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Abstract
Network security is a critical concern for small and medium-sized enterprises (SMEs), often lacking 

resources for comprehensive solutions. This study evaluates three open-source network intrusion detection 
systems (NIDS): Snort, Suricata, and Zeek, to assess their suitability for SMEs. Using a controlled, virtualized 
environment, we simulated realistic SME network conditions and subjected each NIDS to tests measuring 
their ability to handle high traffic volumes and various attack types, including DoS, malware, ransomware, and 
phishing. Results showed that Suricata consistently outperformed the others in scalability, resource efficiency, 
and detection accuracy, achieving high true positive rates while minimizing false positives, which is essential for 
reducing alert fatigue among SME users. Snort 3, optimized with afpacket and hyperscan, also demonstrated 
strong capabilities but required more resources, while Snort 2 struggled with high-volume traffic. Although 
Zeek is lightweight, it was less effective in signature-based detection but excelled in monitoring anomalies. 
This study provides insights to guide SMEs in selecting appropriate NIDS based on their specific requirements 
and emphasizes the need for ongoing optimization and further research in physical environments.
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I. Introduction

Technological advancements have significantly 
transformed business operations, with the 
internet enhancing communication, collaboration, 
e-commerce, and remote work for companies. 
However, this reliance on interconnected networks 
has also amplified the risks of cyberattacks [1]. The 
cybersecurity threat landscape continues to evolve, 
becoming increasingly complex and diverse as 

various malicious actors employ sophisticated 
strategies to breach networks and systems. 
Phishing attacks, ransomware, and other advanced 
persistent threats have become commonplace, 
posing significant challenges for organizations of 
all sizes.

Small and medium enterprises (SMEs) are 
particularly vulnerable to these cyber threats. Unlike 
larger organizations with specialized security teams 
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comparative analysis will provide valuable insights 
by examining the features of each NIDS, focusing 
on ease of deployment, performance under varying 
network conditions, and detection efficacy against 
prevalent cyberattacks targeting SMEs.

This work contributes significantly to the field of 
NIDS by offering:

•	 A comprehensive review of existing NIDS tools, 
highlighting their strengths and weaknesses in 
various deployment scenarios.

•	 A standardized methodology for evaluating 
the performance of Snort, Suricata, and Zeek, 
providing a framework for future research.

•	 Empirical analysis of performance metrics 
under varying network conditions, offering 
insights into operational efficiency.

•	 An assessment of detection capabilities 
against common cyber threats, evaluating 
effectiveness for SMEs.

•	 Practical recommendations for SMEs on 
selecting and implementing NIDS solutions 
tailored to their technical expertise and 
resource availability.

This paper is organized into five sections to 
provide a comprehensive overview of the research. 
Section II reviews the background and related 
work, establishing context and significance 
within the existing literature. Section III details 
the methodology and experiments conducted, 
outlining the procedures used to evaluate the NIDS 
under consideration. Following this, Section IV 
presents performance evaluation results, analyzing 
the effectiveness and efficiency of each system. 
Section V assesses the detection capabilities 
against various cyber threats, highlighting strengths 
and limitations. Finally, Section VI concludes with 
recommendations and directions for future research, 
summarizing key findings and implications.

II. Background and Related Work

SMEs, despite being the backbone of many 
economies, face significant vulnerabilities due 
to limited resources, exposing them to various 
cyberattacks. Key challenges include:

•	 Limited IT Budget and Expertise: SMEs 
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and substantial financial resources, SMEs often 
struggle to implement comprehensive cybersecurity 
measures [2]. These enterprises typically lack the 
necessary expertise to maintain robust security 
infrastructures and often view cybersecurity as an 
expense rather than an essential investment. While 
basic protective measures such as firewalls and 
antivirus programs offer some defense, they may 
not effectively detect advanced threats, leaving 
SMEs exposed to potential breaches [3].

Network intrusion detection systems (NIDS) have 
emerged as a vital component of cybersecurity, 
enhancing an organization’s security posture by 
monitoring network traffic in real-time to identify 
potential threats [4]. By actively analyzing incoming 
and outgoing traffic, NIDS can detect malicious 
activities and provide alerts, enabling organizations 
to respond swiftly to security incidents.

Although commercial NIDS products offer robust 
protection, they often come with high financial 
costs, creating a security gap for SMEs with limited 
IT budgets [5]. The financial burden associated 
with licensing and maintenance can be prohibitive 
for many SMEs, leading them to overlook critical 
cybersecurity measures. Open-source NIDS, 
such as Snort, Suricata, and Zeek, present a cost-
effective alternative, allowing SMEs to leverage 
advanced intrusion detection capabilities without 
incurring licensing fees [6]. These tools also foster 
a communitydriven approach to security, where 
users can benefit from shared intelligence and 
constant updates.

However, selecting the most suitable open-source 
NIDS for an SME involves careful consideration of 
various factors, including performance, detection 
capabilities, and ease of management. Each 
NIDS has its strengths and weaknesses, and 
understanding how these tools perform in real-
world scenarios is crucial for making informed 
decisions. Furthermore, SMEs must assess their 
specific needs and resource constraints to identify 
the best fit for their operational environments.

This research aims to evaluate three widely used 
open-source NIDS—Snort, Suricata, and Zeek—
enabling SMEs to make informed choices based on 
their specific needs and resource constraints. The 
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typically operate with constrained budgets 
and smaller IT teams, making it challenging to 
establish robust cybersecurity measures.

•	 Increased Reliance on Third-Party Vendors: 
Heavy dependence on third-party services 
(e.g., cloud computing and software solutions) 
can introduce vulnerabilities that compromise 
the SME’s overall security.

•	 Cloud Security Concerns: While cloud services 
offer flexibility, they also present security risks. 
SMEs may lack the resources to configure and 
manage cloud security effectively, increasing 
their exposure to breaches.

•	 Prevalent Social Engineering and Phishing 
Attacks: Cybercriminals frequently target 
SMEs through social engineering and phishing, 
exploiting potential gaps in employee security 
awareness to gain sensitive information.

•	 Limited Security Awareness Training: Budget 
constraints often hinder SMEs from providing 
comprehensive security training, leaving 
employees ill-equipped to recognize and 
respond to cyber threats.

SMEs are increasingly targeted by cyberattacks 
due to their perceived vulnerabilities, including 
limited cybersecurity resources and outdated 
practices. The most prevalent cyberattack threats 
that SMEs face are:

•	 General Malware: This includes viruses, 
worms, trojans, spyware, and adware 
designed to infiltrate and damage systems. 
Malware can compromise sensitive data, 
disrupt operations, and incur substantial 
financial costs due to recovery and lost 
customer trust.

•	 Ransomware: A destructive form of 
malware that encrypts data, rendering it 
inaccessible until a ransom is paid, typically 
in cryptocurrency. SMEs are attractive targets 
due to often lacking sophisticated defenses, 
leading to operational downtime and high 
recovery costs.

•	 Phishing: A social engineering attack that 
deceives individuals into revealing sensitive 
information through fraudulent emails or 
websites. SMEs may be particularly vulnerable 

due to inadequate cybersecurity training, 
leading to unauthorized access and potential 
financial fraud.

•	 Web Application Attacks: These attacks 
exploit vulnerabilities in online services, such 
as e-commerce platforms. Common methods 
include SQL injection and cross-site scripting 
(XSS), which can compromise sensitive 
information and disrupt business operations.

•	 Denial-of-Service (DoS) Attacks: DoS attacks 
aim to overwhelm services with excessive 
traffic, making them unavailable to legitimate 
users. SMEs, especially those dependent 
on online interactions, can suffer significant 
losses due to downtime, including lost sales 
and damage to brand reputation.

Intrusion Detection Systems (IDS) are software 
applications that monitor network traffic for 
potentially malicious activities. IDS can operate in 
two main modes: alerting on suspicious activities 
(IDS) or actively blocking harmful traffic (Intrusion 
Prevention Systems, IPS). There are two primary 
categories of IDS: Network IDS (NIDS), which 
monitor traffic across an entire network, and Host 
IDS (HIDS), which focus on individual devices. IDS 
can also be classified by their detection methods: 
anomalybased systems that identify deviations 
from established traffic patterns and signature-
based systems that trigger alerts based on known 
patterns of malicious activity [7]. This study focuses 
on open-source NIDS. Open-source NIDS provide 
flexible and customizable options for enhancing 
network security. Notable examples include Snort, 
which is a widely used NIDPS that operates on a 
signature-based model. It supports both IDS and 
IPS modes, allowing for traffic monitoring and alert 
generation. Snort’s architecture includes packet 
capturing, decoding, normalization, detection, and 
output generation. Although it lacks a graphical 
user interface, visualization tools like Snorby 
can enhance its usability. The release of Snort 
3 introduced multithreading, improving packet 
processing capabilities. Another notable system 
is Suricata, developed by the Open Information 
Security Foundation (OISF) as an IDS/IPS and 
network monitoring tool. Unlike Snort, Suricata 
uses a multi-threaded architecture, enabling 
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efficient packet processing. Its architecture 
comprises packet capture, decoding, detection, 
and output alert modules, allowing for concurrent 
detection. Zeek operates solely in IDS mode and 
is maintained by the Zeek Project. It features a 
scalable architecture that includes workers for 
log transmission to a manager, which processes 
events and applies detection rules. Zeek supports 
anomaly-based detection, setting it apart from Snort 
and Suricata, which focus on misuse detection. 
Despite its efficiency, Zeek has a limited number 
of default signatures, which may affect its adoption 
compared to Snort and Suricata [8].

The use of Network Intrusion Detection Systems 
(NIDS) is crucial for organizations to protect their 
networks and data from attacks. However, their 
performance can be significantly affected by 
hardware issues, leading to dropped packets 
and potential vulnerabilities [9]. Consequently, 
performance testing of NIDS has become a 
prominent area of research [10], [11]. Many studies 
have focused on open-source NIDS, particularly 
comparing the performance of Snort and Suricata. 
In [12], Snort and Suricata were analyzed on 
different platforms at traffic rates up to 2 Gbps, 
revealing that Suricata outperformed Snort on 
Linux, especially at high speeds, though Zeek 
was not included in the comparison. Research 
in [13] found that Snort outperformed Suricata in 
single-core setups, while Suricata excelled in multi-
core environments, highlighting its scalability. A 
comparison in [14] indicated that Suricata had a 
lower packet drop rate and better performance than 
Snort but required more computational resources. 
The introduction of BSnort in [15], a modified 
Snort, showed improved performance against DoS 
attacks, but focused solely on Snort. Stress testing 
conducted in [16] revealed high packet drop rates 
for Snort under heavy traffic, leading to a proposed 
parallel architecture. In [17], Snort and Suricata 
were tested under stress, with results favoring 
Suricata. Additional studies [18] and [19] confirmed 
Suricata’s superior performance, particularly under 
high traffic conditions, although neither included 
comparisons with Zeek. Various research efforts, 
including [20], consistently found that Suricata 
outperformed Snort in terms of processing higher 
loads, though Snort maintained better accuracy. A 

Recent study [21] evaluated both Snort and Suricata 
in virtualized environments, with findings indicating 
that Suricata generally outperformed Snort across 
various parameters. However, these evaluations 
often neglected Zeek and did not assess conditions 
relevant to small and medium-sized enterprises 
(SMEs). Research in [22] highlighted performance 
metrics during simulated DDoS attacks, showcasing 
Snort’s effectiveness against ICMP floods and 
Suricata’s against SYN floods, yet did not consider 
usability for non-technical SME staff. The study [23] 
demonstrated improvements in Snort 3 over Snort 
2, particularly in memory management and reduced 
packet loss, but noted that Suricata remains more 
suitable for large networks.

In conclusion, there are notable gaps in the 
current knowledge base regarding the latest 
versions of Snort, Suricata, and Zeek, as well as new 
open-source signature rule sets, advancements in 
software and hardware technologies, and emerging 
attack methods. Additionally, comprehensive 
evaluations of these three prominent open-source 
solutions are lacking. This research aims to 
address these gaps by utilizing the most recent 
versions of Snort, Suricata, and Zeek, along 
with updated signature rule sets and new attack 
strategies to assess performance. In this context, 
our study focuses on evaluating open-source 
NIDS specifically in the context of SME networks, 
emphasizing the following aspects:

•	 Ease of Deployment and Management: 
Assessing the installation, configuration, 
and management simplicity for each IDS, 
considering the typical technical expertise of 
SME staff.

•	 Performance Evaluation under SME Network 
Conditions: Evaluating CPU, memory, and 
bandwidth usage under simulated network 
traffic patterns representative of typical SME 
activity to provide a realistic picture of resource 
demands.

•	 Detection Capability Assessment for Common 
SME Threats: Focusing on cyberattacks 
frequently encountered by SMEs, such as 
phishing attempts, malware downloads, 
ransomware, web application attacks, and 
DoS attacks.

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises
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By addressing these gaps, this research will offer 
practical guidance for SME network administrators 
in selecting opensource NIDS. The findings will 
assist in choosing an NIDS that balances ease 
of use, resource efficiency, and effective threat 
detection relevant to SME network environments.

III. Methodology And Experiments

This research employs an experimental 
methodology to assess the effectiveness of three 
open-source NIDS: Snort (versions 2 and 3), 
Suricata, and Zeek, within the context of SMEs. It 
addresses three key aspects: ease of deployment 
and management, performance under varying 
network conditions, and detection accuracy for 
common SME cyber threats. A series of controlled 
experiments were conducted in a virtualized 
environment simulating realistic SME network 
conditions and attack scenarios. The selected NIDS 
were chosen for their widespread use, community 
support, and open-source nature, which eliminates 
licensing costs. These tools will collectively be 
referred to as NIDS Under Test (NUTs). The 
experimental design aimed to systematically 
evaluate the performance of the NUTs. Each 
scenario was crafted to address specific research 
questions, focusing on detection capability, 
resource utilization (CPU and memory), and packet 
drop rates. A diverse set of attack scenarios was 
selected to evaluate the robustness of each NUT, 
with varying network traffic intensity and volume. 
To ensure objective comparisons, each NUT was 
tested under identical conditions, with performance 
metrics monitored and recorded during simulations. 
The experiments were conducted 10 times to 
ensure reliability, and results were averaged to 
provide consistent findings.

The experiment setup is designed to create a 
controlled environment that closely mimics real-
world network conditions while ensuring consistency 
and repeatability across all experiments. To achieve 
this, virtualization technology was utilized to create 
a virtualized environment where each experiment 
component could be isolated and managed 
independently. This approach offers flexibility, 
scalability, and ease of deployment while minimizing 
the risk of interference between components. The 

environment used was VMware Workstation 16 Pro 
running on a laptop

with an Intel® Core™ i7-8650U CPU, 32GB of 
RAM, and 1TB SSD storage, running Windows 10 
Pro version 22H2. The testbed network, illustrated in 
Figure 1, consisted of seven virtual machines (VMs) 
connected to a virtual switch with a 1Gbps link to 
replicate real-world SME network speeds. Each VM 
was provisioned with adequate resources to ensure 
optimal performance during the experiments.

While manual downloading and installation 
of rules is feasible, using a management tool is 
advisable. PulledPork is a Perl-based utility that 
automates Snort rule management, facilitating the 
download, update, and maintenance of rule sets 
and IP block-list updates. It offers flexible policies 
(connectivity, balanced, security, or max-detect) 
and provides comprehensive feedback. PulledPork 
is compatible with Proofpoint ET and Cisco Snort 
rules, licensed under the GNU General Public 
License for commercial use, and can also be used 
with Suricata. With the release of Snort 3, PulledPork 
was redeveloped in Python 3 as PulledPork3. This 
version utilizes the LightSPD package and allows 
a single ruleset package to adjust its rules based 
on the engine version operating on the system, 
enabling users to choose a default policy for the 
ruleset. Suricata features a specialized tool for rule 
set management called suricata-update. This tool 
is the official method for updating and managing 
Suricata’s rules and is included with Suricata starting 
from version 4.1. The Zeek Package Manager 
allows Zeek users to install third-party scripts and 
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maintained beOer accuracy. A Recent study [21] evaluated both Snort 
and Suricata in virtualized environments, with findings indica9ng that 
Suricata generally outperformed Snort across various parameters. 
However, these evalua9ons oCen neglected Zeek and did not assess 
condi9ons relevant to small and medium-sized enterprises (SMEs). 
Research in [22] highlighted performance metrics during simulated 
DDoS aOacks, showcasing Snort’s effec9veness against ICMP floods 
and Suricata’s against SYN floods, yet did not consider usability for 
non-technical SME staff. The study [23] demonstrated improvements 
in Snort 3 over Snort 2, par9cularly in memory management and 
reduced packet loss, but noted that Suricata remains more suitable 
for large networks. 

In conclusion, there are notable gaps in the current knowledge base 
regarding the latest versions of Snort, Suricata, and Zeek, as well as 
new open-source signature rule sets, advancements in soCware and 
hardware technologies, and emerging aOack methods. Addi9onally, 
comprehensive evalua9ons of these three prominent open-source 
solu9ons are lacking. This research aims to address these gaps by 
u9lizing the most recent versions of Snort, Suricata, and Zeek, along 
with updated signature rule sets and new aOack strategies to assess 
performance. In this context, our study focuses on evalua9ng open-
source NIDS specifically in the context of SME networks, emphasizing 
the following aspects: 
• Ease of Deployment and Management: Assessing the 
installa9on, configura9on, and management simplicity for each IDS, 
considering the typical technical exper9se of SME staff. •	

Performance Evalua9on under SME Network Condi9ons: Evalua9ng 
CPU, memory, and bandwidth usage under simulated network traffic 
paOerns representa9ve of typical SME ac9vity to provide a realis9c 
picture of resource demands. 
• Detec9on Capability Assessment for
 Common SME 

Threats: Focusing on cyberaOacks frequently encountered by 
SMEs, such as phishing aOempts, malware downloads, 
ransomware, web applica9on aOacks, and DoS aOacks. 

By addressing these gaps, this research will offer prac9cal guidance 
for SME network administrators in selec9ng opensource NIDS. The 
findings will assist in choosing an NIDS that balances ease of use, 
resource efficiency, and effec9ve threat detec9on relevant to SME 
network environments. 

III. METHODOLOGY AND EXPERIMENTS 

This research employs an experimental methodology to assess the 
effec9veness of three open-source NIDS: Snort (versions 2 and 3), 
Suricata, and Zeek, within the context of SMEs. It addresses three key 
aspects: ease of deployment and management, performance under 
varying network condi9ons, and detec9on accuracy for common SME 
cyber threats. A series of controlled experiments were conducted in a 
virtualized environment simula9ng realis9c SME network condi9ons 
and aOack scenarios. The selected NIDS were chosen for their 
widespread use, community support, and open-source nature, which 
eliminates licensing costs. These tools will collec9vely be referred to 
as NIDS Under Test (NUTs). The experimental design aimed to 
systema9cally evaluate the performance of the NUTs. Each scenario 
was craCed to address specific research ques9ons, focusing on 
detec9on capability, resource u9liza9on (CPU and memory), and 
packet drop rates. A diverse set of aOack scenarios was selected to 
evaluate the robustness of each NUT, with varying network traffic 
intensity and volume. To ensure objec9ve comparisons, each NUT was 
tested under iden9cal condi9ons, with performance metrics 
monitored and recorded during simula9ons. The experiments were 
conducted 10 9mes to ensure reliability, and results were averaged to 
provide consistent findings. 

The experiment setup is designed to create a controlled 
environment that closely mimics real-world network condi9ons while 
ensuring consistency and repeatability across all experiments. To 
achieve this, virtualiza9on technology was u9lized to create a 
virtualized environment where each experiment component could be 
isolated and managed independently. This approach offers flexibility, 
scalability, and ease of deployment while minimizing the risk of 
interference between components. The environment used was 
VMware Worksta9on 16 Pro running on a laptop 
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with an Intel® Core™ i7-8650U CPU, 32GB of RAM, and 1TB SSD 
storage, running Windows 10 Pro version 22H2. The testbed network, 
illustrated in Figure 1, consisted of seven virtual machines (VMs) 
connected to a virtual switch with a 1Gbps link to replicate real-world 
SME network speeds. Each VM was provisioned with adequate 
resources to ensure op9mal performance during the experiments. 

While manual downloading and installa9on of rules is feasible, 
using a management tool is advisable. PulledPork is a Perl-based 
u9lity that automates Snort rule management, facilita9ng the 
download, update, and maintenance of rule sets and IP block-list 
updates. It offers flexible policies (connec9vity, balanced, security, or 
max-detect) and provides comprehensive feedback. PulledPork is 
compa9ble with Proofpoint ET and Cisco Snort rules, licensed under 
the GNU General Public License for commercial use, and can also be 
used with Suricata. With the release of Snort 3, PulledPork was 
redeveloped in Python 3 as PulledPork3. This version u9lizes the 
LightSPD package and allows a single ruleset package to adjust its 
rules based on the engine version opera9ng on the system, enabling 
users to choose a default policy for the ruleset. Suricata features a 
specialized tool for rule set management called suricata-update. This 
tool is the official method for upda9ng and managing Suricata’s rules 
and is included with Suricata star9ng from version 4.1. The Zeek 
Package Manager allows Zeek users to install third-party scripts and 
plugins, func9oning as a command-line script that requires Zeek to be 
installed locally. PulledPork and PulledPork 3 were selected for Snort 
2 and Snort 3, respec9vely, to automate rule management due to 
their compa9bility with Snort’s rulesets. Suricata-update was u9lized 
for Suricata, as it is the official tool for managing Suricata rulesets. 

The selec9on of appropriate evalua9on metrics is crucial for 
effec9vely assessing the strengths and weaknesses of the NUTs. The 
chosen metrics align with the research objec9ves of iden9fying the 
most suitable NUT for SMEs. The ease of deployment and 
management of each NUT will be assessed through the following 
criteria: 

Fig. 1: Test-bed network
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plugins, functioning as a command-line script that 
requires Zeek to be installed locally. PulledPork and 
PulledPork 3 were selected for Snort 2 and Snort 
3, respectively, to automate rule management due 
to their compatibility with Snort’s rulesets. Suricata-
update was utilized for Suricata, as it is the official 
tool for managing Suricata rulesets.

The selection of appropriate evaluation metrics 
is crucial for effectively assessing the strengths and 
weaknesses of the NUTs. The chosen metrics align 
with the research objectives of identifying the most 
suitable NUT for SMEs. The ease of deployment 
and management of each NUT will be assessed 
through the following criteria:

•	 Installation Complexity: Evaluation of how 
straightforward or challenging it is to install 
the IDS, including the number of steps, 
dependencies, and potential issues.

•	 Configuration Complexity: Assessment of 
the user interface and configuration options 
for intuitiveness and ease of use, covering 
aspects like rule management and alert 
generation.

•	 Management Overhead: Evaluation of the 
ongoing effort required to manage the NUT, 
considering the typical technical expertise 
available in SMEs.

The evaluation method includes installing and 
configuring each NUT on the virtual machine acting 
as the NIDS sensor, documenting the time taken 
for installation and configuration, and evaluating 
ongoing management tasks such as updates and 
rule management. The resource consumption of 
each NUT will be measured under simulated network 
traffic loads typical of SME activity, monitoring the 
following metrics:

•	 CPU Utilization: Percentage of CPU utilization 
by the NUT process, as high usage may 
indicate performance bottlenecks.

•	 Memory Usage: Amount of memory consumed 
by the NUT process; excessive usage could 
delay threat detection.

•	 Packet Drop Rate: Percentage of packets 
dropped by the NUT, where a higher rate 
indicates poorer performance.

For performance evaluation, resource 

consumption metrics (CPU and memory) will be 
monitored during network traffic simulations using 
the htop tool. Packet drop rates will be retrieved from 
the NUT outputs after each run, and custom bash 
scripts will be developed to parse and aggregate 
data from the logs. The collected data will be 
analyzed to determine the impact of traffic load 
on resource consumption and packet dropping for 
each NUT. The detection capability of each NUT 
is influenced by the availability of corresponding 
rules within the default rule set. This evaluation 
assesses how well the default rules cover a range 
of attacks by simulating various attack scenarios 
and analyzing the NUT’s responses. The detection 
capabilities will be evaluated based on the following 
metrics:

•	 TPR: This measures how accurately each NUT 
detects real attacks, crucial for evaluating its 
efficiency in recognizing harmful activity.

•	 FNR: This metric addresses the failure to detect 
attacks, critical for preventing significant risks, 
especially for ransomware.

For detection capability evaluation, alerts 
generated during traffic replay will be collected and 
analyzed for each scenario, confirming their alignment 
with the identified attack type and documenting any 
missed detections. The performance evaluation 
experiments aim to assess the NUTs in terms of 
CPU utilization, memory consumption, and packet 
drop rate under various conditions. Key factors 
influencing NIDS performance include traffic rate, 
packet size, capturing methods, detection engine 
algorithms, ruleset size, and network flow types. 
The following scenarios were implemented for 
performance evaluation:

•	 Scenario 1: Baseline Performance Assessment 
establishes a baseline for employing NIDS 
within an SME network using a standard 
configuration and ruleset for each NUT. A 
TCP stream was generated using Iperf with a 
packet size of 1500 bytes, and performance 
was assessed as throughput increased from 
100 Mbps to 1000 Mbps.

•	 Scenario 2: Ruleset Size Standardization 
addresses the varying sizes of the default 
rulesets across NUTs, implementing a 
standardized size of 10,000 rules for fair 

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises
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comparison. Zeek was excluded due to its 
limited default ruleset.

•	 Scenario 3: Packet Capture Technique 
Evaluation explores the impact of different 
packet capture techniques (libpcap and 
afpacket) on performance, selecting the 
method with the least packet drop rate for 
further tests.

•	 Scenario 4: Detection Engine Optimization 
modifies the detection engine using the 
best-performing packet capture technique 
identified previously. The top three algorithms 
for each system were evaluated under the 
same network traffic conditions.

•	 Scenario 5: Impact of Ruleset Size on 
Performance examines how varying ruleset 
sizes (from 10,000 to 50,000 rules) affect NUT 
performance under different traffic loads (100 
Mbps, 500 Mbps, and 1000 Mbps), excluding 
Zeek due to its ruleset limitations.

•	 Scenario 6: Real-World Traffic Simulation 
simulates daily activities using the BigFlows.
pcap dataset, capturing typical TCP and UDP 
traffic. Traffic was redirected at 100 Mbps 
throughput to the NUTs.

For detection capability assessment, various 
scenarios were designed to evaluate the NUTs 
against common cyberattacks targeting SMEs. 
Each scenario focused on specific attack types:

•	 Scenario 1: DoS and Port Scanning Attacks 
involved simulating DoS attacks (SYN, ICMP, 
and UDP flooding) and a port scan using 
NMAP.

•	 Scenario 2: General Malware tested detection 
capabilities against a wide range of malware 
using 420 small pcap files containing malicious 
traffic.

•	 Scenario 3: Ransomware Attacks focused on 
detecting ransomware using 17 pcap files 
representing typical ransomware traffic.

•	 Scenario 4: Web Application Attacks 
evaluated responses to web-based attacks 
using OWASP ZAP and Metasploit, focusing 
on vulnerabilities such as SQL injection.

•	 Scenario 5: Phishing Attacks simulated 
phishing attempts, capturing traffic to assess 

the NUTs’ ability to identify malicious URLs 
and domain spoofing.

Each scenario was executed for 180 seconds, 
with detection capability scenarios run until all 
related traffic was replayed. All experiments were 
repeated 10 times to ensure statistical significance, 
averaging results to mitigate the impact of outliers 
and provide a comprehensive understanding of the 
NUTs’ performance under consistent conditions.

The Universe repository for Ubuntu 22.04 
currently does not include the latest version of 
Snort 2. As shown in Figure 2, the repository’s latest 
version is (2.9.15.1), whereas the Snort website 
offers version (2.9.20). Consequently, we will 
proceed to install the most recent version of Snort 2 
directly from the source code.

The installation of Snort 2 follows these five steps:
1) Update Ubuntu packages.

$ sudo apt update && sudo apt dist-upgrade -y

2) Install dependencies, Snort 2 has some 
prerequisites that need to be installed.

$ sudo apt update && sudo apt dist-upgrade -y
,→ libdumbnet-dev build-essential flex

,→ bison zlib1g-dev libluajit-5.1-dev
,→ openssl libssl-dev liblzma-dev
,→ libnghttp2-dev

3) Download some source tarballs and other 
files and store them in a folder for easy 
management.

$ mkdir snort-src
$ cd snort-src/

4) Install daq, Download and install the latest 
version of DAQ from the Snort website.

$ wget https://www.snort.org/downloads/snort/
→ , daq-2.0.7.tar.gz
$ tar -zxvf daq-2.0.7.tar.gz
$ cd daq-2.0.7/
$./configure
$ make
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$ sudo make install
$ cd ../

5) Install Snort 2, Download and install the latest 
version of Snort 2 from the Snort website. 
The last version is 2.9.20, which released on 
2022/05/13.

$ wget https://www.snort.org/downloads/snort/
→ , snort-2.9.20.tar.gz
$ tar -xzvf snort-2.9.20.tar.gz
$ cd snort-2.9.20
$./configure --enable-sourcefire
$ make
$ sudo make install
Table I summarizes the key metrics observed 

during the implementation of each NUT, reflecting 
the practical challenges faced during deployment.

TABLE I
Summary of Implementation Metrics

Criteria Snort 2 Snort 3 Suricata Zeek

Installation Time mins 35 mins 77 mins 11 mins 19

Configuration Com-
plexity

Moderate Moderate Easy Difficult

 Management
Overhead

High Moderate Low High

Key observations indicate the following regarding 
the installation process:

•	 Snort 2: Installation took approximately 35 
minutes due to manual compilation and 
dependency issues, which may be challenging 
for users with limited experience.

•	 Snort 3: Installation was longer at about 77 
minutes, due to complex dependencies and 
configuration steps, making it less suitable for 

rapid deployment.
•	 Suricata: The fastest installation at only 11 

minutes, benefiting from standard repositories 
and automated dependency management, 
ideal for SMEs needing quick setups.

•	 Zeek: Took around 19 minutes, relatively 
straightforward but required familiarity with 
network interface setup.

Regarding configuration complexity, the findings 
are as follows:

•	 Snort 2 and 3: Both versions rated as having 
moderate complexity. Snort 2 required manual 
edits, while Snort 3 needed knowledge of Lua-
based adjustments.

•	 Suricata: Easiest to configure with a clear 
YAML-based setup, allowing simple 
adjustments of critical parameters.

•	 Zeek: Most complex due to its script-driven 
configuration, posing a significant barrier for 
SMEs without scripting knowledge.

In terms of management overhead:
•	 Snort 2: High management overhead due to 

frequent manual updates and maintenance of 
rulesets, which can be burdensome for SMEs.

•	 Snort 3: Reduced overhead compared to 
Snort 2 but still required moderate effort to 
maintain rulesets.

•	 Suricata: Lowest management overhead, 
with the suricataupdate tool automating rule 
updates, making it ideal for SMEs.

•	 Zeek: High management overhead due to the 
need for manual updates and maintenance 
of custom scripts, overwhelming for users 
lacking specialized skills.

The analysis indicates that Suricata is the 
most straightforward NUT to deploy and manage, 
making it an excellent choice for SMEs due to its 
ease of deployment and minimal management 
overhead. Specifically, Suricata’s 11-minute 
installation and userfriendly configuration 
demonstrate its accessibility, while automated rule 
updates significantly reduce ongoing management 
efforts. Conversely, Snort and Zeek present higher 
barriers to entry due to complex configurations and 
management overhead. Snort demands more from 
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• Installa9on Complexity: Evalua9on of how straighiorward or 
challenging it is to install the IDS, including the number of steps, 
dependencies, and poten9al issues. 

• Configura9on Complexity: Assessment of the user interface and 
configura9on op9ons for intui9veness and ease of use, covering 
aspects like rule management and alert genera9on. 

• Management Overhead: Evalua9on of the ongoing effort 
required to manage the NUT, considering the typical technical 
exper9se available in SMEs. 

The evalua9on method includes installing and configuring each 
NUT on the virtual machine ac9ng as the NIDS sensor, documen9ng 
the 9me taken for installa9on and configura9on, and evalua9ng 
ongoing management tasks such as updates and rule management. 
The resource consump9on of each NUT will be measured under 
simulated network traffic loads typical of SME ac9vity, monitoring the 
following metrics: 

• CPU U9liza9on: Percentage of CPU u9liza9on by the NUT 
process, as high usage may indicate performance boOlenecks. 

• Memory Usage: Amount of memory consumed by the NUT 
process; excessive usage could delay threat detec9on. 

• Packet Drop Rate: Percentage of packets dropped by the NUT, 
where a higher rate indicates poorer performance. 

For performance evalua9on, resource consump9on metrics (CPU 
and memory) will be monitored during network traffic simula9ons 
using the htop tool. Packet drop rates will be retrieved from the NUT 
outputs aCer each run, and custom bash scripts will be developed to 
parse and aggregate data from the logs. The collected data will be 
analyzed to determine the impact of traffic load on resource 
consump9on and packet dropping for each NUT. The detec9on 
capability of each NUT is influenced by the availability of 
corresponding rules within the default rule set. This evalua9on 
assesses how well the default rules cover a range of aOacks by 
simula9ng various aOack scenarios and analyzing the NUT’s 
responses. The detec9on capabili9es will be evaluated based on the 
following metrics: 

• TPR: This measures how accurately each NUT detects real 
aOacks, crucial for evalua9ng its efficiency in recognizing 
harmful ac9vity. 

• FNR: This metric addresses the failure to detect aOacks, cri9cal 
for preven9ng significant risks, especially for ransomware. 

For detec9on capability evalua9on, alerts generated during traffic 
replay will be collected and analyzed for each scenario, confirming 
their alignment with the iden9fied aOack type and documen9ng any 
missed detec9ons. The performance evalua9on experiments aim to 
assess the NUTs in terms of CPU u9liza9on, memory consump9on, 
and packet drop rate under various condi9ons. Key factors influencing 
NIDS performance include traffic rate, packet size, capturing methods, 
detec9on engine algorithms, ruleset size, and network flow types. The 
following scenarios were implemented for performance evalua9on: 

• Scenario 1: Baseline Performance Assessment establishes a 
baseline for employing NIDS within an SME network using a 
standard configura9on and ruleset for each NUT. A TCP stream 
was generated using Iperf with a packet size of 1500 bytes, and 
performance was assessed as throughput increased from 100 
Mbps to 1000 Mbps. 

• Scenario 2: Ruleset Size Standardiza9on addresses the varying 
sizes of the default rulesets across NUTs, implemen9ng a 
standardized size of 10,000 rules for fair comparison. Zeek was 
excluded due to its limited default ruleset. 

• Scenario 3: Packet Capture Technique Evalua9on explores the 
impact of different packet capture techniques (libpcap and 
afpacket) on performance, selec9ng the method with the least 
packet drop rate for further tests. 

• Scenario 4: Detec9on Engine Op9miza9on modifies the 
detec9on engine using the best-performing packet capture 

technique iden9fied previously. The top three algorithms for 
each system were evaluated under the same network traffic 
condi9ons. 

• Scenario 5: Impact of Ruleset Size on Performance examines 
how varying ruleset sizes (from 10,000 to 50,000 rules) affect 
NUT performance under different traffic loads (100 Mbps, 
500 Mbps, and 1000 Mbps), excluding Zeek due to its ruleset 
limita9ons. 

• Scenario 6: Real-World Traffic Simula9on simulates daily 
ac9vi9es using the BigFlows.pcap dataset, capturing typical TCP 
and UDP traffic. Traffic was redirected at 100 Mbps throughput 
to the NUTs. 

For detec9on capability assessment, various scenarios were 
designed to evaluate the NUTs against common cyberaOacks targe9ng 
SMEs. Each scenario focused on specific aOack types: 

• Scenario 1: DoS and Port Scanning AOacks involved simula9ng 
DoS aOacks (SYN, ICMP, and UDP flooding) and a port scan using 
NMAP. 

• Scenario 2: General Malware tested detec9on capabili9es 
against a wide range of malware using 420 small pcap files 
containing malicious traffic. 

• Scenario 3: Ransomware AOacks focused on detec9ng 
ransomware using 17 pcap files represen9ng typical 
ransomware traffic. 

• Scenario 4: Web Applica9on AOacks evaluated responses to 
web-based aOacks using OWASP ZAP and Metasploit, focusing 
on vulnerabili9es such as SQL injec9on. 

• Scenario 5: Phishing AOacks simulated phishing aOempts, 
capturing traffic to assess the NUTs’ ability to iden9fy malicious 
URLs and domain spoofing. 

Each scenario was executed for 180 seconds, with detec9on 
capability scenarios run un9l all related traffic was replayed. All 
experiments were repeated 10 9mes to ensure sta9s9cal significance, 
averaging results to mi9gate the impact of outliers and provide a 
comprehensive understanding of the NUTs’ performance under 
consistent condi9ons. 

The Universe repository for Ubuntu 22.04 currently does not 
include the latest version of Snort 2. As shown in Figure 2, the 
repository’s latest version is (2.9.15.1), whereas the Snort website 
offers version (2.9.20). Consequently, we will proceed to install the 
most recent version of Snort 2 directly from the source code. 

 

Fig. 2: Screenshot: latest Snort 2 release available in Ubuntu 
repository. 

The installa9on of Snort 2 follows these five steps: 

1) Update Ubuntu packages. 

 

2) Install dependencies, Snort 2 has some prerequisites that need 
to be installed. 

$ sudo apt install -y libpcap-dev libpcre3-dev 
,→	libdumbnet-dev build-essen5al flex 

  

Fig. 2: Screenshot: latest Snort 2 release available in Ubuntu 
repository
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users, while Zeek’s reliance on custom scripting 
limits accessibility without dedicated security staff.

IV. Performance Evaluation

This section addresses the second research 
question (RQ2), examining the performance 
differences among open-source NIDS solutions 
Snort 2, Snort 3, Suricata, and Zeek, particularly 
in CPU usage, memory consumption, and packet 
dropping rates under diverse network conditions. 
Through a systematic evaluation of these metrics in 
various scenarios, the section delivers an in-depth 
analysis of each NIDS’s resource efficiency and 
scalability, aiding in identifying the most appropriate 
solution for SMEs with limited resources.

A. Baseline Performance Assessment
In this scenario, each NUT was evaluated using 

its default configuration and ruleset as network 
throughput increased from 100 Mbps to 1000 
Mbps.

As shown in Figure 3, Snort 2 displayed a steady 
rise in CPU utilization, peaking at approximately 
22.8% at 1000 Mbps. Its memory usage remained 
stable at 8.8%, but the packet drop rate rose 
significantly, from 0% at 100 Mbps to about 9.9% 
at 1000 Mbps. These results indicate that Snort 2 
struggles under heavier loads, leading to packet 
drops and decreased detection capabilities. This 
issue stems largely from its single-threaded design, 
which restricts efficient packet processing.

In contrast, Snort 3 (Figure 3) recorded higher 
CPU utilization across all throughput levels, peaking 
at around 25.5% at 1000 Mbps. Although its memory 
usage was low at 1.76%, it also experienced packet 
drops—albeit less severe than Snort 2—starting at 
0% and rising to 5.26% at maximum throughput. 
This indicates that while more memory-efficient, 
Snort 3 still relies heavily on CPU resources and 
has challenges with high traffic volume due to its 
default single-threaded processing. Nonetheless, 
it outperformed Snort 2 even in this constrained 
mode.

Suricata’s multi-threaded architecture delivered 
a balanced performance, with CPU usage climbing 
to about 19% at 1000 Mbps while keeping memory 

usage low at approximately 4.7% (Figure 3). 
Remarkably, Suricata avoided any packet drops, 
even with the largest default ruleset among the 
NUTs, showcasing its capability to handle heavy 
traffic effectively.

Zeek excelled with extremely low CPU utilization, 
beginning at 3.2% and reaching only 8.3% at the 
highest throughput, alongside consistent memory 
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without performance degrada9on (Figure 3). However, its lighter 
ruleset likely contributes to its lower resource consump9on and 
negligible packet drops. 

B. Ruleset Size Standardiza7on 
To ensure a fair comparison, the rule set sizes for Snort 2, Snort 3, 

and Suricata were standardized to 10,000 rules each. As shown in 
Figure 4, Snort 2 experienced a slight decrease in 
CPU and memory usages compared to the baseline, with 22.0% at 
1,000 Mbps, while its memory usage was constant at 8%. With the 
reduced rule set size, there was a slight improvement in the packet 
drop rate, yet it remained high at 9.1% at maximum throughput, 
indica9ng that rule set size impacts Snort 2’s efficiency. 

Snort 3 also exhibited reduced CPU and memory u9liza9on 
compared to the baseline, reaching 25.4% at 1000 Mbps, while 

 

(a) CPU u9liza9on 

 

(b) Memory u9liza9on 

 

(c) Packet dropping 

Fig. 3: Performance comparison of NIDS tools with default 
seOngs. 

its memory decreased to 1.6%. The packet drop rate showed a modest 
improvement, with a final rate of 5.1% at maximum throughput. 
These results indicate that while Snort 3 benefits from ruleset 
standardiza9on, it s9ll struggles with high throughput scenarios, 
similar to Snort 2. 

Suricata con9nued to perform well, with CPU u9liza9on slightly 
lower than in the baseline, reaching 15.9% at 1000 Mbps. Memory 
usage was even more efficient at 2.05%, and it s9ll recorded zero 
packet drops across all throughput levels. This reinforces Suricata’s 
scalability and efficiency, making it par9cularly suitable for 
environments where high traffic and large rulesets are common. 

C. Packet Capture Technique Evalua7on 
This scenario examined the effects of two prevalent packet capture 

methods, libpcap and afpacket, on the performance of each NUT. 
Figure 5 indicates that Snort 2 experienced an enhancement with 

the use of afpacket, as evidenced by a minor reduc9on in CPU 
u9liza9on and a significant decrease in packet drop rates. At a 
network speed of 1000 Mbps, CPU usage was approximately 22.5%, 
and the packet drop rate was reduced to 0.39%, a substan9al 
improvement from the 9.1% observed 

 

(a) CPU u9liza9on 

 

(b) Memory u9liza9on 

 

(c) Packet dropping 

Fig. 4: Comparison of NIDS soluIons with the same ruleset 
size. 

with libpcap. Although there was a slight increase in memory usage 
to 11.2%, packet handling was notably improved, with no drops 
occurring up to 700 Mbps. This demonstrates that despite afpacket’s 

Fig. 3: Performance comparison of NIDS tools 
with default settings
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usage at 3.1%. Zeek maintained a 0% packet drop 
rate across all throughput levels, demonstrating 
its robustness without performance degradation 
(Figure 3). However, its lighter ruleset likely 
contributes to its lower resource consumption and 
negligible packet drops.

B. Ruleset Size Standardization
To ensure a fair comparison, the rule set sizes for 

Snort 2, Snort 3, and Suricata were standardized to 
10,000 rules each. As shown in Figure 4, Snort 2 
experienced a slight decrease in CPU and memory 
usages compared to the baseline, with 22.0% at 
1,000 Mbps, while its memory usage was constant 
at 8%. With the reduced rule set size, there was 
a slight improvement in the packet drop rate, yet 
it remained high at 9.1% at maximum throughput, 
indicating that rule set size impacts Snort 2’s 
efficiency.

Snort 3 also exhibited reduced CPU and 
memory utilization compared to the baseline, 
reaching 25.4% at 1000 Mbps, while its memory 
decreased to 1.6%. The packet drop rate showed 
a modest improvement, with a final rate of 5.1% at 
maximum throughput. These results indicate that 
while Snort 3 benefits from ruleset standardization, 
it still struggles with high throughput scenarios, 
similar to Snort 2.

Suricata continued to perform well, with CPU 
utilization slightly lower than in the baseline, 
reaching 15.9% at 1000 Mbps. Memory usage was 
even more efficient at 2.05%, and it still recorded 
zero packet drops across all throughput levels. 
This reinforces Suricata’s scalability and efficiency, 
making it particularly suitable for environments 
where high traffic and large rulesets are common.

C. Packet Capture Technique Evaluation
This scenario examined the effects of two 

prevalent packet capture methods, libpcap and 
afpacket, on the performance of each NUT.

Figure 5 indicates that Snort 2 experienced 
an enhancement with the use of afpacket, as 
evidenced by a minor reduction in CPU utilization 
and a significant decrease in packet drop rates. At 
a network speed of 1000 Mbps, CPU usage was 

approximately 22.5%, and the packet drop rate was 
reduced to 0.39%, a substantial improvement from 
the 9.1% observed with libpcap. Although there 
was a slight increase in memory usage to 11.2%, 
packet handling was notably improved, with no 
drops occurring up to 700 Mbps. This demonstrates 
that despite afpacket’s marginally higher memory 
requirement, the trade-off is justified by the gains in 
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without performance degrada9on (Figure 3). However, its lighter 
ruleset likely contributes to its lower resource consump9on and 
negligible packet drops. 

B. Ruleset Size Standardiza7on 
To ensure a fair comparison, the rule set sizes for Snort 2, Snort 3, 

and Suricata were standardized to 10,000 rules each. As shown in 
Figure 4, Snort 2 experienced a slight decrease in 
CPU and memory usages compared to the baseline, with 22.0% at 
1,000 Mbps, while its memory usage was constant at 8%. With the 
reduced rule set size, there was a slight improvement in the packet 
drop rate, yet it remained high at 9.1% at maximum throughput, 
indica9ng that rule set size impacts Snort 2’s efficiency. 

Snort 3 also exhibited reduced CPU and memory u9liza9on 
compared to the baseline, reaching 25.4% at 1000 Mbps, while 
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(c) Packet dropping 

Fig. 3: Performance comparison of NIDS tools with default 
seOngs. 

its memory decreased to 1.6%. The packet drop rate showed a modest 
improvement, with a final rate of 5.1% at maximum throughput. 
These results indicate that while Snort 3 benefits from ruleset 
standardiza9on, it s9ll struggles with high throughput scenarios, 
similar to Snort 2. 

Suricata con9nued to perform well, with CPU u9liza9on slightly 
lower than in the baseline, reaching 15.9% at 1000 Mbps. Memory 
usage was even more efficient at 2.05%, and it s9ll recorded zero 
packet drops across all throughput levels. This reinforces Suricata’s 
scalability and efficiency, making it par9cularly suitable for 
environments where high traffic and large rulesets are common. 

C. Packet Capture Technique Evalua7on 
This scenario examined the effects of two prevalent packet capture 

methods, libpcap and afpacket, on the performance of each NUT. 
Figure 5 indicates that Snort 2 experienced an enhancement with 

the use of afpacket, as evidenced by a minor reduc9on in CPU 
u9liza9on and a significant decrease in packet drop rates. At a 
network speed of 1000 Mbps, CPU usage was approximately 22.5%, 
and the packet drop rate was reduced to 0.39%, a substan9al 
improvement from the 9.1% observed 
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Fig. 4: Comparison of NIDS soluIons with the same ruleset 
size. 

with libpcap. Although there was a slight increase in memory usage 
to 11.2%, packet handling was notably improved, with no drops 
occurring up to 700 Mbps. This demonstrates that despite afpacket’s 

Fig. 4: Comparison of NIDS solutions with the 
same ruleset size
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throughput and the reduction in packet loss.
Figure 6 demonstrates that Snort 3 has 

significantly advanced with afpacket, showing 
greater CPU utilization than libpcap, reaching 
48.7% at 1000 Mbps and a rise in memory usage 
to 15.3%, while successfully reducing packet drops 
at almost all throughput levels. Due to libpcap 
missing proper load balancing for Snort 3 packet 
processing threads, it was not a valid choice for 
Snort 3 multi-threading.

Snort 3 utilizes afpacket for load balancing 
network traffic between each packet processing 
thread, which was the only option for Snort 3 multi-
threading when using Snort 3 to analyze realtime 
network traffic. It can be configured in the Snort 3 
config file or command line, as seen in Section ??.

This balance between heightened CPU and 
memory usage against decreased packet loss 
suggests that afpacket enhances Snort 3’s 
detection abilities notwithstanding the increased 
consumption of resources.
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marginally higher memory requirement, the trade-off is jus9fied by 
the gains in throughput and the reduc9on in packet loss. 

Figure 6 demonstrates that Snort 3 has significantly advanced with 
afpacket, showing greater CPU u9liza9on than libpcap, reaching 
48.7% at 1000 Mbps and a rise in memory usage to 15.3%, while 
successfully reducing packet drops at almost all throughput levels. 
Due to libpcap missing proper load balancing for Snort 3 packet 
processing threads, it was not a valid choice for Snort 3 mul9-
threading. 

Snort 3 u9lizes afpacket for load balancing network traffic between 
each packet processing thread, which was the only op9on for Snort 3 
mul9-threading when using Snort 3 to analyze real9me network 
traffic. It can be configured in the Snort 3 config file or command line, 
as seen in Sec9on ??. 

This balance between heightened CPU and memory usage against 
decreased packet loss suggests that afpacket enhances Snort 3’s 
detec9on abili9es notwithstanding the increased consump9on of 
resources. 

Figure 7 shows that Suricata performed similarly well with 

 

(a) CPU u9liza9on 

 

(b) Memory u9liza9on 

 

(c) Packet dropping 

Fig. 5: Performance of Snort 2 with libpcap and afpacket. 

both capture techniques, showing very low CPU u9liza9on (15.9% 
with afpacket), maintaining its low memory usage (around 2%), and 
zero packet drops throughout. This indicates that Suricata’s efficiency 

is less dependent on the packet capture method, underscoring its 
overall robustness. 

Figure 8 shows, that Zeek sustained outstanding performance with 
afpacket, demonstra9ng very low CPU and memory usage, along with 
zero packet drops. The negligible impact of the capture method on 
Zeek’s performance underscores its appropriateness for senngs 
where stable and reliable detec9on is paramount. 

The compara9ve performance of all NUTs with afpacket is further 
highlighted in Figure 9, which emphasizes the importance of selec9ng 
op9mal packet capture methods. For SMEs, implemen9ng afpacket 
with their chosen NIDS could be a straighiorward adjustment to 
improve overall network security performance. 

D. Detec7on Engine Op7miza7on 
The detec9on engine op9miza9on experiments explore the impact 

of different detec9on engine configura9ons on the performance of 
Snort 2, Snort 3, and Suricata, each using afpacket as the efficient 
packet capture method determined in the preceding scenario. It is 
important to note that Zeek was not included in this assessment due 
to its non-configurable detec9on engine, and therefore, it was kept in 
its default configura9on. 

 

(a) CPU u9liza9on 

 

(b) Memory u9liza9on 

 

(c) Packet dropping 

Fig. 6: Performance of Snort 3 with libpcap and afpacket. 

Fig. 5: Performance of Snort 2 with libpcap 
and afpacket
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marginally higher memory requirement, the trade-off is jus9fied by 
the gains in throughput and the reduc9on in packet loss. 

Figure 6 demonstrates that Snort 3 has significantly advanced with 
afpacket, showing greater CPU u9liza9on than libpcap, reaching 
48.7% at 1000 Mbps and a rise in memory usage to 15.3%, while 
successfully reducing packet drops at almost all throughput levels. 
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processing threads, it was not a valid choice for Snort 3 mul9-
threading. 
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each packet processing thread, which was the only op9on for Snort 3 
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traffic. It can be configured in the Snort 3 config file or command line, 
as seen in Sec9on ??. 
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decreased packet loss suggests that afpacket enhances Snort 3’s 
detec9on abili9es notwithstanding the increased consump9on of 
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both capture techniques, showing very low CPU u9liza9on (15.9% 
with afpacket), maintaining its low memory usage (around 2%), and 
zero packet drops throughout. This indicates that Suricata’s efficiency 

is less dependent on the packet capture method, underscoring its 
overall robustness. 

Figure 8 shows, that Zeek sustained outstanding performance with 
afpacket, demonstra9ng very low CPU and memory usage, along with 
zero packet drops. The negligible impact of the capture method on 
Zeek’s performance underscores its appropriateness for senngs 
where stable and reliable detec9on is paramount. 

The compara9ve performance of all NUTs with afpacket is further 
highlighted in Figure 9, which emphasizes the importance of selec9ng 
op9mal packet capture methods. For SMEs, implemen9ng afpacket 
with their chosen NIDS could be a straighiorward adjustment to 
improve overall network security performance. 

D. Detec7on Engine Op7miza7on 
The detec9on engine op9miza9on experiments explore the impact 

of different detec9on engine configura9ons on the performance of 
Snort 2, Snort 3, and Suricata, each using afpacket as the efficient 
packet capture method determined in the preceding scenario. It is 
important to note that Zeek was not included in this assessment due 
to its non-configurable detec9on engine, and therefore, it was kept in 
its default configura9on. 
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both capture techniques, showing very low CPU 
utilization (15.9% with afpacket), maintaining its low 
memory usage (around 2%), and zero packet drops 
throughout. This indicates that Suricata’s efficiency 
is less dependent on the packet capture method, 
underscoring its overall robustness.

Figure 8 shows, that Zeek sustained outstanding 
performance with afpacket, demonstrating very 
low CPU and memory usage, along with zero 
packet drops. The negligible impact of the capture 
method on Zeek’s performance underscores its 

appropriateness for settings where stable and 
reliable detection is paramount.

The comparative performance of all NUTs with 
afpacket is further highlighted in Figure 9, which 
emphasizes the importance of selecting optimal 
packet capture methods. For SMEs, implementing 
afpacket with their chosen NIDS could be a 
straightforward adjustment to improve overall 
network security performance.

D. Detection Engine Optimization
The detection engine optimization experiments 

explore the impact of different detection engine 

Assessing the Effectiveness of Open-Source Network Intrusion Detection Systems for Small-to-Medium-Sized Enterprises

Fig. 7: Performance of Suricata with 
libpcap and afpacket

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9 

While the ac op9on in Snort 2 did lead to a modest reduc9on in 
CPU usage, down to 20.0% at 1000 Mbps, and a decrease in packet 
drop rate to 0.21%, indica9ng improved efficiency and packet 
processing capacity, it also caused a significant increase in memory 
usage as shown in Figure 10. Our tes9ngs showed that Snort 
configured with the ac op9on experienced substan9al memory 
consump9on, which worsened with larger rule sets. An aOempt to run 
Snort with a 50,000 rule set failed due to memory limita9ons. 
Resul9ng in, switching to the alterna9ve ac-split op9on. 

As shown in Figure 11, Snort 3’s hyperscan configura9on provided 
substan9al performance benefits, with CPU u9liza9on greatly 
reduced and memory usage stabilized at 15.9%. This configura9on 
enabled Snort 3 to handle high throughput without packet loss, 
making it more compe99ve with Suricata’s consistently low memory 
and CPU usage. 

Figure 12 illustrates that the default Suricata configura9on, u9lizing 
afpacket with hyperscan, maintained op9mal performance, further 
confirming the efficiency of the default Suricata setup as previously 
discussed. 

The compara9ve performance of all NUTs, paired with the op9mal 
detec9on engine for each, is further illustrated in Figure 13. This 
underscores the cri9cality of choosing the op9mal detec9on engine. 
For SMEs, the adop9on of advanced detec9on engines such as 
hyperscan can greatly improve the efficiency of 
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Fig. 7: Performance of Suricata with libpcap and afpacket. 

NIDS, par9cularly in scenarios with high traffic volumes and 
sophis9cated aOack vectors. 

E. Impact of Ruleset Size 
The results of this scenario highlight the significant impact of 

ruleset size on the performance of Snort 2, Snort 3, and Suricata under 
various traffic condi9ons, including low, moderate, and peak 
throughput. As the ruleset size increased from 10,000 to 50,000 rules, 
all NIDS solu9ons showed a rise in CPU u9liza9on and memory 
consump9on, with Snort 2 experiencing the most pronounced 
increase in packet dropping rates, par9cularly at higher traffic loads. 

Under low throughput (100 Mbps), Figure 14, Snort 2’s CPU usage 
gradually rose from 7.49% with 10,000 rules to 10.33% with 50,000 
rules, while its memory usage increased significantly, indica9ng a 
more resource-intensive opera9on as ruleset sizes expanded. Notably, 
Snort 2 maintained zero packet drops under low traffic condi9ons but 
exhibited a rising trend in memory usage that could impact 
performance at higher loads. Snort 3 demonstrated similar trends in 
CPU and memory usage, though it managed to maintain no packet 
drops across all ruleset sizes under low throughput, indica9ng a beOer 
efficiency in handling increasing rulesets compared to Snort 2. 
Suricata exhibited the lowest CPU and memory usage under the same 

 

(a) CPU u9liza9on 

 

(b) Memory u9liza9on 

 

(c) Packet dropping 

Fig. 8: Performance of Zeek with libpcap and afpacket. 
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exhibited a rising trend in memory usage that could impact 
performance at higher loads. Snort 3 demonstrated similar trends in 
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configurations on the performance of Snort 2, 
Snort 3, and Suricata, each using afpacket as the 
efficient packet capture method determined in the 
preceding scenario. It is important to note that Zeek 
was not included in this assessment due to its non-
configurable detection engine, and therefore, it was 
kept in its default configuration.

While the ac option in Snort 2 did lead to a 
modest reduction in CPU usage, down to 20.0% at 
1000 Mbps, and a decrease in packet drop rate to 
0.21%, indicating improved efficiency and packet 
processing capacity, it also caused a significant 
increase in memory usage as shown in Figure 10. 
Our testings showed that Snort configured with 

the ac option experienced substantial memory 
consumption, which worsened with larger rule sets. 
An attempt to run Snort with a 50,000 rule set failed 
due to memory limitations. Resulting in, switching to 
the alternative ac-split option.

As shown in Figure 11, Snort 3’s hyperscan 
configuration provided substantial performance 
benefits, with CPU utilization greatly reduced 
and memory usage stabilized at 15.9%. This 
configuration enabled Snort 3 to handle high 
throughput without packet loss, making it more 
competitive with Suricata’s consistently low memory 
and CPU usage.
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condi9ons, maintaining zero packet drops, sugges9ng a high level of 
efficiency even with larger rulesets. 

At moderate throughput (500 Mbps), Figure 15, the performance 
gaps widened. Snort 2 began showing packet drops star9ng from the 
20,000-rule size, escala9ng to 2% at 50,000 rules, which is concerning 
for environments requiring high reliability. The increase in packet drop 
rates suggests that Snort 2 struggles with scalability under increased 
traffic loads and larger rulesets, making it less suitable for high-
performance requirements without significant tuning. Snort 3 
managed to avoid packet drops un9l the largest ruleset size, 
demonstra9ng beOer adaptability and scalability under moderate 
condi9ons. Suricata con9nued to show the most efficient 
performance, maintaining zero packet drops and rela9vely low CPU 
and memory usage, further confirming its capability to handle large 
rule sets and moderate traffic without performance degrada9on. 

Under peak throughput (1000 Mbps), Figure 16, the differences 
became starkly apparent. Snort 2’s packet drop rate surged 
drama9cally to 17.46% at the largest ruleset size, highligh9ng severe 
limita9ons in high-traffic scenarios. This performance suggests that 
Snort 2’s detec9on engine struggles under heavy loads, par9cularly 
when coupled with extensive rulesets, poten9ally compromising 
security in high-traffic environments. Snort 3 and Suricata 
demonstrated much beOer resilience, with Suricata maintaining zero 
packet drops and only moderate increases in 
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Fig. 9: Performance comparison of NIDS tools with afpacket. 

resource consump9on. This performance underscores Suricata’s 
robust architecture, making it par9cularly suitable for highthroughput 
environments typical of larger SMEs or those with intensive security 
monitoring requirements. 

F. Performance Comparison with Real-World Traffic 
This scenario evaluated the performance of Snort 2, Snort 3, and 

Suricata using the BigFlows.pcap dataset, which replicates realis9c 
network condi9ons with diverse traffic types, including HTTP 
browsing, file transfers, and chat applica9ons. The dataset featured 
over 40,686 dis9nct flows with a range of packet sizes from 60 to 1514 
bytes, and an average packet length of 449 bytes. This scenario 
allowed for a comprehensive assessment of how each NIDS handles 
complex, mixed traffic paOerns typical of SME environments. Key 
factors affec9ng performance were the number and variety of flows 
and the variability in packet size, both of which significantly influence 
resource consump9on, and packet drop rates. 

The combina9on of numerous, varied flows and diverse packet 
sizes directly challenged the detec9on engines of Snort 2, Snort 3, and 
Suricata, highligh9ng their strengths and weaknesses in handling real-
world traffic dynamics. 

Figure 17 illustrates that Snort 2 had difficul9es handling the 
growing number and diversity of flows, along with the variability 
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Fig. 10: Performance of Snort 2 with different detecIon 
engine. 
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resource consump9on. This performance underscores Suricata’s 
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Figure 12 illustrates that the default Suricata 
configuration, utilizing afpacket with hyperscan, 
maintained optimal performance, further confirming 
the efficiency of the default Suricata setup as 
previously discussed.

The comparative performance of all NUTs, 
paired with the optimal detection engine for each, is 
further illustrated in Figure 13. This underscores the 
criticality of choosing the optimal detection engine. 
For SMEs, the adoption of advanced detection 
engines such as hyperscan can greatly improve 
the efficiency of NIDS, particularly in scenarios 
with high traffic volumes and sophisticated attack 
vectors.

E. Impact of Ruleset Size
The results of this scenario highlight the 

significant impact of ruleset size on the performance 
of Snort 2, Snort 3, and Suricata under various 
traffic conditions, including low, moderate, and 
peak throughput. As the ruleset size increased from 
10,000 to 50,000 rules, all NIDS solutions showed 
a rise in CPU utilization and memory consumption, 
with Snort 2 experiencing the most pronounced 
increase in packet dropping rates, particularly at 
higher traffic loads.

Under low throughput (100 Mbps), Figure 14, 
Snort 2’s CPU usage gradually rose from 7.49% with 
10,000 rules to 10.33% with 50,000 rules, while its 
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in packet sizes. At a ruleset size of 10,000, Snort 2 maintained 
acceptable performance with a CPU u9liza9on of 17.08% and memory 
usage at 11.2%, alongside a packet drop rate of 2%. However, as the 
ruleset size grew to 50,000, CPU u9liza9on increased to 22.86%, and 
memory consump9on surged to 35.4%. More cri9cally, the packet 
dropping rate escalated sharply to 14.56%, indica9ng a significant 
decline in Snort 2’s ability to process traffic effec9vely. This steep 
increase in packet drops suggests that Snort 2 may struggle with the 
dynamic nature of actual network traffic, where mul9ple concurrent 
flows and varying packet sizes can challenge its detec9on capabili9es. 
The pronounced performance degrada9on with larger rulesets poses 
a risk of undetected threats, making Snort2 less suitable for SMEs that 
require reliable threat monitoring with minimal packet loss. 

Snort 3 Performance Analysis: Snort 3 showed a more robust 
performance profile compared to Snort 2, although it s9ll faced 
challenges at higher ruleset sizes. At 10,000 rules, Snort 3 exhibited a 
CPU u9liza9on of 18.65% and memory usage of 16.65%, with no 
packet drops, indica9ng efficient handling of traffic with rela9vely 
light computa9onal demands. As the ruleset expanded to 50,000, CPU 
u9liza9on increased significantly to 41.27%, and memory usage 
reached 22.42%. Despite this increase in resource consump9on, Snort 
3 managed to keep packet drops to a minimum, only recording a drop 
rate of 0.87% at the 
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Fig. 11: Performance of Snort 3 with different detecIon 
engine. 

highest ruleset size. This low packet drops rate highlights Snort 3’s 
enhanced detec9on engine and beOer resource op9miza9on, which 
allows it to handle complex traffic with higher detec9on accuracy and 
minimal loss. However, the elevated CPU usage underlines poten9al 
performance boOlenecks, sugges9ng that while Snort 3 can manage 
large rulesets effec9vely, it does so at the cost of significantly 
increased processing power, which could impact overall system 
performance if not adequately provisioned. 

Suricata Performance Analysis: Suricata consistently outperformed 
both versions of Snort across all metrics, maintaining superior 
detec9on capabili9es with minimal resource consump9on and packet 
drops. At a ruleset size of 10,000, Suricata’s CPU u9liza9on was 
remarkably low at 5.65%, and memory usage was 3.74%, with zero 
packet drops, showcasing its highly efficient architecture. As the 
ruleset size increased to 50,000, Suricata’s CPU usage rose to 25.59%, 
and memory consump9on increased moderately to 5.39%. Despite 
the larger ruleset, Suricata maintained a perfect record with zero 
packet drops, demonstra9ng its ability to efficiently scale and process 
high volumes of traffic without compromising performance. This 
robust performance can be aOributed to Suricata’s mul9-threaded 
processing and op9mized detec9on algorithms, which allow it to 
balance load effec9vely across system resources, making it 
par9cularly wellsuited for real-world deployments in SMEs where 
reliability and 
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Fig. 12: Performance of Suricata with different detecIon 
engine. 

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11 

in packet sizes. At a ruleset size of 10,000, Snort 2 maintained 
acceptable performance with a CPU u9liza9on of 17.08% and memory 
usage at 11.2%, alongside a packet drop rate of 2%. However, as the 
ruleset size grew to 50,000, CPU u9liza9on increased to 22.86%, and 
memory consump9on surged to 35.4%. More cri9cally, the packet 
dropping rate escalated sharply to 14.56%, indica9ng a significant 
decline in Snort 2’s ability to process traffic effec9vely. This steep 
increase in packet drops suggests that Snort 2 may struggle with the 
dynamic nature of actual network traffic, where mul9ple concurrent 
flows and varying packet sizes can challenge its detec9on capabili9es. 
The pronounced performance degrada9on with larger rulesets poses 
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highest ruleset size. This low packet drops rate highlights Snort 3’s 
enhanced detec9on engine and beOer resource op9miza9on, which 
allows it to handle complex traffic with higher detec9on accuracy and 
minimal loss. However, the elevated CPU usage underlines poten9al 
performance boOlenecks, sugges9ng that while Snort 3 can manage 
large rulesets effec9vely, it does so at the cost of significantly 
increased processing power, which could impact overall system 
performance if not adequately provisioned. 

Suricata Performance Analysis: Suricata consistently outperformed 
both versions of Snort across all metrics, maintaining superior 
detec9on capabili9es with minimal resource consump9on and packet 
drops. At a ruleset size of 10,000, Suricata’s CPU u9liza9on was 
remarkably low at 5.65%, and memory usage was 3.74%, with zero 
packet drops, showcasing its highly efficient architecture. As the 
ruleset size increased to 50,000, Suricata’s CPU usage rose to 25.59%, 
and memory consump9on increased moderately to 5.39%. Despite 
the larger ruleset, Suricata maintained a perfect record with zero 
packet drops, demonstra9ng its ability to efficiently scale and process 
high volumes of traffic without compromising performance. This 
robust performance can be aOributed to Suricata’s mul9-threaded 
processing and op9mized detec9on algorithms, which allow it to 
balance load effec9vely across system resources, making it 
par9cularly wellsuited for real-world deployments in SMEs where 
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memory usage increased significantly, indicating a 
more resource-intensive operation as ruleset sizes 
expanded. Notably, Snort 2 maintained zero packet 
drops under low traffic conditions but exhibited a 
rising trend in memory usage that could impact 
performance at higher loads. Snort 3 demonstrated 
similar trends in CPU and memory usage, though 
it managed to maintain no packet drops across 
all ruleset sizes under low throughput, indicating 
a better efficiency in handling increasing rulesets 
compared to Snort 2. Suricata exhibited the lowest 

CPU and memory usage under the same conditions, 
maintaining zero packet drops, suggesting a high 
level of efficiency even with larger rulesets.

At moderate throughput (500 Mbps), Figure 
15, the performance gaps widened. Snort 2 
began showing packet drops starting from the 
20,000-rule size, escalating to 2% at 50,000 rules, 
which is concerning for environments requiring 
high reliability. The increase in packet drop rates 
suggests that Snort 2 struggles with scalability 
under increased traffic loads and larger rulesets, 
making it less suitable for high-performance 
requirements without significant tuning. Snort 3 
managed to avoid packet drops until the largest 
ruleset size, demonstrating better adaptability and 
scalability under moderate conditions. Suricata 
continued to show the most efficient performance, 

Fig. 13: Performance comparison of NIDS 
tools with optimized configuration
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efficiency are paramount. 

V. DETECTION CAPABILITY ASSESSMENT 
This sec9on explores the third research ques9on (RQ3), focusing on 

the efficacy of Snort 2, Snort 3, Suricata, and Zeek in detec9ng 
common cyberaOacks that frequently target SMEs. It assesses each 
NIDS detec9on accuracy through controlled aOack scenarios, such as 
DoS, malware, ransomware, web applica9on aOacks, and phishing. 
The evalua9on measures the TPR and FNR of each NIDS. The findings 
provide insights into the strengths and weaknesses of each tool’s 
ability to protect SME networks from diverse threats. 

A. Scenario 1: DoS and Port Scanning AKacks 
The results of this scenario show significant differences in how each 

NUT handles DoS and port scanning aOacks. Suricata outperformed 
the other systems, achieving an impressive TPR of 85% with a 
rela9vely low FNR of 15%. This reflects Suricata’s superior ability to 
manage high-throughput traffic and accurately detect paOerns 
associated with DoS and scanning ac9vi9es. Snort 3 followed with a 
TPR of 80%, showing improvements over Snort 
2, which only managed a TPR of 75%. Zeek, on the other hand, 
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Fig. 13: Performance comparison of NIDS tools with opImized 
configuraIon 

displayed a lower TPR of 60%, with a high FNR of 40%, which can be 
aOributed to its focus on behavioral analysis rather than signature-
based detec9on. Zeek’s rela9ve under-performance in this scenario 
indicates its limita9ons in detec9ng rapid, highvolume aOacks like 
DoS, where signature-based systems like Suricata excel. 

B. Scenario 2: General Malware 
In the general malware detec9on scenario, Suricata once again 

demonstrated its strength, achieving the highest TPR of 90% with only 
a 10% FNR. This result highlights the effec9veness of Suricata’s robust 
signature-based detec9on, which allows it to iden9fy a wide range of 
malware threats. Snort 3 performed well with a TPR of 86%, 
significantly outperforming Snort 2, which had a TPR of 77%. The 
improved detec9on rate in Snort 3 can be aOributed to enhancements 
in its rule set and detec9on engine. Zeek, with its behavior-based 
approach, achieved a TPR of 78%, which is slightly higher than Snort 
2 but lower than Snort 3 and Suricata. Zeek’s detec9on capabili9es in 
this scenario were hampered by its reliance on behavioral indicators 
rather than signature matching, which limited its ability to iden9fy 
malware without clear behavioral anomalies. 

 

Fig. 14: Performance comparison of NIDS tools against ruleset 
size under low throughput (100 Mbps). 

 

Fig. 15: Performance comparison of NIDS tools against ruleset 
size under moderate throughput (500 Mbps). 

Fig. 14: Performance comparison of NIDS tools against 
ruleset size under low throughput (100 Mbps)
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the other systems, achieving an impressive TPR of 85% with a 
rela9vely low FNR of 15%. This reflects Suricata’s superior ability to 
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associated with DoS and scanning ac9vi9es. Snort 3 followed with a 
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displayed a lower TPR of 60%, with a high FNR of 40%, which can be 
aOributed to its focus on behavioral analysis rather than signature-
based detec9on. Zeek’s rela9ve under-performance in this scenario 
indicates its limita9ons in detec9ng rapid, highvolume aOacks like 
DoS, where signature-based systems like Suricata excel. 

B. Scenario 2: General Malware 
In the general malware detec9on scenario, Suricata once again 

demonstrated its strength, achieving the highest TPR of 90% with only 
a 10% FNR. This result highlights the effec9veness of Suricata’s robust 
signature-based detec9on, which allows it to iden9fy a wide range of 
malware threats. Snort 3 performed well with a TPR of 86%, 
significantly outperforming Snort 2, which had a TPR of 77%. The 
improved detec9on rate in Snort 3 can be aOributed to enhancements 
in its rule set and detec9on engine. Zeek, with its behavior-based 
approach, achieved a TPR of 78%, which is slightly higher than Snort 
2 but lower than Snort 3 and Suricata. Zeek’s detec9on capabili9es in 
this scenario were hampered by its reliance on behavioral indicators 
rather than signature matching, which limited its ability to iden9fy 
malware without clear behavioral anomalies. 
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maintaining zero packet drops and relatively low 
CPU and memory usage, further confirming its 
capability to handle large rule sets and moderate 
traffic without performance degradation.

Under peak throughput (1000 Mbps), Figure 
16, the differences became starkly apparent. 
Snort 2’s packet drop rate surged dramatically 
to 17.46% at the largest ruleset size, highlighting 
severe limitations in high-traffic scenarios. This 
performance suggests that Snort 2’s detection 
engine struggles under heavy loads, particularly 
when coupled with extensive rulesets, potentially 
compromising security in high-traffic environments. 
Snort 3 and Suricata demonstrated much better 
resilience, with Suricata maintaining zero packet 
drops and only moderate increases in resource 
consumption. This performance underscores 
Suricata’s robust architecture, making it particularly 
suitable for highthroughput environments typical 
of larger SMEs or those with intensive security 
monitoring requirements.

F. Performance Comparison with Real-World Traffic
This scenario evaluated the performance of 

Snort 2, Snort 3, and Suricata using the BigFlows.
pcap dataset, which replicates realistic network 
conditions with diverse traffic types, including HTTP 
browsing, file transfers, and chat applications. The 
dataset featured over 40,686 distinct flows with a 
range of packet sizes from 60 to 1514 bytes, and an 

average packet length of 449 bytes. This scenario 
allowed for a comprehensive assessment of how 
each NIDS handles complex, mixed traffic patterns 
typical of SME environments. Key factors affecting 
performance were the number and variety of flows 
and the variability in packet size, both of which 
significantly influence resource consumption, and 
packet drop rates.

The combination of numerous, varied flows 
and diverse packet sizes directly challenged the 
detection engines of Snort 2, Snort 3, and Suricata, 
highlighting their strengths and weaknesses in 
handling real-world traffic dynamics.

Figure 17 illustrates that Snort 2 had difficulties 
handling the growing number and diversity of flows, 
along with the variability in packet sizes. At a ruleset 
size of 10,000, Snort 2 maintained acceptable 
performance with a CPU utilization of 17.08% and 
memory usage at 11.2%, alongside a packet drop 
rate of 2%. However, as the ruleset size grew to 
50,000, CPU utilization increased to 22.86%, and 
memory consumption surged to 35.4%. More 
critically, the packet dropping rate escalated 
sharply to 14.56%, indicating a significant decline 
in Snort 2’s ability to process traffic effectively. This 
steep increase in packet drops suggests that Snort 
2 may struggle with the dynamic nature of actual 
network traffic, where multiple concurrent flows and 
varying packet sizes can challenge its detection 
capabilities. The pronounced performance 
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C. Scenario 3: Ransomware AKacks 

The ransomware aOack scenario underscores Suricata’s capability 
to detect sophis9cated threats, with a TPR of 94% and the lowest FNR 
at 6%. This demonstrates Suricata’s effec9veness in recognizing 
ransomware-specific traffic paOerns, including command and control, 
data exfiltra9on, and encryp9on ac9vi9es. Snort 3 also performed 
well with a TPR of 87%, while Snort 2 lagged slightly behind at 81%. 
Zeek’s performance was notable, with a TPR of 88%, indica9ng that its 
behavioral detec9on approach is par9cularly useful in iden9fying 
ransomware traffic, which oCen exhibits dis9nc9ve behaviors. 
However, Zeek’s slightly higher FNR (12%) compared to Suricata 
suggests that it might miss more subtle or encrypted ransomware 
ac9vi9es that rely less on obvious behavioral signatures.
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Fig. 17: Performance comparison of NIDS soluIons against 
the BigFlow.pcap dataset with different ruleset size. 

D. Scenario 4: Web Applica7on AKacks 

Web applica9on aOacks, such as SQL Injec9on and CrossSite 
Scrip9ng, were well detected by most NUTs, but Suricata con9nued to 
lead with a TPR of 91% and an FNR of 9%. Snort 3 followed closely 
with a TPR of 88%, highligh9ng its competence in handling web-based 
threats. Snort 2 trailed with a TPR of 85%, indica9ng that while it is 
effec9ve, it is not as finely tuned as its successor or Suricata. Zeek’s 
performance in this scenario was strong, with a TPR of 89%, reflec9ng 
its proficiency in monitoring HTTP traffic and iden9fying anomalous 
behaviors associated with web applica9on exploits. However, the 
slight varia9on in FNR between Zeek (11%) and Suricata (9%) indicates 
that signature-based systems may s9ll have a slight edge in detec9ng 
web vulnerabili9es. 
E. Scenario 5: Phishing AKacks 

In the phishing scenario, Suricata demonstrated excep9onal 
accuracy with the highest TPR of 95% and the lowest FNR of 5%, 
confirming its effec9veness in detec9ng malicious URLs, domain 
spoofing, and suspicious email traffic. Snort 3 performed similarly 
well, achieving a TPR of 90% and an FNR of 10%, outperforming Snort 
2 (TPR 83%, FNR 17%). This indicates that while both versions of Snort 
are effec9ve in detec9ng phishing aOempts, Snort 3 offers beOer 
accuracy. Zeek also achieved strong results with a TPR of 89% and an 
FNR of 11%, showing its capability in iden9fying phishing-related 
behaviors such as creden9al harves9ng and anomalous domain 
access. However, Suricata’s higher TPR and lower FNR make it the 
most reliable NUT in detec9ng phishing threats, likely due to its 
extensive rule set coverage for domain-related aOacks. 

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS 

This study aimed to evaluate the effec9veness of three opensource 
network intrusion detec9on systems (NIDS): Snort 2, Snort 3, Suricata, 
and Zeek, in the context of small and mediumsized enterprises 
(SMEs). The research focused on ease of deployment, performance 
under varying network condi9ons, and detec9on accuracy for 
common SME cyber threats. Through controlled experiments in a 
virtualized environment simula9ng realis9c SME condi9ons, we 
assessed the performance of these NIDS solu9ons. 

The findings revealed that Suricata consistently outperformed the 
others in scalability, efficiency, and low packet drop rates, making it 
highly suitable for SMEs. Snort 3, when op9mized with afpacket and 
hyperscan, demonstrated significant poten9al but is best suited for 
resource-rich environments. Snort 2 exhibited limita9ons under 
heavy traffic, while Zeek, though efficient, may not address all security 
needs due to its lighter ruleset. 

These findings have important implica9ons for SME NIDS 
deployment, highligh9ng the strengths of Suricata as a scalable 
solu9on. Snort 3 can benefit SMEs with sufficient hardware, while 
Snort 2 requires careful considera9on in high-traffic scenarios. Future 
research should validate these findings in real-world environments to 
beOer understand NIDS performance dynamics. 

This study offers valuable insights for SMEs aiming to enhance their 
cybersecurity posture. By clarifying the strengths and limita9ons of 
these NIDS, we contribute to improving network security in small and 
medium-sized enterprises. 

Based on the study’s findings, the following recommenda9ons are 
proposed:   

1) Priori9ze Suricata for Performance and Scalability: SMEs 
should consider deploying Suricata due to its consistent 
performance and efficiency. 

2) Deploy Snort 3 in Resource-Rich Senngs: Snort 3 is best 
for powerful hardware environments, ensuring high 
detec9on accuracy. 

Fig. 16: Performance comparison of NIDS tools against 
ruleset size under peak throughput (1000 Mbps)

Fig. 17: Performance comparison of NIDS solutions against 
the BigFlow.pcap dataset with different ruleset size

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13 

C. Scenario 3: Ransomware AKacks 

The ransomware aOack scenario underscores Suricata’s capability 
to detect sophis9cated threats, with a TPR of 94% and the lowest FNR 
at 6%. This demonstrates Suricata’s effec9veness in recognizing 
ransomware-specific traffic paOerns, including command and control, 
data exfiltra9on, and encryp9on ac9vi9es. Snort 3 also performed 
well with a TPR of 87%, while Snort 2 lagged slightly behind at 81%. 
Zeek’s performance was notable, with a TPR of 88%, indica9ng that its 
behavioral detec9on approach is par9cularly useful in iden9fying 
ransomware traffic, which oCen exhibits dis9nc9ve behaviors. 
However, Zeek’s slightly higher FNR (12%) compared to Suricata 
suggests that it might miss more subtle or encrypted ransomware 
ac9vi9es that rely less on obvious behavioral signatures.

 
 
 

Fig. 16: Performance comparison of NIDS tools against ruleset 
size under peak throughput (1000 Mbps). 

 
 

 

 

 

 

Fig. 17: Performance comparison of NIDS soluIons against 
the BigFlow.pcap dataset with different ruleset size. 

D. Scenario 4: Web Applica7on AKacks 

Web applica9on aOacks, such as SQL Injec9on and CrossSite 
Scrip9ng, were well detected by most NUTs, but Suricata con9nued to 
lead with a TPR of 91% and an FNR of 9%. Snort 3 followed closely 
with a TPR of 88%, highligh9ng its competence in handling web-based 
threats. Snort 2 trailed with a TPR of 85%, indica9ng that while it is 
effec9ve, it is not as finely tuned as its successor or Suricata. Zeek’s 
performance in this scenario was strong, with a TPR of 89%, reflec9ng 
its proficiency in monitoring HTTP traffic and iden9fying anomalous 
behaviors associated with web applica9on exploits. However, the 
slight varia9on in FNR between Zeek (11%) and Suricata (9%) indicates 
that signature-based systems may s9ll have a slight edge in detec9ng 
web vulnerabili9es. 
E. Scenario 5: Phishing AKacks 

In the phishing scenario, Suricata demonstrated excep9onal 
accuracy with the highest TPR of 95% and the lowest FNR of 5%, 
confirming its effec9veness in detec9ng malicious URLs, domain 
spoofing, and suspicious email traffic. Snort 3 performed similarly 
well, achieving a TPR of 90% and an FNR of 10%, outperforming Snort 
2 (TPR 83%, FNR 17%). This indicates that while both versions of Snort 
are effec9ve in detec9ng phishing aOempts, Snort 3 offers beOer 
accuracy. Zeek also achieved strong results with a TPR of 89% and an 
FNR of 11%, showing its capability in iden9fying phishing-related 
behaviors such as creden9al harves9ng and anomalous domain 
access. However, Suricata’s higher TPR and lower FNR make it the 
most reliable NUT in detec9ng phishing threats, likely due to its 
extensive rule set coverage for domain-related aOacks. 

VI. CONCLUSION, RECOMMENDATIONS, AND FUTURE WORKS 

This study aimed to evaluate the effec9veness of three opensource 
network intrusion detec9on systems (NIDS): Snort 2, Snort 3, Suricata, 
and Zeek, in the context of small and mediumsized enterprises 
(SMEs). The research focused on ease of deployment, performance 
under varying network condi9ons, and detec9on accuracy for 
common SME cyber threats. Through controlled experiments in a 
virtualized environment simula9ng realis9c SME condi9ons, we 
assessed the performance of these NIDS solu9ons. 

The findings revealed that Suricata consistently outperformed the 
others in scalability, efficiency, and low packet drop rates, making it 
highly suitable for SMEs. Snort 3, when op9mized with afpacket and 
hyperscan, demonstrated significant poten9al but is best suited for 
resource-rich environments. Snort 2 exhibited limita9ons under 
heavy traffic, while Zeek, though efficient, may not address all security 
needs due to its lighter ruleset. 

These findings have important implica9ons for SME NIDS 
deployment, highligh9ng the strengths of Suricata as a scalable 
solu9on. Snort 3 can benefit SMEs with sufficient hardware, while 
Snort 2 requires careful considera9on in high-traffic scenarios. Future 
research should validate these findings in real-world environments to 
beOer understand NIDS performance dynamics. 

This study offers valuable insights for SMEs aiming to enhance their 
cybersecurity posture. By clarifying the strengths and limita9ons of 
these NIDS, we contribute to improving network security in small and 
medium-sized enterprises. 

Based on the study’s findings, the following recommenda9ons are 
proposed:   

1) Priori9ze Suricata for Performance and Scalability: SMEs 
should consider deploying Suricata due to its consistent 
performance and efficiency. 

2) Deploy Snort 3 in Resource-Rich Senngs: Snort 3 is best 
for powerful hardware environments, ensuring high 
detec9on accuracy. 



163

JISCR 2025; Volume 8 Issue (2)

degradation with larger rulesets poses a risk of 
undetected threats, making Snort2 less suitable 
for SMEs that require reliable threat monitoring with 
minimal packet loss.

Snort 3 Performance Analysis: Snort 3 showed 
a more robust performance profile compared to 
Snort 2, although it still faced challenges at higher 
ruleset sizes. At 10,000 rules, Snort 3 exhibited a 
CPU utilization of 18.65% and memory usage of 
16.65%, with no packet drops, indicating efficient 
handling of traffic with relatively light computational 
demands. As the ruleset expanded to 50,000, 
CPU utilization increased significantly to 41.27%, 
and memory usage reached 22.42%. Despite 
this increase in resource consumption, Snort 3 
managed to keep packet drops to a minimum, only 
recording a drop rate of 0.87% at the highest ruleset 
size. This low packet drops rate highlights Snort 3’s 
enhanced detection engine and better resource 
optimization, which allows it to handle complex 
traffic with higher detection accuracy and minimal 
loss. However, the elevated CPU usage underlines 
potential performance bottlenecks, suggesting that 
while Snort 3 can manage large rulesets effectively, 
it does so at the cost of significantly increased 
processing power, which could impact overall 
system performance if not adequately provisioned.

Suricata Performance Analysis: Suricata 
consistently outperformed both versions of Snort 
across all metrics, maintaining superior detection 
capabilities with minimal resource consumption and 
packet drops. At a ruleset size of 10,000, Suricata’s 
CPU utilization was remarkably low at 5.65%, and 
memory usage was 3.74%, with zero packet drops, 
showcasing its highly efficient architecture. As the 
ruleset size increased to 50,000, Suricata’s CPU usage 
rose to 25.59%, and memory consumption increased 
moderately to 5.39%. Despite the larger ruleset, 
Suricata maintained a perfect record with zero packet 
drops, demonstrating its ability to efficiently scale and 
process high volumes of traffic without compromising 
performance. This robust performance can be 
attributed to Suricata’s multi-threaded processing 
and optimized detection algorithms, which allow it 
to balance load effectively across system resources, 
making it particularly wellsuited for real-world 
deployments in SMEs where reliability and efficiency 
are paramount.

V. Detection Capability Assessment

This section explores the third research 
question (RQ3), focusing on the efficacy of Snort 
2, Snort 3, Suricata, and Zeek in detecting common 
cyberattacks that frequently target SMEs. It 
assesses each NIDS detection accuracy through 
controlled attack scenarios, such as DoS, malware, 
ransomware, web application attacks, and phishing. 
The evaluation measures the TPR and FNR of 
each NIDS. The findings provide insights into the 
strengths and weaknesses of each tool’s ability to 
protect SME networks from diverse threats.

A. Scenario 1: DoS and Port Scanning Attacks
The results of this scenario show significant 

differences in how each NUT handles DoS and port 
scanning attacks. Suricata outperformed the other 
systems, achieving an impressive TPR of 85% with 
a relatively low FNR of 15%. This reflects Suricata’s 
superior ability to manage high-throughput traffic 
and accurately detect patterns associated with DoS 
and scanning activities. Snort 3 followed with a TPR 
of 80%, showing improvements over Snort 2, which 
only managed a TPR of 75%. Zeek, on the other 
hand, displayed a lower TPR of 60%, with a high 
FNR of 40%, which can be attributed to its focus 
on behavioral analysis rather than signature-based 
detection. Zeek’s relative under-performance in this 
scenario indicates its limitations in detecting rapid, 
highvolume attacks like DoS, where signature-
based systems like Suricata excel.

B. Scenario 2: General Malware
In the general malware detection scenario, 

Suricata once again demonstrated its strength, 
achieving the highest TPR of 90% with only a 
10% FNR. This result highlights the effectiveness 
of Suricata’s robust signature-based detection, 
which allows it to identify a wide range of malware 
threats. Snort 3 performed well with a TPR of 86%, 
significantly outperforming Snort 2, which had a 
TPR of 77%. The improved detection rate in Snort 
3 can be attributed to enhancements in its rule 
set and detection engine. Zeek, with its behavior-
based approach, achieved a TPR of 78%, which 
is slightly higher than Snort 2 but lower than Snort 
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3 and Suricata. Zeek’s detection capabilities 
in this scenario were hampered by its reliance 
on behavioral indicators rather than signature 
matching, which limited its ability to identify malware 
without clear behavioral anomalies.

C. Scenario 3: Ransomware Attacks
The ransomware attack scenario underscores 

Suricata’s capability to detect sophisticated 
threats, with a TPR of 94% and the lowest FNR at 
6%. This demonstrates Suricata’s effectiveness in 
recognizing ransomware-specific traffic patterns, 
including command and control, data exfiltration, 
and encryption activities. Snort 3 also performed 
well with a TPR of 87%, while Snort 2 lagged slightly 
behind at 81%. Zeek’s performance was notable, 
with a TPR of 88%, indicating that its behavioral 
detection approach is particularly useful in 
identifying ransomware traffic, which often exhibits 
distinctive behaviors. However, Zeek’s slightly 
higher FNR (12%) compared to Suricata suggests 
that it might miss more subtle or encrypted 
ransomware activities that rely less on obvious 
behavioral signatures.

D. Scenario 4: Web Application Attacks
Web application attacks, such as SQL Injection 

and CrossSite Scripting, were well detected by most 
NUTs, but Suricata continued to lead with a TPR of 
91% and an FNR of 9%. Snort 3 followed closely 
with a TPR of 88%, highlighting its competence in 
handling web-based threats. Snort 2 trailed with a 
TPR of 85%, indicating that while it is effective, it 
is not as finely tuned as its successor or Suricata. 
Zeek’s performance in this scenario was strong, 
with a TPR of 89%, reflecting its proficiency in 
monitoring HTTP traffic and identifying anomalous 
behaviors associated with web application exploits. 
However, the slight variation in FNR between Zeek 
(11%) and Suricata (9%) indicates that signature-
based systems may still have a slight edge in 
detecting web vulnerabilities.

E. Scenario 5: Phishing Attacks
In the phishing scenario, Suricata demonstrated 

exceptional accuracy with the highest TPR of 

95% and the lowest FNR of 5%, confirming its 
effectiveness in detecting malicious URLs, domain 
spoofing, and suspicious email traffic. Snort 3 
performed similarly well, achieving a TPR of 90% 
and an FNR of 10%, outperforming Snort 2 (TPR 
83%, FNR 17%). This indicates that while both 
versions of Snort are effective in detecting phishing 
attempts, Snort 3 offers better accuracy. Zeek also 
achieved strong results with a TPR of 89% and an 
FNR of 11%, showing its capability in identifying 
phishing-related behaviors such as credential 
harvesting and anomalous domain access. 
However, Suricata’s higher TPR and lower FNR 
make it the most reliable NUT in detecting phishing 
threats, likely due to its extensive rule set coverage 
for domain-related attacks.

VI. Conclusion, Recommendations, and 
Future Works

This study aimed to evaluate the effectiveness 
of three opensource network intrusion detection 
systems (NIDS): Snort 2, Snort 3, Suricata, and 
Zeek, in the context of small and mediumsized 
enterprises (SMEs). The research focused on ease 
of deployment, performance under varying network 
conditions, and detection accuracy for common 
SME cyber threats. Through controlled experiments 
in a virtualized environment simulating realistic SME 
conditions, we assessed the performance of these 
NIDS solutions.

The findings revealed that Suricata consistently 
outperformed the others in scalability, efficiency, 
and low packet drop rates, making it highly suitable 
for SMEs. Snort 3, when optimized with afpacket 
and hyperscan, demonstrated significant potential 
but is best suited for resource-rich environments. 
Snort 2 exhibited limitations under heavy traffic, 
while Zeek, though efficient, may not address all 
security needs due to its lighter ruleset.

These findings have important implications for 
SME NIDS deployment, highlighting the strengths 
of Suricata as a scalable solution. Snort 3 can 
benefit SMEs with sufficient hardware, while Snort 
2 requires careful consideration in high-traffic 
scenarios. Future research should validate these 
findings in real-world environments to better 
understand NIDS performance dynamics.
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This study offers valuable insights for SMEs 
aiming to enhance their cybersecurity posture. 
By clarifying the strengths and limitations of these 
NIDS, we contribute to improving network security 
in small and medium-sized enterprises.

Based on the study’s findings, the following 
recommendations are proposed:  

1.	 Prioritize Suricata for Performance and 
Scalability: SMEs should consider deploying 
Suricata due to its consistent performance 
and efficiency.

2.	 Deploy Snort 3 in Resource-Rich Settings: Snort 
3 is best for powerful hardware environments, 
ensuring high detection accuracy.

3.	 Use Snort 2 for Low-Traffic Environments: 
This NIDS is Suited for simpler networks, 
but caution is advised in more Demanding 
scenarios.

4.	 Leverage Zeek for Light weight Monitoring: 
Zeek is ideal For basic visibility and 
monitoring in environments where Extensive 
detection is less critical.

5.	 Regularly Update and Optimize NIDS: 
SMEs should keep Their NIDS updated and 
optimized for performance.

6.	 Consider Hybrid Approaches: Combining 
different NIDS Can enhance overall security 
coverage.

7.	 Invest in Staff Training: Training IT staff is 
crucial for effective NIDS deployment and 
management.

Future research could explore integrating 
machine learning with NIDS to enhance detection 
capabilities, customize rule sets for specific 
industries, and develop user-friendly interfaces 
for non-technical users. Additionally, longitudinal 
studies examining the long-term impact of NIDS 
deployment in SMEs would provide valuable 
insights into their adaptability and sustainability 
over time.
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