snort 3, and Suricata under various
traffic conditions, including low, moderate, and
peak throughput. As the ruleset size increased from
10,000 to 50,000 rules, all NIDS solutions showed
a rise in CPU utilization and memory consumption,
with Snort 2 experiencing the most pronounced
increase in packet dropping rates, particularly at
higher traffic loads.

Under low throughput (100 Mbps), Figure 14,
Snort 2’s CPU usage gradually rose from 7.49% with
10,000 rules to 10.33% with 50,000 rules, while its

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

Fig. 11: Performance of Snort 3 with
different detection engine

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

in packet sizes. At a ruleset size of 10,000, Snort 2 maintained
acceptable performance with a CPU u9liza9on of 17.08% and memory
usage at 11.2%, alongside a packet drop rate of 2%. However, as the
ruleset size grew to 50,000, CPU u9liza9on increased to 22.86%, and
memory consump9on surged to 35.4%. More cri9cally, the packet
dropping rate escalated sharply to 14.56%, indica9ng a significant
decline in Snort 2’s ability to process traffic effec9vely. This steep
increase in packet drops suggests that Snort 2 may struggle with the
dynamic nature of actual network traffic, where mul9ple concurrent
flows and varying packet sizes can challenge its detec9on capabili9es.
The pronounced performance degrada9on with larger rulesets poses
a risk of undetected threats, making Snort2 less suitable for SMEs that
require reliable threat monitoring with minimal packet loss.

Snort 3 Performance Analysis: Snort 3 showed a more robust
performance profile compared to Snort 2, although it s9ll faced
challenges at higher ruleset sizes. At 10,000 rules, Snort 3 exhibited a
CPU u9liza9on of 18.65% and memory usage of 16.65%, with no
packet drops, indica9ng efficient handling of traffic with rela9vely
light computa9onal demands. As the ruleset expanded to 50,000, CPU
u9liza9on increased significantly to 41.27%, and memory usage
reached 22.42%. Despite this increase in resource consump9on, Snort
3 managed to keep packet drops to a minimum, only recording a drop
rate of 0.87% at the

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 11: Performance of Snort 3 with different detecIon
engine.

highest ruleset size. This low packet drops rate highlights Snort 3’s
enhanced detec9on engine and beOer resource op9miza9on, which
allows it to handle complex traffic with higher detec9on accuracy and
minimal loss. However, the elevated CPU usage underlines poten9al
performance boOlenecks, sugges9ng that while Snort 3 can manage
large rulesets effec9vely, it does so at the cost of significantly
increased processing power, which could impact overall system
performance if not adequately provisioned.

Suricata Performance Analysis: Suricata consistently outperformed
both versions of Snort across all metrics, maintaining superior
detec9on capabili9es with minimal resource consump9on and packet
drops. At a ruleset size of 10,000, Suricata’s CPU u9liza9on was
remarkably low at 5.65%, and memory usage was 3.74%, with zero
packet drops, showcasing its highly efficient architecture. As the
ruleset size increased to 50,000, Suricata’s CPU usage rose to 25.59%,
and memory consump9on increased moderately to 5.39%. Despite
the larger ruleset, Suricata maintained a perfect record with zero
packet drops, demonstra9ng its ability to efficiently scale and process
high volumes of traffic without compromising performance. This
robust performance can be aOributed to Suricata’s mul9-threaded
processing and op9mized detec9on algorithms, which allow it to
balance load effec9vely across system resources, making it
par9cularly wellsuited for real-world deployments in SMEs where
reliability and

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 12: Performance of Suricata with different detecIon
engine.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

in packet sizes. At a ruleset size of 10,000, Snort 2 maintained
acceptable performance with a CPU u9liza9on of 17.08% and memory
usage at 11.2%, alongside a packet drop rate of 2%. However, as the
ruleset size grew to 50,000, CPU u9liza9on increased to 22.86%, and
memory consump9on surged to 35.4%. More cri9cally, the packet
dropping rate escalated sharply to 14.56%, indica9ng a significant
decline in Snort 2’s ability to process traffic effec9vely. This steep
increase in packet drops suggests that Snort 2 may struggle with the
dynamic nature of actual network traffic, where mul9ple concurrent
flows and varying packet sizes can challenge its detec9on capabili9es.
The pronounced performance degrada9on with larger rulesets poses
a risk of undetected threats, making Snort2 less suitable for SMEs that
require reliable threat monitoring with minimal packet loss.

Snort 3 Performance Analysis: Snort 3 showed a more robust
performance profile compared to Snort 2, although it s9ll faced
challenges at higher ruleset sizes. At 10,000 rules, Snort 3 exhibited a
CPU u9liza9on of 18.65% and memory usage of 16.65%, with no
packet drops, indica9ng efficient handling of traffic with rela9vely
light computa9onal demands. As the ruleset expanded to 50,000, CPU
u9liza9on increased significantly to 41.27%, and memory usage
reached 22.42%. Despite this increase in resource consump9on, Snort
3 managed to keep packet drops to a minimum, only recording a drop
rate of 0.87% at the

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 11: Performance of Snort 3 with different detecIon
engine.

highest ruleset size. This low packet drops rate highlights Snort 3’s
enhanced detec9on engine and beOer resource op9miza9on, which
allows it to handle complex traffic with higher detec9on accuracy and
minimal loss. However, the elevated CPU usage underlines poten9al
performance boOlenecks, sugges9ng that while Snort 3 can manage
large rulesets effec9vely, it does so at the cost of significantly
increased processing power, which could impact overall system
performance if not adequately provisioned.

Suricata Performance Analysis: Suricata consistently outperformed
both versions of Snort across all metrics, maintaining superior
detec9on capabili9es with minimal resource consump9on and packet
drops. At a ruleset size of 10,000, Suricata’s CPU u9liza9on was
remarkably low at 5.65%, and memory usage was 3.74%, with zero
packet drops, showcasing its highly efficient architecture. As the
ruleset size increased to 50,000, Suricata’s CPU usage rose to 25.59%,
and memory consump9on increased moderately to 5.39%. Despite
the larger ruleset, Suricata maintained a perfect record with zero
packet drops, demonstra9ng its ability to efficiently scale and process
high volumes of traffic without compromising performance. This
robust performance can be aOributed to Suricata’s mul9-threaded
processing and op9mized detec9on algorithms, which allow it to
balance load effec9vely across system resources, making it
par9cularly wellsuited for real-world deployments in SMEs where
reliability and

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 12: Performance of Suricata with different detecIon
engine.

Fig. 12: Performance of Suricata with
different detection engine

161

JISCR 2025; Volume 8 Issue (2)

memory usage increased significantly, indicating a
more resource-intensive operation as ruleset sizes
expanded. Notably, Snort 2 maintained zero packet
drops under low traffic conditions but exhibited a
rising trend in memory usage that could impact
performance at higher loads. Snort 3 demonstrated
similar trends in CPU and memory usage, though
it managed to maintain no packet drops across
all ruleset sizes under low throughput, indicating
a better efficiency in handling increasing rulesets
compared to Snort 2. Suricata exhibited the lowest

CPU and memory usage under the same conditions,
maintaining zero packet drops, suggesting a high
level of efficiency even with larger rulesets.

At moderate throughput (500 Mbps), Figure
15, the performance gaps widened. Snort 2
began showing packet drops starting from the
20,000-rule size, escalating to 2% at 50,000 rules,
which is concerning for environments requiring
high reliability. The increase in packet drop rates
suggests that Snort 2 struggles with scalability
under increased traffic loads and larger rulesets,
making it less suitable for high-performance
requirements without significant tuning. Snort 3
managed to avoid packet drops until the largest
ruleset size, demonstrating better adaptability and
scalability under moderate conditions. Suricata
continued to show the most efficient performance,

Fig. 13: Performance comparison of NIDS
tools with optimized configuration

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

efficiency are paramount.

V. DETECTION CAPABILITY ASSESSMENT
This sec9on explores the third research ques9on (RQ3), focusing on

the efficacy of Snort 2, Snort 3, Suricata, and Zeek in detec9ng
common cyberaOacks that frequently target SMEs. It assesses each
NIDS detec9on accuracy through controlled aOack scenarios, such as
DoS, malware, ransomware, web applica9on aOacks, and phishing.
The evalua9on measures the TPR and FNR of each NIDS. The findings
provide insights into the strengths and weaknesses of each tool’s
ability to protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning AKacks
The results of this scenario show significant differences in how each

NUT handles DoS and port scanning aOacks. Suricata outperformed
the other systems, achieving an impressive TPR of 85% with a
rela9vely low FNR of 15%. This reflects Suricata’s superior ability to
manage high-throughput traffic and accurately detect paOerns
associated with DoS and scanning ac9vi9es. Snort 3 followed with a
TPR of 80%, showing improvements over Snort
2, which only managed a TPR of 75%. Zeek, on the other hand,

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 13: Performance comparison of NIDS tools with opImized
configuraIon

displayed a lower TPR of 60%, with a high FNR of 40%, which can be
aOributed to its focus on behavioral analysis rather than signature-
based detec9on. Zeek’s rela9ve under-performance in this scenario
indicates its limita9ons in detec9ng rapid, highvolume aOacks like
DoS, where signature-based systems like Suricata excel.

B. Scenario 2: General Malware
In the general malware detec9on scenario, Suricata once again

demonstrated its strength, achieving the highest TPR of 90% with only
a 10% FNR. This result highlights the effec9veness of Suricata’s robust
signature-based detec9on, which allows it to iden9fy a wide range of
malware threats. Snort 3 performed well with a TPR of 86%,
significantly outperforming Snort 2, which had a TPR of 77%. The
improved detec9on rate in Snort 3 can be aOributed to enhancements
in its rule set and detec9on engine. Zeek, with its behavior-based
approach, achieved a TPR of 78%, which is slightly higher than Snort
2 but lower than Snort 3 and Suricata. Zeek’s detec9on capabili9es in
this scenario were hampered by its reliance on behavioral indicators
rather than signature matching, which limited its ability to iden9fy
malware without clear behavioral anomalies.

Fig. 14: Performance comparison of NIDS tools against ruleset
size under low throughput (100 Mbps).

Fig. 15: Performance comparison of NIDS tools against ruleset
size under moderate throughput (500 Mbps).

Fig. 14: Performance comparison of NIDS tools against
ruleset size under low throughput (100 Mbps)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

efficiency are paramount.

V. DETECTION CAPABILITY ASSESSMENT
This sec9on explores the third research ques9on (RQ3), focusing on

the efficacy of Snort 2, Snort 3, Suricata, and Zeek in detec9ng
common cyberaOacks that frequently target SMEs. It assesses each
NIDS detec9on accuracy through controlled aOack scenarios, such as
DoS, malware, ransomware, web applica9on aOacks, and phishing.
The evalua9on measures the TPR and FNR of each NIDS. The findings
provide insights into the strengths and weaknesses of each tool’s
ability to protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning AKacks
The results of this scenario show significant differences in how each

NUT handles DoS and port scanning aOacks. Suricata outperformed
the other systems, achieving an impressive TPR of 85% with a
rela9vely low FNR of 15%. This reflects Suricata’s superior ability to
manage high-throughput traffic and accurately detect paOerns
associated with DoS and scanning ac9vi9es. Snort 3 followed with a
TPR of 80%, showing improvements over Snort
2, which only managed a TPR of 75%. Zeek, on the other hand,

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 13: Performance comparison of NIDS tools with opImized
configuraIon

displayed a lower TPR of 60%, with a high FNR of 40%, which can be
aOributed to its focus on behavioral analysis rather than signature-
based detec9on. Zeek’s rela9ve under-performance in this scenario
indicates its limita9ons in detec9ng rapid, highvolume aOacks like
DoS, where signature-based systems like Suricata excel.

B. Scenario 2: General Malware
In the general malware detec9on scenario, Suricata once again

demonstrated its strength, achieving the highest TPR of 90% with only
a 10% FNR. This result highlights the effec9veness of Suricata’s robust
signature-based detec9on, which allows it to iden9fy a wide range of
malware threats. Snort 3 performed well with a TPR of 86%,
significantly outperforming Snort 2, which had a TPR of 77%. The
improved detec9on rate in Snort 3 can be aOributed to enhancements
in its rule set and detec9on engine. Zeek, with its behavior-based
approach, achieved a TPR of 78%, which is slightly higher than Snort
2 but lower than Snort 3 and Suricata. Zeek’s detec9on capabili9es in
this scenario were hampered by its reliance on behavioral indicators
rather than signature matching, which limited its ability to iden9fy
malware without clear behavioral anomalies.

Fig. 14: Performance comparison of NIDS tools against ruleset
size under low throughput (100 Mbps).

Fig. 15: Performance comparison of NIDS tools against ruleset
size under moderate throughput (500 Mbps).

Fig. 15: Performance comparison of NIDS tools against
ruleset size under moderate throughput (500 Mbps)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

efficiency are paramount.

V. DETECTION CAPABILITY ASSESSMENT
This sec9on explores the third research ques9on (RQ3), focusing on

the efficacy of Snort 2, Snort 3, Suricata, and Zeek in detec9ng
common cyberaOacks that frequently target SMEs. It assesses each
NIDS detec9on accuracy through controlled aOack scenarios, such as
DoS, malware, ransomware, web applica9on aOacks, and phishing.
The evalua9on measures the TPR and FNR of each NIDS. The findings
provide insights into the strengths and weaknesses of each tool’s
ability to protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning AKacks
The results of this scenario show significant differences in how each

NUT handles DoS and port scanning aOacks. Suricata outperformed
the other systems, achieving an impressive TPR of 85% with a
rela9vely low FNR of 15%. This reflects Suricata’s superior ability to
manage high-throughput traffic and accurately detect paOerns
associated with DoS and scanning ac9vi9es. Snort 3 followed with a
TPR of 80%, showing improvements over Snort
2, which only managed a TPR of 75%. Zeek, on the other hand,

(a) CPU u9liza9on

(b) Memory u9liza9on

(c) Packet dropping

Fig. 13: Performance comparison of NIDS tools with opImized
configuraIon

displayed a lower TPR of 60%, with a high FNR of 40%, which can be
aOributed to its focus on behavioral analysis rather than signature-
based detec9on. Zeek’s rela9ve under-performance in this scenario
indicates its limita9ons in detec9ng rapid, highvolume aOacks like
DoS, where signature-based systems like Suricata excel.

B. Scenario 2: General Malware
In the general malware detec9on scenario, Suricata once again

demonstrated its strength, achieving the highest TPR of 90% with only
a 10% FNR. This result highlights the effec9veness of Suricata’s robust
signature-based detec9on, which allows it to iden9fy a wide range of
malware threats. Snort 3 performed well with a TPR of 86%,
significantly outperforming Snort 2, which had a TPR of 77%. The
improved detec9on rate in Snort 3 can be aOributed to enhancements
in its rule set and detec9on engine. Zeek, with its behavior-based
approach, achieved a TPR of 78%, which is slightly higher than Snort
2 but lower than Snort 3 and Suricata. Zeek’s detec9on capabili9es in
this scenario were hampered by its reliance on behavioral indicators
rather than signature matching, which limited its ability to iden9fy
malware without clear behavioral anomalies.

Fig. 14: Performance comparison of NIDS tools against ruleset
size under low throughput (100 Mbps).

Fig. 15: Performance comparison of NIDS tools against ruleset
size under moderate throughput (500 Mbps).

Alzahrani et al.

162

JISCR 2025; Volume 8 Issue (2)

maintaining zero packet drops and relatively low
CPU and memory usage, further confirming its
capability to handle large rule sets and moderate
traffic without performance degradation.

Under peak throughput (1000 Mbps), Figure
16, the differences became starkly apparent.
Snort 2’s packet drop rate surged dramatically
to 17.46% at the largest ruleset size, highlighting
severe limitations in high-traffic scenarios. This
performance suggests that Snort 2’s detection
engine struggles under heavy loads, particularly
when coupled with extensive rulesets, potentially
compromising security in high-traffic environments.
Snort 3 and Suricata demonstrated much better
resilience, with Suricata maintaining zero packet
drops and only moderate increases in resource
consumption. This performance underscores
Suricata’s robust architecture, making it particularly
suitable for highthroughput environments typical
of larger SMEs or those with intensive security
monitoring requirements.

F. Performance Comparison with Real-World Traffic
This scenario evaluated the performance of

Snort 2, Snort 3, and Suricata using the BigFlows.
pcap dataset, which replicates realistic network
conditions with diverse traffic types, including HTTP
browsing, file transfers, and chat applications. The
dataset featured over 40,686 distinct flows with a
range of packet sizes from 60 to 1514 bytes, and an

average packet length of 449 bytes. This scenario
allowed for a comprehensive assessment of how
each NIDS handles complex, mixed traffic patterns
typical of SME environments. Key factors affecting
performance were the number and variety of flows
and the variability in packet size, both of which
significantly influence resource consumption, and
packet drop rates.

The combination of numerous, varied flows
and diverse packet sizes directly challenged the
detection engines of Snort 2, Snort 3, and Suricata,
highlighting their strengths and weaknesses in
handling real-world traffic dynamics.

Figure 17 illustrates that Snort 2 had difficulties
handling the growing number and diversity of flows,
along with the variability in packet sizes. At a ruleset
size of 10,000, Snort 2 maintained acceptable
performance with a CPU utilization of 17.08% and
memory usage at 11.2%, alongside a packet drop
rate of 2%. However, as the ruleset size grew to
50,000, CPU utilization increased to 22.86%, and
memory consumption surged to 35.4%. More
critically, the packet dropping rate escalated
sharply to 14.56%, indicating a significant decline
in Snort 2’s ability to process traffic effectively. This
steep increase in packet drops suggests that Snort
2 may struggle with the dynamic nature of actual
network traffic, where multiple concurrent flows and
varying packet sizes can challenge its detection
capabilities. The pronounced performance

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

C. Scenario 3: Ransomware AKacks

The ransomware aOack scenario underscores Suricata’s capability
to detect sophis9cated threats, with a TPR of 94% and the lowest FNR
at 6%. This demonstrates Suricata’s effec9veness in recognizing
ransomware-specific traffic paOerns, including command and control,
data exfiltra9on, and encryp9on ac9vi9es. Snort 3 also performed
well with a TPR of 87%, while Snort 2 lagged slightly behind at 81%.
Zeek’s performance was notable, with a TPR of 88%, indica9ng that its
behavioral detec9on approach is par9cularly useful in iden9fying
ransomware traffic, which oCen exhibits dis9nc9ve behaviors.
However, Zeek’s slightly higher FNR (12%) compared to Suricata
suggests that it might miss more subtle or encrypted ransomware
ac9vi9es that rely less on obvious behavioral signatures.

Fig. 16: Performance comparison of NIDS tools against ruleset
size under peak throughput (1000 Mbps).

Fig. 17: Performance comparison of NIDS soluIons against
the BigFlow.pcap dataset with different ruleset size.

D. Scenario 4: Web Applica7on AKacks

Web applica9on aOacks, such as SQL Injec9on and CrossSite
Scrip9ng, were well detected by most NUTs, but Suricata con9nued to
lead with a TPR of 91% and an FNR of 9%. Snort 3 followed closely
with a TPR of 88%, highligh9ng its competence in handling web-based
threats. Snort 2 trailed with a TPR of 85%, indica9ng that while it is
effec9ve, it is not as finely tuned as its successor or Suricata. Zeek’s
performance in this scenario was strong, with a TPR of 89%, reflec9ng
its proficiency in monitoring HTTP traffic and iden9fying anomalous
behaviors associated with web applica9on exploits. However, the
slight varia9on in FNR between Zeek (11%) and Suricata (9%) indicates
that signature-based systems may s9ll have a slight edge in detec9ng
web vulnerabili9es.
E. Scenario 5: Phishing AKacks

In the phishing scenario, Suricata demonstrated excep9onal
accuracy with the highest TPR of 95% and the lowest FNR of 5%,
confirming its effec9veness in detec9ng malicious URLs, domain
spoofing, and suspicious email traffic. Snort 3 performed similarly
well, achieving a TPR of 90% and an FNR of 10%, outperforming Snort
2 (TPR 83%, FNR 17%). This indicates that while both versions of Snort
are effec9ve in detec9ng phishing aOempts, Snort 3 offers beOer
accuracy. Zeek also achieved strong results with a TPR of 89% and an
FNR of 11%, showing its capability in iden9fying phishing-related
behaviors such as creden9al harves9ng and anomalous domain
access. However, Suricata’s higher TPR and lower FNR make it the
most reliable NUT in detec9ng phishing threats, likely due to its
extensive rule set coverage for domain-related aOacks.

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS

This study aimed to evaluate the effec9veness of three opensource
network intrusion detec9on systems (NIDS): Snort 2, Snort 3, Suricata,
and Zeek, in the context of small and mediumsized enterprises
(SMEs). The research focused on ease of deployment, performance
under varying network condi9ons, and detec9on accuracy for
common SME cyber threats. Through controlled experiments in a
virtualized environment simula9ng realis9c SME condi9ons, we
assessed the performance of these NIDS solu9ons.

The findings revealed that Suricata consistently outperformed the
others in scalability, efficiency, and low packet drop rates, making it
highly suitable for SMEs. Snort 3, when op9mized with afpacket and
hyperscan, demonstrated significant poten9al but is best suited for
resource-rich environments. Snort 2 exhibited limita9ons under
heavy traffic, while Zeek, though efficient, may not address all security
needs due to its lighter ruleset.

These findings have important implica9ons for SME NIDS
deployment, highligh9ng the strengths of Suricata as a scalable
solu9on. Snort 3 can benefit SMEs with sufficient hardware, while
Snort 2 requires careful considera9on in high-traffic scenarios. Future
research should validate these findings in real-world environments to
beOer understand NIDS performance dynamics.

This study offers valuable insights for SMEs aiming to enhance their
cybersecurity posture. By clarifying the strengths and limita9ons of
these NIDS, we contribute to improving network security in small and
medium-sized enterprises.

Based on the study’s findings, the following recommenda9ons are
proposed:

1) Priori9ze Suricata for Performance and Scalability: SMEs
should consider deploying Suricata due to its consistent
performance and efficiency.

2) Deploy Snort 3 in Resource-Rich Senngs: Snort 3 is best
for powerful hardware environments, ensuring high
detec9on accuracy.

Fig. 16: Performance comparison of NIDS tools against
ruleset size under peak throughput (1000 Mbps)

Fig. 17: Performance comparison of NIDS solutions against
the BigFlow.pcap dataset with different ruleset size

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

C. Scenario 3: Ransomware AKacks

The ransomware aOack scenario underscores Suricata’s capability
to detect sophis9cated threats, with a TPR of 94% and the lowest FNR
at 6%. This demonstrates Suricata’s effec9veness in recognizing
ransomware-specific traffic paOerns, including command and control,
data exfiltra9on, and encryp9on ac9vi9es. Snort 3 also performed
well with a TPR of 87%, while Snort 2 lagged slightly behind at 81%.
Zeek’s performance was notable, with a TPR of 88%, indica9ng that its
behavioral detec9on approach is par9cularly useful in iden9fying
ransomware traffic, which oCen exhibits dis9nc9ve behaviors.
However, Zeek’s slightly higher FNR (12%) compared to Suricata
suggests that it might miss more subtle or encrypted ransomware
ac9vi9es that rely less on obvious behavioral signatures.

Fig. 16: Performance comparison of NIDS tools against ruleset
size under peak throughput (1000 Mbps).

Fig. 17: Performance comparison of NIDS soluIons against
the BigFlow.pcap dataset with different ruleset size.

D. Scenario 4: Web Applica7on AKacks

Web applica9on aOacks, such as SQL Injec9on and CrossSite
Scrip9ng, were well detected by most NUTs, but Suricata con9nued to
lead with a TPR of 91% and an FNR of 9%. Snort 3 followed closely
with a TPR of 88%, highligh9ng its competence in handling web-based
threats. Snort 2 trailed with a TPR of 85%, indica9ng that while it is
effec9ve, it is not as finely tuned as its successor or Suricata. Zeek’s
performance in this scenario was strong, with a TPR of 89%, reflec9ng
its proficiency in monitoring HTTP traffic and iden9fying anomalous
behaviors associated with web applica9on exploits. However, the
slight varia9on in FNR between Zeek (11%) and Suricata (9%) indicates
that signature-based systems may s9ll have a slight edge in detec9ng
web vulnerabili9es.
E. Scenario 5: Phishing AKacks

In the phishing scenario, Suricata demonstrated excep9onal
accuracy with the highest TPR of 95% and the lowest FNR of 5%,
confirming its effec9veness in detec9ng malicious URLs, domain
spoofing, and suspicious email traffic. Snort 3 performed similarly
well, achieving a TPR of 90% and an FNR of 10%, outperforming Snort
2 (TPR 83%, FNR 17%). This indicates that while both versions of Snort
are effec9ve in detec9ng phishing aOempts, Snort 3 offers beOer
accuracy. Zeek also achieved strong results with a TPR of 89% and an
FNR of 11%, showing its capability in iden9fying phishing-related
behaviors such as creden9al harves9ng and anomalous domain
access. However, Suricata’s higher TPR and lower FNR make it the
most reliable NUT in detec9ng phishing threats, likely due to its
extensive rule set coverage for domain-related aOacks.

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS

This study aimed to evaluate the effec9veness of three opensource
network intrusion detec9on systems (NIDS): Snort 2, Snort 3, Suricata,
and Zeek, in the context of small and mediumsized enterprises
(SMEs). The research focused on ease of deployment, performance
under varying network condi9ons, and detec9on accuracy for
common SME cyber threats. Through controlled experiments in a
virtualized environment simula9ng realis9c SME condi9ons, we
assessed the performance of these NIDS solu9ons.

The findings revealed that Suricata consistently outperformed the
others in scalability, efficiency, and low packet drop rates, making it
highly suitable for SMEs. Snort 3, when op9mized with afpacket and
hyperscan, demonstrated significant poten9al but is best suited for
resource-rich environments. Snort 2 exhibited limita9ons under
heavy traffic, while Zeek, though efficient, may not address all security
needs due to its lighter ruleset.

These findings have important implica9ons for SME NIDS
deployment, highligh9ng the strengths of Suricata as a scalable
solu9on. Snort 3 can benefit SMEs with sufficient hardware, while
Snort 2 requires careful considera9on in high-traffic scenarios. Future
research should validate these findings in real-world environments to
beOer understand NIDS performance dynamics.

This study offers valuable insights for SMEs aiming to enhance their
cybersecurity posture. By clarifying the strengths and limita9ons of
these NIDS, we contribute to improving network security in small and
medium-sized enterprises.

Based on the study’s findings, the following recommenda9ons are
proposed:

1) Priori9ze Suricata for Performance and Scalability: SMEs
should consider deploying Suricata due to its consistent
performance and efficiency.

2) Deploy Snort 3 in Resource-Rich Senngs: Snort 3 is best
for powerful hardware environments, ensuring high
detec9on accuracy.

163

JISCR 2025; Volume 8 Issue (2)

degradation with larger rulesets poses a risk of
undetected threats, making Snort2 less suitable
for SMEs that require reliable threat monitoring with
minimal packet loss.

Snort 3 Performance Analysis: Snort 3 showed
a more robust performance profile compared to
Snort 2, although it still faced challenges at higher
ruleset sizes. At 10,000 rules, Snort 3 exhibited a
CPU utilization of 18.65% and memory usage of
16.65%, with no packet drops, indicating efficient
handling of traffic with relatively light computational
demands. As the ruleset expanded to 50,000,
CPU utilization increased significantly to 41.27%,
and memory usage reached 22.42%. Despite
this increase in resource consumption, Snort 3
managed to keep packet drops to a minimum, only
recording a drop rate of 0.87% at the highest ruleset
size. This low packet drops rate highlights Snort 3’s
enhanced detection engine and better resource
optimization, which allows it to handle complex
traffic with higher detection accuracy and minimal
loss. However, the elevated CPU usage underlines
potential performance bottlenecks, suggesting that
while Snort 3 can manage large rulesets effectively,
it does so at the cost of significantly increased
processing power, which could impact overall
system performance if not adequately provisioned.

Suricata Performance Analysis: Suricata
consistently outperformed both versions of Snort
across all metrics, maintaining superior detection
capabilities with minimal resource consumption and
packet drops. At a ruleset size of 10,000, Suricata’s
CPU utilization was remarkably low at 5.65%, and
memory usage was 3.74%, with zero packet drops,
showcasing its highly efficient architecture. As the
ruleset size increased to 50,000, Suricata’s CPU usage
rose to 25.59%, and memory consumption increased
moderately to 5.39%. Despite the larger ruleset,
Suricata maintained a perfect record with zero packet
drops, demonstrating its ability to efficiently scale and
process high volumes of traffic without compromising
performance. This robust performance can be
attributed to Suricata’s multi-threaded processing
and optimized detection algorithms, which allow it
to balance load effectively across system resources,
making it particularly wellsuited for real-world
deployments in SMEs where reliability and efficiency
are paramount.

V. Detection Capability Assessment

This section explores the third research
question (RQ3), focusing on the efficacy of Snort
2, Snort 3, Suricata, and Zeek in detecting common
cyberattacks that frequently target SMEs. It
assesses each NIDS detection accuracy through
controlled attack scenarios, such as DoS, malware,
ransomware, web application attacks, and phishing.
The evaluation measures the TPR and FNR of
each NIDS. The findings provide insights into the
strengths and weaknesses of each tool’s ability to
protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning Attacks
The results of this scenario show significant

differences in how each NUT handles DoS and port
scanning attacks. Suricata outperformed the other
systems, achieving an impressive TPR of 85% with
a relatively low FNR of 15%. This reflects Suricata’s
superior ability to manage high-throughput traffic
and accurately detect patterns associated with DoS
and scanning activities. Snort 3 followed with a TPR
of 80%, showing improvements over Snort 2, which
only managed a TPR of 75%. Zeek, on the other
hand, displayed a lower TPR of 60%, with a high
FNR of 40%, which can be attributed to its focus
on behavioral analysis rather than signature-based
detection. Zeek’s relative under-performance in this
scenario indicates its limitations in detecting rapid,
highvolume attacks like DoS, where signature-
based systems like Suricata excel.

B. Scenario 2: General Malware
In the general malware detection scenario,

Suricata once again demonstrated its strength,
achieving the highest TPR of 90% with only a
10% FNR. This result highlights the effectiveness
of Suricata’s robust signature-based detection,
which allows it to identify a wide range of malware
threats. Snort 3 performed well with a TPR of 86%,
significantly outperforming Snort 2, which had a
TPR of 77%. The improved detection rate in Snort
3 can be attributed to enhancements in its rule
set and detection engine. Zeek, with its behavior-
based approach, achieved a TPR of 78%, which
is slightly higher than Snort 2 but lower than Snort

Alzahrani et al.

164

JISCR 2025; Volume 8 Issue (2)

3 and Suricata. Zeek’s detection capabilities
in this scenario were hampered by its reliance
on behavioral indicators rather than signature
matching, which limited its ability to identify malware
without clear behavioral anomalies.

C. Scenario 3: Ransomware Attacks
The ransomware attack scenario underscores

Suricata’s capability to detect sophisticated
threats, with a TPR of 94% and the lowest FNR at
6%. This demonstrates Suricata’s effectiveness in
recognizing ransomware-specific traffic patterns,
including command and control, data exfiltration,
and encryption activities. Snort 3 also performed
well with a TPR of 87%, while Snort 2 lagged slightly
behind at 81%. Zeek’s performance was notable,
with a TPR of 88%, indicating that its behavioral
detection approach is particularly useful in
identifying ransomware traffic, which often exhibits
distinctive behaviors. However, Zeek’s slightly
higher FNR (12%) compared to Suricata suggests
that it might miss more subtle or encrypted
ransomware activities that rely less on obvious
behavioral signatures.

D. Scenario 4: Web Application Attacks
Web application attacks, such as SQL Injection

and CrossSite Scripting, were well detected by most
NUTs, but Suricata continued to lead with a TPR of
91% and an FNR of 9%. Snort 3 followed closely
with a TPR of 88%, highlighting its competence in
handling web-based threats. Snort 2 trailed with a
TPR of 85%, indicating that while it is effective, it
is not as finely tuned as its successor or Suricata.
Zeek’s performance in this scenario was strong,
with a TPR of 89%, reflecting its proficiency in
monitoring HTTP traffic and identifying anomalous
behaviors associated with web application exploits.
However, the slight variation in FNR between Zeek
(11%) and Suricata (9%) indicates that signature-
based systems may still have a slight edge in
detecting web vulnerabilities.

E. Scenario 5: Phishing Attacks
In the phishing scenario, Suricata demonstrated

exceptional accuracy with the highest TPR of

95% and the lowest FNR of 5%, confirming its
effectiveness in detecting malicious URLs, domain
spoofing, and suspicious email traffic. Snort 3
performed similarly well, achieving a TPR of 90%
and an FNR of 10%, outperforming Snort 2 (TPR
83%, FNR 17%). This indicates that while both
versions of Snort are effective in detecting phishing
attempts, Snort 3 offers better accuracy. Zeek also
achieved strong results with a TPR of 89% and an
FNR of 11%, showing its capability in identifying
phishing-related behaviors such as credential
harvesting and anomalous domain access.
However, Suricata’s higher TPR and lower FNR
make it the most reliable NUT in detecting phishing
threats, likely due to its extensive rule set coverage
for domain-related attacks.

VI. Conclusion, Recommendations, and
Future Works

This study aimed to evaluate the effectiveness
of three opensource network intrusion detection
systems (NIDS): Snort 2, Snort 3, Suricata, and
Zeek, in the context of small and mediumsized
enterprises (SMEs). The research focused on ease
of deployment, performance under varying network
conditions, and detection accuracy for common
SME cyber threats. Through controlled experiments
in a virtualized environment simulating realistic SME
conditions, we assessed the performance of these
NIDS solutions.

The findings revealed that Suricata consistently
outperformed the others in scalability, efficiency,
and low packet drop rates, making it highly suitable
for SMEs. Snort 3, when optimized with afpacket
and hyperscan, demonstrated significant potential
but is best suited for resource-rich environments.
Snort 2 exhibited limitations under heavy traffic,
while Zeek, though efficient, may not address all
security needs due to its lighter ruleset.

These findings have important implications for
SME NIDS deployment, highlighting the strengths
of Suricata as a scalable solution. Snort 3 can
benefit SMEs with sufficient hardware, while Snort
2 requires careful consideration in high-traffic
scenarios. Future research should validate these
findings in real-world environments to better
understand NIDS performance dynamics.

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

165

JISCR 2025; Volume 8 Issue (2)

This study offers valuable insights for SMEs
aiming to enhance their cybersecurity posture.
By clarifying the strengths and limitations of these
NIDS, we contribute to improving network security
in small and medium-sized enterprises.

Based on the study’s findings, the following
recommendations are proposed:

1.	 Prioritize Suricata for Performance and
Scalability: SMEs should consider deploying
Suricata due to its consistent performance
and efficiency.

2.	 Deploy Snort 3 in Resource-Rich Settings: Snort
3 is best for powerful hardware environments,
ensuring high detection accuracy.

3.	 Use Snort 2 for Low-Traffic Environments:
This NIDS is Suited for simpler networks,
but caution is advised in more Demanding
scenarios.

4.	 Leverage Zeek for Light weight Monitoring:
Zeek is ideal For basic visibility and
monitoring in environments where Extensive
detection is less critical.

5.	 Regularly Update and Optimize NIDS:
SMEs should keep Their NIDS updated and
optimized for performance.

6.	 Consider Hybrid Approaches: Combining
different NIDS Can enhance overall security
coverage.

7.	 Invest in Staff Training: Training IT staff is
crucial for effective NIDS deployment and
management.

Future research could explore integrating
machine learning with NIDS to enhance detection
capabilities, customize rule sets for specific
industries, and develop user-friendly interfaces
for non-technical users. Additionally, longitudinal
studies examining the long-term impact of NIDS
deployment in SMEs would provide valuable
insights into their adaptability and sustainability
over time.

Funding

This article did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

Conflict of Interest

Authors declare that they have no conflict of
interest.

References

[1]	 W. Park and S. Ahn, “Performance comparison and
detection analysis in snort and suricata environment,”
Wireless Personal Communications, vol. 94, pp. 241–
252, 2017.

[2]	 N. Rawindaran, A. Jayal, E. Prakash, and C. Hewage,
“Perspective of small and medium enterprise (sme’s)
and their relationship with government in overcoming
cybersecurity challenges and barriers in wales,”
International Journal of Information Management Data
Insights, vol. 3, no. 2, p. 100191, 2023.

[3]	 F. A. Logic, “What is a network ids and why do you need
it?” 10 2020. [Online]. Available: https://www.alertlogic.
com/blog/what-isa-network-ids-and-why-do-you-need-it/

[4]	 E. Tsukerman, “What is an intrusion detection system
(ids),” Designing a Machine Learning Intrusion Detection
System, 2020.

[5]	 A. Chidukwani, S. Zander, and P. Koutsakis, “A survey
on the cyber security of small-to-medium businesses:
Challenges, research focus and recommendations,”
IEEE Access, vol. 10, p. 85701–85719, 2022.

[6]	 Y. Tayyebi and D. Bhilare, “A comparative study of open
source network based intrusion detection systems,” Int.
J. Comput. Sci. Inf. Technol. IJCSIT, vol. 9, no. 2, pp.
23–26, 2018.

[7]	 C. Hoover, “Comparative study of snort 3 and
suricata intrusion detection systems,” Master’s thesis,
Undergraduate Honors Theses, Computer Science and
Computer Engineering, 2022.

[8]	 A. Waleed, A. F. Jamali, and A. Masood, “Which open-
source ids? snort, suricata or zeek,” Computer Networks,
vol. 213, p. 109116, 2022.

[9]	 S. A. R. Shah and B. Issac, “Performance comparison of
intrusion detection systems and application of machine
learning to snort system,” Future Generation Computer
Systems, vol. 80, pp. 157–170, 2018.

[10]	 O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K. Saheed,
“A systematic literature review for network intrusion
detection system (ids),” International Journal of
Information Security, vol. 22, no. 5, pp. 1125–1162, 2023.

[11]	 S. B. Chalmers, “Comparison of different security tools
to detect risks in networks,” International Journal Of
Computer Sciences and Mathematics Engineering, vol.
1, no. 1, pp. 13–19, 2022.

Alzahrani et al.

166

JISCR 2025; Volume 8 Issue (2)

[12]	 A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-
Dhelaan, “Performance evaluation study of intrusion
detection systems,” Procedia Computer Science, vol. 5,
pp. 173–180, 2011.

[13]	 D. Day and B. Burns, “A performance analysis of snort
and suricata network intrusion detection and prevention
engines,” in Fifth International Conference on Digital
Society, Gosier, Guadeloupe, 2011, pp. 187–192.

[14]	 E. Albin and N. C. Rowe, “A realistic experimental
comparison of the suricata and snort intrusion-detection
systems,” in 2012 26th International Conference on
Advanced Information Networking and Applications
Workshops, 2012, pp. 122–127.

[15]	 R. Padmashani, S. Sathyadevan, and D. Dath, “Bsnort
IPS better snort intrusion detection/prevention system,”
in 2012 12th International Conference on Intelligent
Systems Design and Applications (ISDA). IEEE, 2012,
pp. 46–51.

[16]	 W. Bulajoul, A. James, and M. Pannu, “Network intrusion
detection systems in high-speed traffic in computer
networks,” in 2013 IEEE 10th International Conference
on E-Business Engineering, 2013, pp. 168–175.

[17]	 J. S. White, T. Fitzsimmons, and J. N. Matthews,
“Quantitative analysis of intrusion detection systems:
Snort and suricata,” in Cyber Sensing 2013, vol. 8757.
International Society for Optics and Photonics, 2013, p.
875704.

[18]	 M. Saber, M. G. Belkasmi, S. Chadli, M. Emharraf, and I. El
Farissi, “Implementation and performance evaluation of
intrusion detection systems under high-speed networks,”
in Proceedings of the 2nd International Conference on
Big Data, Cloud and Applications, 2017, pp. 1–6.

[19]	 A. Gupta and L. S. Sharma, “Performance evaluation of
snort and suricata intrusion detection systems on ubuntu
server,” in Proceedings of ICRIC 2019, 2020, pp. 811–
821.

[20]	 Q. Hu, M. R. Asghar, and N. Brownlee, “Evaluating
network intrusion detection systems for high-speed
networks,” in 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC). IEEE,
2017, pp. 1–6.

[21]	 Q. Hu, S.-Y. Yu, and M. R. Asghar, “Analysing
performance issues of open-source intrusion detection
systems in high-speed networks,” Journal of Information
Security and Applications, vol. 51, p. 102426, 2020.

[22]	 A. P. Wahyu, K. Fauziah, A. S. Nahrowi, M. N. Faiz, and
A. W. Muhammad, “Strengthening network security:
Evaluation of intrusion detection and prevention systems
tools in networking systems,” International Journal of
Advanced Computer Science and Applications, vol. 14,
no. 9, 2023.

[23]	 A. A. E. Boukebous, M. I. Fettache, G. Bendiab, and S.
Shiaeles, “A comparative analysis of snort 3 and suricata,”
in 2023 IEEE IAS Global Conference on Emerging
Technologies (GlobConET). IEEE, 2023, pp. 1–6.

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

