
83

Mitigation of Application Layer DDoS Flood Attack Against Web Servers
Ahamed Aljuhani 1,3 *, Talal Alharbi 2,3, Bradley Taylor 3
1 Department of Information Technology, Faculty of Computers & Information Technology, University of Tabuk, Tabuk, Saudi
Arabia.
2 College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia.
3 Electrical Engineering & Computer Science Department, School of Engineering, The Catholic University of America, United
States.

Received 14 Dec. 2018; Accepted 22 Feb. 2019; Available Online 25 Mar. 2019

Abstract
The Application-layer Distributed Denial of Service (App-DDoS) attack is one of the most menacing types of cyber-

attacks that circumvent web servers. Since the attackers have developed different techniques and methods, preventing
App-DDoS attacks has become more difficult than ever before. One of the most commonly and targeted protocols in
the application-layer is HTTP-GET flooding attacks. The attacker sends a large number of HTTP-GET requests from
different infected devices to force the server to assign the maximum resources available in response to every single
request. The objective of this attack is to exhaust the server’s resources and deny service to the legitimate users. The
App-DDoS attacks affect Quality of Service (QoS) and are extremely costly in terms of resource exhaustion. In this
paper, we discuss development and testing of an App-DDoS attack detection and mitigation model in order to defend web
servers against threats. Our design model employs three principle states: normal, screening and suspicious. The defense
model transits between these modes based on the server load. We use Machine Learning (ML) techniques to provide
high detection accuracy of App-DDoS attacks. Our experimental results demonstrate that this defense system is effective
against App-DDoS attack.

I. INTRODUCTION

Many organizations and institutions provide
online services, including online sales, education and
entertainment. With the increasing number of online
applications, the potential of such Distributed Denial
of Service (DDoS) attacks is also increasing [1]. DDoS
attacks have become more common and complicated in
recent years. A single DDoS attack compromises many
devices “zombies” target the victim and interrupt system
services by inundating resources [4]. Using botnets, the
attacker installs malware known as a master DDoS, to

find vulnerabilities in other devices within the same
network. Then the attacker controls these compromised
devices and continues to attack the victim. Most malware
programs have a high degree of automation to generate
massive traffic directed toward the target [5]. When an
attack occurs, it overwhelms the web servers and makes
them inaccessible for valid users.

The App-DDoS attack is one of the major threats to
web servers. The attacker employs botnets to send a large
number of requests to the target server. One of the most
commonly targeted protocols in the application-layer is

* Corresponding Author: Ahamed Aljuhani

Email: 91aljuhani@cua.edu

doi: 10.26735/16587790.2019.002

Keywords: DDoS; Application layer DDoS; App-DDoS Attack; HTTP GET; DDoS Http; Security; App-DDoS Detection; Mitigation;
NFV.

Production and hosting by NAUSS

1658-7782© 2019. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Naif Arab University for Security Sciences
Journal of Information Security & Cybercrimes Research

مجلة بحوث اأمن المعلومات والجرائم ال�سيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR
Journal of Information Security & Cybercrimes Research 2019; Volume 2 Issue (1), 83-95 Original Article

mailto:91aljuhani%40cua.edu?subject=
https://doi.org/10.26735/16587790.2019.002
https://crossmark.crossref.org/dialog/?doi=10.26735/16587790.2019.002&domain=pdf
https://nauss.edu.sa/
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://doi.org/10.26735/16587790.2019.002

84

JISCR 2019; Volume 2 Issue (1)

the HTTP protocol; flooding DDoS attacks on HTTP-
GET are particularly of concern due to its wide integrate
with online services [2]. Therefore, most web servers
are vulnerable to such attacks. When an attack occurs,
online services become unavailable and legitimate users
cannot access a web server. As a result, businesses suffer
significant financial and operating expenses for every
hour a system is down. The impact of an attack depends
on the size of the attack and the length of time the system
remains unavailable. Businesses often lose range from
$84,000 to $108,000 per hour when online services
become unavailable [6].

With rapid improvement in technology and online
systems, the application-layer DDoS attacks have
been increasingly used by attackers. One common
technique to launch such attack is to use botnets, a large
group of compromised devices which attack a web
server simultaneously. The volume and complexity of
application-layer DDoS attacks have increased recently.
Further, application-layer DDoS attacks are easy to
use because necessary sources and tools are publicly
available in the Internet.

Network Functions Virtualization (NFV) has
been given more attention recently aiming to deploy

network functions as software instances running on
Virtual Machines (VMs) [7]. A main characteristic of
the NFV is automation: instantiation, modification and
deletion of Virtualized Network Functions (VNFs) can
be automatically performed. Another essential feature
is cost reduction; NFV reduces the capital expenditure
(CapEx) and operating expenses (OpEx) [8].

The organization of this paper is as follows: Section
2 demonstrates the contribution of this work. Section
3 discusses the background and related work of the
application-layer DDoS attack. Section 4 presents the
methodology and system design of our defense model.
Section 5 expresses important considerations when
designing the defense system. Section 6 shows the
experimental evaluation and results of this work. Finally,
Section 7 summarizes the most essential points of the
research and recommendations for future work.

II. CONTRIBUTION

App-DDoS attacks require robust mitigation to help
protect from malicious attacks. Current mechanisms use
different procedures to defend against App-DDoS attacks,
though they have several limitations. Limitations include
slow/delayed attack detection, increased computational
complexity, and reduced computational capacity of
the dedicated hardware. In view of these problems, we
presented a holistic DDoS mitigation framework that may
be applied against all types of DDoS attacks enumerated
in previous research studies [4, 13]. The focus of the
present study, however, is on the App-DDoS attacks. We
designed and developed an App-DDoS attack detection
and mitigation model to defend web servers against
threats. Three primary modes of system operation are:
normal, screening and suspicious. Our system selects
these modes based on the server’s load. In our model,
the resource monitoring protocol trigger upon changes in
the server’s load and generates alert messages when it is
overloaded.

To ensure better detection of App-DDoS attacks, the
system employs Machine Learning (ML) techniques
during the screening mode to determine whether a given
user is normal or an attacker. However, when the trained
model cannot automatically discriminate whether the
traffic belongs to a legitimate user or an attacker and the
webserver continues to suffer from resource depletion
(overload), the system switches to the suspicious mode.
In that mode, each user must pass the CAPTCHA test in
order to connect to the webserver. The defense system is
designed to automatically to defeat App-DDoS attacks;
every action is recorded into a reporting module for the
security evaluation.

Fig. 1. The architecture of DDoS flooding attacks.

Fig. 2. Network Functions Virtualization (NFV) Architecture.

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

JISCR 2019; Volume 2 Issue (1)

85

JISCR 2019; Volume 2 Issue (1)

III. BACKGROUND AND RELATED WORK

A. Background
Distributed Denial of Service (DDoS) attacks are a

major threat to the infrastructure of a network. Network
providers suffer from various types of DDoS attacks;
each attack uses different, advanced techniques, such as
botnets and malware, to augment and prolong an attack.
Recently, sophisticated attacks using botnets involve
IoT devices and utilize a new DDoS method to disrupt
network services.

In current, DDoS attacks have been characterized by
greater magnitude and greater complexity than attacks of
the past. One of the remarkable trends in both scenarios
is the large amount of traffic generated by the botnets.
For example, in 2012, the botnet-based DDoS attack that
targeted US bank generated traffic up to 75 GBPS [9]. In
2013, the Spamhaus website was attacked with generated
traffic of 300 GBPS [9]. In 2014, an unnamed ISP was
knocked down by a Network Time Protocol (NTP) DDoS
attack with 400 GBPS of generated traffic [9]. In October
2016, the Mirai botnet targeted the DNS company named
Dyn with a flood that reached 1.2 Tbps; the Mirai botnet
attack was the largest DDoS attack to date [10]. Recent
report shows that DDoS attacks cost businesses on
average more than $2.5 million [10].

This operating and financial impact of DDoS attacks
on businesses is tremendous. The concern of businesses
about their network infrastructure grows after they
become a victim or a target of DDoS attacks. The cost
of an attack varies with the magnitude of the attack
and the duration of the system’s unavailability. Fig. 3
displays the distribution of DDoS financial impact, which
69% operational expense, 33% losses in revenue, 31%
customer attrition and 14% employee turnover [12].

The application layer, seventh layer of the OSI model,
interacts directly with the end user. This layer provides
many protocols, including the File Transfer Protocol
(FTP), Telnet, HTTP, the Domain Name System (DNS)
and the Simple Network Management Protocol (SNMP).

In the application-layer, DDoS attacks focus on
draining the server’s resources, such as Sockets, CPU,
memory, disk/database bandwidth, and I/O bandwidth.
As a result, legitimate users cannot access online services,
which are emptied of resources throughout the DDoS
attack. App-DDoS flooding attacks endeavor to target a
specific application protocol such as the HTTP- GET. The
attack floods the application server with many requests
and keeps the server busy handling these requests until
the server runs out of resources and becomes unavailable.
As a result, legitimate clients are not able to access the

application. The attacker usually launches the application
flooding attacks by using botnets, which make the server
unresponsive to legitimate users.

B. Related Works
Somani et al. in [15], proposed DDoS mitigation

technique “DARAC: DDoS Mitigation Using DDoS
Aware Resource Allocation in Cloud” was deployed
in the cloud. The detection method is based on human
behavior analysis, and, blacklist of source IPs to filter
out the malicious traffic. Also, it provided auto resource
scaling for services operating onto a virtual machine. The
resource utilization and traffic analysis were monitored
within a window size of three minutes. However,
the resource scaling is subject to service agreement
constraints with the cloud provider.

In a recent study, Singh and De in [16] presented
a defense model entitled DDoS Attack Detection
and Mitigation Technique Based on Http Count and
Verification Using CAPTCHA. The authors developed a
method for IP blacklisting to block the whole blacklisted
IP address. They used http counter to detect DDoS
attacks. The suspicious IP was received CAPTCHA
(puzzle test) in order to distinguish a normal user form
a zombie machine. This method, however, depends
only on the proposed http counter: attackers were able
to deceive the proposed solution and mimic the user
behavior through sending requests from a large group of
devices below the http counter threshold which will be
considered as normal users.

Devi and Yogesh in [17] proposed a DDoS detection
method as an approach to counter application layer
DDoS attacks. An Access Matrix was defined to capture
the access information from legitimate clients of a web
server. The access matrix contained the HTTP request
rate, HTTP session rate, and duration of users’ access.
The method to counter DDoS counted a suspicious

Fig. 3. DDoS financial impact.

Aljuhani et al.

JISCR 2019; Volume 2 Issue (1)

86

JISCR 2019; Volume 2 Issue (1)JISCR 2019; Volume 2 Issue (1)

assignment once sessions were established. Then,
based on the score, the counter method decided whether
to accept or drop the packet. However, this method
relied on the score calculation; if the proposed counter
miscalculates, it drops legitimate traffic.

Wang et al. in [18] suggested two methods for resisting
App-DDoS attacks. The App-DDoS attacks consist of
two categories, flooding attacks and asymmetric attacks.
In flooding attacks, the authors used entropy predictions,
based on selected features, to detect attacks. In the second
type, asymmetric attacks, the paper used a second-order
Markov Model to determine the normal user behavior
and calculate the deviation between the current access
sequence and the prediction sequence of each user.
However, the authors stated that the detection accuracy
needs to be improved in future work.

IV. SYSTEM DISCRIPTION

Our model is designed to mitigate App-DDoS flood
attacks: aiming to detect attacks at an early stage by
receiving alert messages from the resource monitoring
protocol. As a result, the server assures that App-DDoS
attacks will not degrade Quality of Service (QoS) for
legitimate users keeping the server from becoming
unavailable. The system has three primary modes:
normal, screening and suspicious. When the system runs
in a normal condition even if there is high demand from
certain users, the normal mode continues to operate as
long as the system remains in normal circumstances.
However, when a webserver resource depletion exceeds
a predefined criteria, an alert message is sent and the
system switches over to the screening mode. In the
screening mode, the screener uses our trained ML model
to check the traffic and determine whether the current user
is malicious or not. If an attack is detected, the screener
calls the mitigation algorithm to prevent the attacker from
accessing the server. However, if the trained ML model
has insufficient information to determine whether the
traffic belongs to a legitimate user or an attacker and the
webserver continues to suffer from resource depletion, the
system shifts into the suspicious mode. In the suspicious
mode, each user must pass a CAPTCHA test in order
to connect to the webserver. When the user solves the
graphical test, the connection is verified legitimate.

Our goal is to minimize system disruption. During
an incident, the system switches to the screening mode
(intermediate phase). If the load remains above the
accepted limit, the system transits into the suspicious
mode. However, it returns to the normal mode when
server’s load falls below the acceptable limit. After
exiting the suspicious mode, the system returns to the

normal mode. All three modes are implemented in the
screener.

In our system, modes are run exclusively. The
normal mode is the initial starting point for the system;
expectation of the system to operate in this mode most of
the time. Fig. 4 shows the state transition diagram for our
model. Our App-DDoS defense system as shown in Fig.
5 consists of several modules that together achieve this
robust mitigation in the face of App- DDoS attacks. The
details of the App-DDoS defense system is elucidated in
the rest of the paper.

A. Screening Mode
The normal mode is the initial starting point for the

system; expectation of the system to operate in this mode

Fig. 4. Transitioning mode based on the server load.

Fig. 5. App-DDoS defense class.

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

87

JISCR 2019; Volume 2 Issue (1)JISCR 2019; Volume 2 Issue (1)

model the algorithm online using its trained parameters.
The following subsection illustrates this process.

2) Dataset Description
In order to train and test the algorithm, the App-DDoS

dataset has been created for both normal and attack. We
use the ClarkNet-HTTP to define normal user behavior
[14]. This dataset includes host name, time stamp,
HTTP-GET requests, and destination address. The attack
data has been ׳collected by simulating attacks toward the
target. The traffic analyzer software was used to capture
all incoming traffic. Before feeding the dataset to the
algorithm, analysis and data cleaning are performed.
Missing information and gaps in the dataset are filtered
to not be trained in the model, to assure both the quality
of training and accuracy of the classification.

• Feature Extraction
We used the difference in time between requests made

by a user. As a normal user might show large variations
in a sequence of time requests, the attacker may present
a sequence of requests with small variations, aiming
to flood a webserver with many requests in short time.
The difference in time of those requests would explore a
much more telling pattern to distinguish whether users are
legitimate or not. When processing complete, the dataset
sample helps identify a set of k features. We denote a given
sample as a vector x of dimension k, where xi represents
the times at which requests i is arrived in sample x.

• Training and Testing
The algorithm is trained and tested offline to construct

the online prediction model for help in detecting App-
DDoS attacks during the screening mode. The offline
process is outlined in Algorithm 1.

most of the time. The normal mode indicates that there is
no overload of the system’s resources. The system runs
in the normal mode as the system operates in normal
conditions. Fig. 6 presents the sequence of the system
operations during the normal mode; showing how the
screener interacts when the system encounters resource
exhaustion and then switching to the screening mode.

B. Suspicious Mode
When the resource usage of the web server exceeds a

certain limit, such as if it encounters a flood of App-DDoS
attacks, an alert message is generated by the resource
monitoring protocol, and the system switches into the
screening mode. In the screening mode, the screener uses
the trained model of the logistic regression method to
check the traffic and identify the user’s behavior whether
a normal user or an attacker.

1) Logistic Regression
Logistic regression is a common used method for

binary classification due to its simplicity and efficiency.
We employ it to determine whether a given sequence of
requests is normal or an attacker (0 or 1). Formally, given
a set of parameters w to learn for the model, a dataset X
of size K and true labels y, logistic regression minimizes
the following objective:

is the logistic function. To construct the detection
algorithm, we train and test the dataset during offline

processing. After the algorithm is trained and tested, we

4.1 Normal Mode
The normal mode is the initial starting point for

the system; expectation of the system to operate in
this mode most of the time. The normal mode
indicates that there is no overload of the system’s
resources. The system runs in the normal mode as the

system operates in normal conditions. Figure 6
presents the sequence of the system operations during
the normal mode; showing how the screener interacts
when the system encounters resource exhaustion and
then switching to the screening mode.

Fig. 6. System’s operation during the normal mode

4.2 Screening Mode
When the resource usage of the web server

exceeds a certain limit, such as if it encounters a flood
of App-DDoS attacks, an alert message is generated
by the resource monitoring protocol, and the system
switches into the screening mode. In the screening
mode, the screener uses the trained model of the
logistic regression method to check the traffic and
identify the user’s behavior whether a normal user or
an attacker.
A) Logistic Regression

Logistic regression is a common used method for
binary classification due to its simplicity and
efficiency. We employ it to determine whether a given
sequence of requests is normal or an attacker (0 or 1).
Formally, given a set of parameters w to learn for the
model, a dataset X of size K and true labels y, logistic
regression minimizes the following objective:

								𝐽𝐽(𝑤𝑤) = ∑ −(𝑦𝑦* log.σ(𝒘𝒘1	𝑿𝑿*)3 + (1 − 𝑦𝑦*6
78)log	(1 − σ(𝒘𝒘1𝑿𝑿))) (1)

where Xi is the ith sample in X and σ	(𝑡𝑡) = 8
8:;<=

 is the
logistic function. To construct the detection algorithm, we
train and test the dataset during offline processing. After the
algorithm is trained and tested, we model the algorithm
online using its trained parameters. The following subsection
illustrates this process.
B) Dataset Description

In order to train and test the algorithm, the App-
DDoS dataset has been created for both normal and
attack. We use the ClarkNet-HTTP to define normal
user behavior [14]. This dataset includes host name,
time stamp, HTTP-GET requests, and destination
address. The attack data has been collected by
simulating attacks toward the target. The traffic
analyzer software was used to capture all incoming
traffic. Before feeding the dataset to the algorithm,
analysis and data cleaning are performed. Missing
information and gaps in the dataset are filtered to not

be trained in the model, to assure both the quality of
training and accuracy of the classification.
• Feature Extraction

We used the difference in time between requests made
by a user. As a normal user might show large variations in a
sequence of time requests, the attacker may present a
sequence of requests with small variations, aiming to flood a
webserver with many requests in short time. The difference
in time of those requests would explore a much more telling
pattern to distinguish whether users are legitimate or not.
When processing complete, the dataset sample helps
identify a set of k features. We denote a given sample as a
vector x of dimension k, where xi represents the times at
which requests i is arrived in sample x.
• Training and Testing

The algorithm is trained and tested offline to
construct the online prediction model for help in
detecting App-DDoS attacks during the screening
mode. The offline process is outlined in algorithm 1.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟏𝟏:	Offline	Process
1: PPrroocceedduurree:	Training	and	testing
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐀𝐀:	Dataset
3: 𝐎𝐎𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀:	Learning	parameters
4: Analyze	and	structure	the	App − DDoS	dataset
5: Feature	extraction
6: Training
7: Store	the	learning	parameters		
8: 𝐄𝐄𝐈𝐈𝐄𝐄	𝐈𝐈𝐀𝐀𝐀𝐀𝐩𝐩𝐩𝐩𝐄𝐄𝐈𝐈𝐀𝐀𝐩𝐩

After the offline processing, the prediction model
based on the logistic regression method will be used
during the screening mode to help identify the user as
a legitimate user or an attacker. Figure 7 presents the
sequence of the system operations during the
screening mode; showing how the screener interacts
when the system encounters resource exhaustion and
then running the detection algorithm to distinguish a
normal user from an attack. When an attack is
detected, the detection algorithm activates the
mitigation process to stop and block the attack. As a
final step, the system returns to the normal mode.

Fig. 6. System’s operation during the screening mode.

(1)

4.1 Normal Mode
The normal mode is the initial starting point for

the system; expectation of the system to operate in
this mode most of the time. The normal mode
indicates that there is no overload of the system’s
resources. The system runs in the normal mode as the

system operates in normal conditions. Figure 6
presents the sequence of the system operations during
the normal mode; showing how the screener interacts
when the system encounters resource exhaustion and
then switching to the screening mode.

Fig. 6. System’s operation during the normal mode

4.2 Screening Mode
When the resource usage of the web server

exceeds a certain limit, such as if it encounters a flood
of App-DDoS attacks, an alert message is generated
by the resource monitoring protocol, and the system
switches into the screening mode. In the screening
mode, the screener uses the trained model of the
logistic regression method to check the traffic and
identify the user’s behavior whether a normal user or
an attacker.
A) Logistic Regression

Logistic regression is a common used method for
binary classification due to its simplicity and
efficiency. We employ it to determine whether a given
sequence of requests is normal or an attacker (0 or 1).
Formally, given a set of parameters w to learn for the
model, a dataset X of size K and true labels y, logistic
regression minimizes the following objective:

								𝐽𝐽(𝑤𝑤) = ∑ −(𝑦𝑦* log.σ(𝒘𝒘1	𝑿𝑿*)3 + (1 − 𝑦𝑦*6
78)log	(1 − σ(𝒘𝒘1𝑿𝑿))) (1)

where Xi is the ith sample in X and σ	(𝑡𝑡) = 8
8:;<=

 is the
logistic function. To construct the detection algorithm, we
train and test the dataset during offline processing. After the
algorithm is trained and tested, we model the algorithm
online using its trained parameters. The following subsection
illustrates this process.
B) Dataset Description

In order to train and test the algorithm, the App-
DDoS dataset has been created for both normal and
attack. We use the ClarkNet-HTTP to define normal
user behavior [14]. This dataset includes host name,
time stamp, HTTP-GET requests, and destination
address. The attack data has been collected by
simulating attacks toward the target. The traffic
analyzer software was used to capture all incoming
traffic. Before feeding the dataset to the algorithm,
analysis and data cleaning are performed. Missing
information and gaps in the dataset are filtered to not

be trained in the model, to assure both the quality of
training and accuracy of the classification.
• Feature Extraction

We used the difference in time between requests made
by a user. As a normal user might show large variations in a
sequence of time requests, the attacker may present a
sequence of requests with small variations, aiming to flood a
webserver with many requests in short time. The difference
in time of those requests would explore a much more telling
pattern to distinguish whether users are legitimate or not.
When processing complete, the dataset sample helps
identify a set of k features. We denote a given sample as a
vector x of dimension k, where xi represents the times at
which requests i is arrived in sample x.
• Training and Testing

The algorithm is trained and tested offline to
construct the online prediction model for help in
detecting App-DDoS attacks during the screening
mode. The offline process is outlined in algorithm 1.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟏𝟏:	Offline	Process
1: PPrroocceedduurree:	Training	and	testing
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐀𝐀:	Dataset
3: 𝐎𝐎𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀:	Learning	parameters
4: Analyze	and	structure	the	App − DDoS	dataset
5: Feature	extraction
6: Training
7: Store	the	learning	parameters		
8: 𝐄𝐄𝐈𝐈𝐄𝐄	𝐈𝐈𝐀𝐀𝐀𝐀𝐩𝐩𝐩𝐩𝐄𝐄𝐈𝐈𝐀𝐀𝐩𝐩

After the offline processing, the prediction model
based on the logistic regression method will be used
during the screening mode to help identify the user as
a legitimate user or an attacker. Figure 7 presents the
sequence of the system operations during the
screening mode; showing how the screener interacts
when the system encounters resource exhaustion and
then running the detection algorithm to distinguish a
normal user from an attack. When an attack is
detected, the detection algorithm activates the
mitigation process to stop and block the attack. As a
final step, the system returns to the normal mode.

Aljuhani et al.

88

JISCR 2019; Volume 2 Issue (1)

After the offline processing, the prediction model
based on the logistic regression method will be used
during the screening mode to help identify the user as
a legitimate user or an attacker. Fig. 7 presents the
sequence of the system operations during the screening
mode; showing how the screener interacts when the
system encounters resource exhaustion and then running
the detection algorithm to distinguish a normal user
from an attack. When an attack is detected, the detection
algorithm activates the mitigation process to stop and
block the attack. As a final step, the system returns to the
normal mode.

C. Mitigation Module
Often after shifting to the screening mode, attacks can

be detected and the mitigation algorithm immediately
applied to prevent attack and return system loading to

normal. However, if the server’s resources continue to
be drained, the system shifts into the suspicious mode
and applies the CAPTCHA mechanism to distinguish
legitimate user from zombie machines. However,
our goal is to identify attacks with minimal use of the
CAPTHCA method to avoid annoying users.

When the system shifts into the suspicious mode, it
sends a CAPTHCHA puzzle to users for authentication.
The normal user can easily solve the puzzle and obtain
access to a web server. However, zombie machines
struggle to solve CAPTCHA puzzles; they either
try to mimic human users who are not able to solve
puzzles after many attempts or keep sending requests
continuously without solving puzzles. Those who keep
sending requests without solving the test are identified
as zombie machines. However, for attackers who try to
mimic human users and cannot solve puzzles after several
attempts, they will be considered zombie machines,
and then mitigation procedure will run. We consider
situations exist where a normal user sometimes fails to
solve a graphical test on the first attempt; the system will
not consider that user as a zombie machine. However,
if a user continuously fails to solve a graphical test and
exceeds a baseline limit for attempts, it will be classified
a zombie machine. The suspicious mode returns to the
normal mode when loading returns below threshold.
Algorithm 2 illustrates our application of the CAPTCHA
method.

Fig. 7. System’s operation during the suspicious mode.

Fig. 7. System’s operation during the screening mode

4.3 Suspicious Mode
Often after shifting to the screening mode, attacks can be

detected and the mitigation algorithm immediately applied to
prevent attack and return system loading to normal.
However, if the server’s resources continue to be drained, the
system shifts into the suspicious mode and applies the
CAPTCHA mechanism to distinguish legitimate user from
zombie machines. However, our goal is to identify attacks
with minimal use of the CAPTHCA method to avoid
annoying users.

When the system shifts into the suspicious mode, it sends
a CAPTHCHA puzzle to users for authentication. The
normal user can easily solve the puzzle and obtain access to a
web server. However, zombie machines struggle to solve
CAPTCHA puzzles; they either try to mimic human users
who are not able to solve puzzles after many attempts or
keep sending requests continuously without solving puzzles.
Those who keep sending requests without solving the test are
identified as zombie machines. However, for attackers who
try to mimic human users and cannot solve puzzles after
several attempts, they will be considered zombie machines,
and then mitigation procedure will run. We consider
situations exist where a normal user sometimes fails to solve
a graphical test on the first attempt; the system will not
consider that user as a zombie machine. However, if a user
continuously fails to solve a graphical test and exceeds a
baseline limit for attempts, it will be classified a zombie

machine. The suspicious mode returns to the normal mode
when loading returns below threshold. Algorithm 2
illustrates our application of the CAPTCHA method.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟐𝟐:	CAPTCHA	Method

1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Puzzle	test
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Incoming	packet
3: 𝐎𝐎𝐏𝐏𝐀𝐀𝐈𝐈𝐏𝐏𝐀𝐀:	Whether	a	user	is	ligitimate	or	a	zomby
4: 𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎	𝐏𝐏𝐀𝐀
5: 												send	CAPTCHA
6: number	of	attempts	++
7: 	iiff a	user	solves	the	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒		𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
8:																			𝑡𝑡ℎ𝑒𝑒	𝑝𝑝𝑎𝑎𝑒𝑒𝑎𝑎	𝑖𝑖𝑎𝑎	𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑙𝑙𝑒𝑒𝑡𝑡𝑒𝑒	&	𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎	𝑡𝑡ℎ𝑒𝑒	𝑎𝑎𝑒𝑒𝑟𝑟𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡
9: 								𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏	𝐀𝐀𝐟𝐟 number	of	attempts > threshold tthheenn
12:								10:																		𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝	𝑡𝑡ℎ𝑒𝑒	𝑒𝑒𝑓𝑓𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑓𝑓𝑐𝑐	&	𝑒𝑒𝑎𝑎𝑎𝑎	𝑡𝑡ℎ𝑒𝑒	𝐼𝐼𝐼𝐼	𝑡𝑡𝑓𝑓	𝑒𝑒	𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑏𝑏𝑝𝑝𝑖𝑖𝑎𝑎𝑡𝑡
11: 𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟
12: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏

Figure 8 presents the sequence of the system operations
during the suspicious mode. After applying the screening
mode, the system checks the resource and determines if the
resource is above the acceptable limit, it switches into the
suspicious mode. This process ultimately will be applied the
CAPTCHA mechanism to distinguish legitimate users from
zombie machines.

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

JISCR 2019; Volume 2 Issue (1)

89

JISCR 2019; Volume 2 Issue (1)JISCR 2019; Volume 2 Issue (1)

Fig. 7. System’s operation during the screening mode

4.3 Suspicious Mode
Often after shifting to the screening mode, attacks can be

detected and the mitigation algorithm immediately applied to
prevent attack and return system loading to normal.
However, if the server’s resources continue to be drained, the
system shifts into the suspicious mode and applies the
CAPTCHA mechanism to distinguish legitimate user from
zombie machines. However, our goal is to identify attacks
with minimal use of the CAPTHCA method to avoid
annoying users.

When the system shifts into the suspicious mode, it sends
a CAPTHCHA puzzle to users for authentication. The
normal user can easily solve the puzzle and obtain access to a
web server. However, zombie machines struggle to solve
CAPTCHA puzzles; they either try to mimic human users
who are not able to solve puzzles after many attempts or
keep sending requests continuously without solving puzzles.
Those who keep sending requests without solving the test are
identified as zombie machines. However, for attackers who
try to mimic human users and cannot solve puzzles after
several attempts, they will be considered zombie machines,
and then mitigation procedure will run. We consider
situations exist where a normal user sometimes fails to solve
a graphical test on the first attempt; the system will not
consider that user as a zombie machine. However, if a user
continuously fails to solve a graphical test and exceeds a
baseline limit for attempts, it will be classified a zombie

machine. The suspicious mode returns to the normal mode
when loading returns below threshold. Algorithm 2
illustrates our application of the CAPTCHA method.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟐𝟐:	CAPTCHA	Method

1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Puzzle	test
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Incoming	packet
3: 𝐎𝐎𝐏𝐏𝐀𝐀𝐈𝐈𝐏𝐏𝐀𝐀:	Whether	a	user	is	ligitimate	or	a	zomby
4: 𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎	𝐏𝐏𝐀𝐀
5: 												send	CAPTCHA
6: number	of	attempts	++
7: 	iiff a	user	solves	the	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒		𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
8:																			𝑡𝑡ℎ𝑒𝑒	𝑝𝑝𝑎𝑎𝑒𝑒𝑎𝑎	𝑖𝑖𝑎𝑎	𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑖𝑖𝑙𝑙𝑒𝑒𝑡𝑡𝑒𝑒	&	𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒𝑎𝑎𝑎𝑎	𝑡𝑡ℎ𝑒𝑒	𝑎𝑎𝑒𝑒𝑟𝑟𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡
9: 								𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏	𝐀𝐀𝐟𝐟 number	of	attempts > threshold tthheenn
12:								10:																		𝑎𝑎𝑎𝑎𝑓𝑓𝑝𝑝	𝑡𝑡ℎ𝑒𝑒	𝑒𝑒𝑓𝑓𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑓𝑓𝑐𝑐	&	𝑒𝑒𝑎𝑎𝑎𝑎	𝑡𝑡ℎ𝑒𝑒	𝐼𝐼𝐼𝐼	𝑡𝑡𝑓𝑓	𝑒𝑒	𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑏𝑏𝑝𝑝𝑖𝑖𝑎𝑎𝑡𝑡
11: 𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟
12: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏

Figure 8 presents the sequence of the system operations
during the suspicious mode. After applying the screening
mode, the system checks the resource and determines if the
resource is above the acceptable limit, it switches into the
suspicious mode. This process ultimately will be applied the
CAPTCHA mechanism to distinguish legitimate users from
zombie machines.

Fig. 8 presents the sequence of the system operations
during the suspicious mode. After applying the screening
mode, the system checks the resource and determines
if the resource is above the acceptable limit, it switches
into the suspicious mode. This process ultimately will

be applied the CAPTCHA mechanism to distinguish
legitimate users from zombie machines.

D. Mitigation Module
When an attack is detected, the detection algorithm

activates the mitigation process to stop and block the
attack. The mitigation algorithm receives the attacker’s
information detected by the screener detection algorithm.
Then the algorithm checks if the source IP already has
been captured; if not already in the list, it will be added.
If a given IP address comes up again, it may increase the
blocking time interval. The mitigation module does not
block the IP address permanently because some legitimate
IPs are included in zombie groups for a short time. When
legitimate users discover misuse devices and perform
security updates, the source IP might once again be a
legitimate user. Such zombie machines are usually created
from the same network in order to launch an effective
DDoS attack. Attackers seek a large group of devices,
in order to do that, the attacker may infect a specific
network to turn its machines into botnets for the purpose
of attacking a specific target. To enhance the performance
of mitigation, our mitigation algorithm includes the
capability to block IPs which come from the same network
or subnet instead of blocking each individual source IP.
The blacklist is updated; it expires within a pre-determined
time to prevent blocking legitimate users in the future.
Algorithm 3 illustrates the mitigation process.

Fig. 8. System’s operation during the suspicious mode

4.4 Mitigation Module
When an attack is detected, the detection algorithm

activates the mitigation process to stop and block the attack.
The mitigation algorithm receives the attacker’s information
detected by the screener detection algorithm. Then the
algorithm checks if the source IP already has been captured;
if not already in the list, it will be added. If a given IP
address comes up again, it may increase the blocking time
interval. The mitigation module does not block the IP
address permanently because some legitimate IPs are
included in zombie groups for a short time. When legitimate
users discover misuse devices and perform security updates,
the source IP might once again be a legitimate user. Such
zombie machines are usually created from the same network
in order to launch an effective DDoS attack. Attackers seek
a large group of devices, in order to do that, the attacker
may infect a specific network to turn its machines into
botnets for the purpose of attacking a specific target. To
enhance the performance of mitigation, our mitigation
algorithm includes the capability to block IPs which come
from the same network or subnet instead of blocking each
individual source IP. The blacklist is updated; it expires
within a pre-determined time to prevent blocking legitimate
users in the future. Algorithm 3 illustrates the mitigation
process.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟑𝟑:	Mitigation	Process
1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Block	IPs
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Attacker	list
3: 𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑖𝑖𝑖𝑖	𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀	
4: 𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑒𝑒𝑎𝑎𝑒𝑒	𝑖𝑖𝑛𝑛𝑎𝑎	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
5:																				𝑒𝑒𝑎𝑎𝑎𝑎	𝐼𝐼𝐼𝐼	𝑎𝑎𝑛𝑛	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎		
6: 𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟
7: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
8: 𝐟𝐟𝐀𝐀𝐀𝐀	𝐚𝐚𝐀𝐀𝐀𝐀	𝐼𝐼𝐼𝐼𝑙𝑙	 ∈ 	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀
9: 𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
10:																	𝐼𝐼𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒	𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏	𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒	𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑙𝑙
11: eellssee
12: 𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎_𝐼𝐼𝐼𝐼𝑙𝑙	𝑎𝑎𝑒𝑒𝑡𝑡𝑡𝑡𝑛𝑛𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
14: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏

4.5 Resource Monitoring
To determine the critical level and normal level,

resource utilization is managed according to the predefined
criteria. When any resource exceeds the acceptable limit,
resource monitoring protocol sends an alert message to the
screener. Then, the screener switches into the screening
mode and applies the detection algorithm. By the end of the
screening stage, we expect the resources to be back to the
normal level. However, if the resource remains above the
acceptable limit, the screener switches into the suspicious
mode. The system switches between modes based on the
server’s load.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟒𝟒:	Resource	Monitoring	Protocol	
1:𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Server	(ID,M)	//	M	is	the	maximum	capacity	
2:PPrroocceedduurree:	Trigger	resource	usage	and	send	alert	messages	
3:lloooopp:	
4:	calculate	𝑈𝑈	 = 	 û

ü
	U:	used	resource, C:	current	utlization	

5:														𝐀𝐀𝐟𝐟	𝑈𝑈 > 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
6:																		{send	an	alert	message	to	the	screener		
7:																		send	alert_message	to	the	reporting	module}		
8:													𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏		𝐀𝐀𝐟𝐟	𝑈𝑈 < 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
9:																{send	an	alert	message	to	the	screener	
10:																send	alert_message	to	the	reporting	module}		
11:											eenndd		iiff	
12:	eenndd		lloooopp		
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏	
4.6 Screener

The screener component is deployed on the application
server to protect the server from App-DDoS attacks. It
continuously checks for alert messages sent by resource
monitoring protocol. It is also responsible for changing
detection mode based on the type of the alert message. For
example, if an alert message is received indicating that the
resource usage is exceeded a threshold and the system
operates in the normal mode, the screener changes the
system mode to screening. If the screener receives another
alert message indicating that the resource usage is exceeded
a threshold, the screener changes the mode to suspicious.
Algorithm 5 illustrates the pseudocode of the screener
process.

Fig. 8. System’s operation during the suspicious mode.

Aljuhani et al.

90

JISCR 2019; Volume 2 Issue (1)

E. Resource Management
To determine the critical level and normal level,

resource utilization is managed according to the predefined
criteria. When any resource exceeds the acceptable limit,
resource monitoring protocol sends an alert message
to the screener. Then, the screener switches into the
screening mode and applies the detection algorithm. By
the end of the screening stage, we expect the resources
to be back to the normal level. However, if the resource
remains above the acceptable limit, the screener switches
into the suspicious mode. The system switches between
modes based on the server’s load Algorithm 4.

F. Screener
The screener component is deployed on the application

server to protect the server from App-DDoS attacks. It
continuously checks for alert messages sent by resource
monitoring protocol. It is also responsible for changing
detection mode based on the type of the alert message.
For example, if an alert message is received indicating
that the resource usage is exceeded a threshold and the
system operates in the normal mode, the screener changes
the system mode to screening. If the screener receives
another alert message indicating that the resource usage
is exceeded a threshold, the screener changes the mode
to suspicious. Algorithm 5 illustrates the pseudocode of
the screener process.

G. Reporting Module and Policy Evaluation
The administrator evaluates important events that have

been recorded during an incident. Based on the report,
the administrator should make some arrangements to the
policy and security rules as needed. Using this report, the
administrator is able to review system’s capabilities and
make changes necessary to improve QoS in future.

V. DEFENSE AGAINST APP-DDOS ATTACKS

The following considerations are taken into account
when designing the protection model that provides
effective mitigation against App-DDoS attacks.

• Early indications of the possibility of App-DDoS
attacks: We use resource monitoring protocol to
send an alert message when any server’s resourc-
es are above the accepted limit. This warning
limit gives an early indication of the possibility
of App-DDoS attacks and allows the detection
module to investigate traffic. Our method defines
early detection by the server consumed resources.

Fig. 9. Reporting analysis and policy evaluation

Fig. 8. System’s operation during the suspicious mode

4.4 Mitigation Module
When an attack is detected, the detection algorithm

activates the mitigation process to stop and block the attack.
The mitigation algorithm receives the attacker’s information
detected by the screener detection algorithm. Then the
algorithm checks if the source IP already has been captured;
if not already in the list, it will be added. If a given IP
address comes up again, it may increase the blocking time
interval. The mitigation module does not block the IP
address permanently because some legitimate IPs are
included in zombie groups for a short time. When legitimate
users discover misuse devices and perform security updates,
the source IP might once again be a legitimate user. Such
zombie machines are usually created from the same network
in order to launch an effective DDoS attack. Attackers seek
a large group of devices, in order to do that, the attacker
may infect a specific network to turn its machines into
botnets for the purpose of attacking a specific target. To
enhance the performance of mitigation, our mitigation
algorithm includes the capability to block IPs which come
from the same network or subnet instead of blocking each
individual source IP. The blacklist is updated; it expires
within a pre-determined time to prevent blocking legitimate
users in the future. Algorithm 3 illustrates the mitigation
process.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟑𝟑:	Mitigation	Process
1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Block	IPs
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Attacker	list
3: 𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑖𝑖𝑖𝑖	𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀	
4: 𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑒𝑒𝑎𝑎𝑒𝑒	𝑖𝑖𝑛𝑛𝑎𝑎	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
5:																				𝑒𝑒𝑎𝑎𝑎𝑎	𝐼𝐼𝐼𝐼	𝑎𝑎𝑛𝑛	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎		
6: 𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟
7: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
8: 𝐟𝐟𝐀𝐀𝐀𝐀	𝐚𝐚𝐀𝐀𝐀𝐀	𝐼𝐼𝐼𝐼𝑙𝑙	 ∈ 	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀
9: 𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈
10:																	𝐼𝐼𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒	𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏	𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒	𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑙𝑙
11: eellssee
12: 𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎_𝐼𝐼𝐼𝐼𝑙𝑙	𝑎𝑎𝑒𝑒𝑡𝑡𝑡𝑡𝑛𝑛𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀
14: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏

4.5 Resource Monitoring
To determine the critical level and normal level,

resource utilization is managed according to the predefined
criteria. When any resource exceeds the acceptable limit,
resource monitoring protocol sends an alert message to the
screener. Then, the screener switches into the screening
mode and applies the detection algorithm. By the end of the
screening stage, we expect the resources to be back to the
normal level. However, if the resource remains above the
acceptable limit, the screener switches into the suspicious
mode. The system switches between modes based on the
server’s load.
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟒𝟒:	Resource	Monitoring	Protocol	
1:𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Server	(ID,M)	//	M	is	the	maximum	capacity	
2:PPrroocceedduurree:	Trigger	resource	usage	and	send	alert	messages	
3:lloooopp:	
4:	calculate	𝑈𝑈	 = 	 û

ü
	U:	used	resource, C:	current	utlization	

5:														𝐀𝐀𝐟𝐟	𝑈𝑈 > 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
6:																		{send	an	alert	message	to	the	screener		
7:																		send	alert_message	to	the	reporting	module}		
8:													𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏		𝐀𝐀𝐟𝐟	𝑈𝑈 < 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
9:																{send	an	alert	message	to	the	screener	
10:																send	alert_message	to	the	reporting	module}		
11:											eenndd		iiff	
12:	eenndd		lloooopp		
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏	
4.6 Screener

The screener component is deployed on the application
server to protect the server from App-DDoS attacks. It
continuously checks for alert messages sent by resource
monitoring protocol. It is also responsible for changing
detection mode based on the type of the alert message. For
example, if an alert message is received indicating that the
resource usage is exceeded a threshold and the system
operates in the normal mode, the screener changes the
system mode to screening. If the screener receives another
alert message indicating that the resource usage is exceeded
a threshold, the screener changes the mode to suspicious.
Algorithm 5 illustrates the pseudocode of the screener
process.

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟓𝟓:	Screener Process
1:	𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐀𝐀:	Alert	messages	
2:	PPrroocceedduurree:	Switching	between	system	modes	
3:mode=normal	
3:	lloooopp:	
4:	check	for	alert	message	
5:	iiff	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎	and	mode	==	normal	
6:										mode	=	screening	
7:										ffoorr	eeaacchh	incoming	IP		
8:																		apply	logistic	regression	
9:																		iiff	pass	test	
10:																									forward	request	
11:																eellssee		
12:																									call	mitigation	
13:																eenndd		iiff		
14:									eenndd		ffoorr		
15:	eellssee		iiff	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎	and	mode	==	screening	
16:									mode	=	suspicious	
17:									ffoorr	eeaacchh	incoming	IP		
18:																		apply	CAPTCHA	method	
19:																		iiff		pass	test		
20:																											forward	request	
21:																		eellssee		
22:																											drop	connection	and	call	mitigation	
23:																		eenndd		iiff	
24:									eenndd		ffoorr		
25:eellssee		iiff	alert	message	and	(mode	==	screening	or			
																		suspicious)	
26:									mode=normal	
27:eenndd		iiff		
28:eenndd		lloooopp		

4.7 Reporting Module and Policy Evaluation

The administrator evaluates important events that have
been recorded during an incident. Based on the report, the
administrator should make some arrangements to the policy
and security rules as needed. Using this report, the
administrator is able to review system’s capabilities and
make changes necessary to improve QoS in future.

Fig. 9. Reporting module and policy evaluation

5 DEFENSE AGAINST APP-DDOS ATTACKS
The following considerations are taken into account

when designing the protection model that provides effective
mitigation against App-DDoS attacks.

• Early indications of the possibility of App-DDoS
attacks: We use resource monitoring protocol to
send an alert message when any server’s resources
are above the accepted limit. This warning limit
gives an early indication of the possibility of App-
DDoS attacks and allows the detection module to
investigate traffic. Our method defines early
detection by the server consumed resources. The
resource monitoring triggers the web server

resources in all modes in order to generate alert
messages about resource depletion. As a result, the
system transitions between modes based on the
web server load.

• Automated response: DDoS attacks of this sort
require a rapid response; the screener uses the
detection method once it receives an alert message
from the resource monitoring protocol. Because of
this, the administrator does not need to be present
in order to respond during an incident.

• A flash crowd event: A flash crowd forms when
many legitimate users access the webserver
simultaneously [19]. Our defense system is
designed to distinguish a flash crowd from DDoS
attacks. A flash crowd has mostly identical
attributes to normal users while the attributes of
App-DDoS attacks are radically different from
those of legitimate users. Additionally, a flash
crowd usually occurs during a special event, and a
defense system should expect more users during
such a time. Furthermore, during a flash crowd,
users usually have small number of requests in
comparison to App-DDoS attacks, which employ a
large number of requests.

• Attackers mimicking normal users: In order to
imitate legitimate users’ behavior, attackers need
an enormous group of zombie to emulate normal
users [20]. Because of this, an adversary seeks for
diverse of zombie machines within the same
network. Our designed model is able to detect
attackers who intimate normal users during the
screening mode. Additionally, CAPTCHA
mechanism will be performed during the suspicious
mode in case if attackers have not detected through
the screening mode.

• Minimal use of CAPTCHA: Our goal is to
identify attacks without using the CAPTHCA
method or at least to rely upon minimal use of
CAPTCHA. We do not want to authenticate users
using a CAPTCHA puzzle each time they need to
access a web server because this is sometimes
annoying for users. Our model is designed to detect
attacks without using graphical tests. However, at
some point, we use a graphical test when the
server’ resources continue to drain after the
screening mode is complete. Otherwise, the
graphical test does not appear during the normal
and screening mode.

• Policy control: The administrator determines
security rules for detection mechanisms and the
learning parameters that are required during the
screening stage. The administrator also defines the
threshold values for server’s resources.

• Effective mitigation: In our design system, we
detected and mitigated attacks in an appropriate
manner for the sake of performance and fast
protection. Like a large group of zombies, they
usually come from same LAN network, the
mitigation algorithm prevents zombies by blocking
subnet address instead of suspended each IP
address, which takes time to process and influence

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

91

JISCR 2019; Volume 2 Issue (1)

The resource monitoring triggers the web server
resources in all modes in order to generate alert
messages about resource depletion. As a result,
the system transitions between modes based on
the web server load.

• Automated response: DDoS attacks of this sort
require a rapid response; the screener uses the de-
tection method once it receives an alert message
from the resource monitoring protocol. Because
of this, the administrator does not need to be pres-
ent in order to respond during an incident.

• A flash crowd event: A flash crowd forms when
many legitimate users access the webserver simul-
taneously [19]. Our defense system is designed
to distinguish a flash crowd from DDoS attacks.
A flash crowd has mostly identical attributes to
normal users while the attributes of App-DDoS
attacks are radically different from those of legit-
imate users. Additionally, a flash crowd usually
occurs during a special event, and a defense sys-
tem should expect more users during such a time.
Furthermore, during a flash crowd, users usually
have small number of requests in comparison to
App-DDoS attacks, which employ a large number
of requests.

• Attackers mimicking normal users: In order to
imitate legitimate users’ behavior, attackers need
an enormous group of zombie to emulate normal
users [20]. Because of this, an adversary seeks for
diverse of zombie machines within the same net-
work. Our designed model is able to detect attack-
ers who intimate normal users during the screen-
ing mode. Additionally, CAPTCHA mechanism
will be performed during the suspicious mode
in case if attackers have not detected through the
screening mode.

• Minimal use of CAPTCHA: Our goal is to iden-
tify attacks without using the CAPTHCA method
or at least to rely upon minimal use of CAPT-
CHA. We do not want to authenticate users using
a CAPTCHA puzzle each time they need to access
a web server because this is sometimes annoying
for users. Our model is designed to detect attacks
without using graphical tests. However, at some
point, we use a graphical test when the server’ re-
sources continue to drain after the screening mode
is complete. Otherwise, the graphical test does not

appear during the normal and screening mode.

• Policy control: The administrator determines
security rules for detection mechanisms and the
learning parameters that are required during the
screening stage. The administrator also defines
the threshold values for server’s resources.

• Effective mitigation: In our design system, we
detected and mitigated attacks in an appropri-
ate manner for the sake of performance and fast
protection. Like a large group of zombies, they
usually come from same LAN network, the mit-
igation algorithm prevents zombies by blocking
subnet address instead of suspended each IP ad-
dress, which takes time to process and influence
the performance of the system. Also, our mitiga-
tion method temporarily adds the IP address to
a black list, so malicious traffic will be blocked.
However, when the IP comes up again, the mitiga-
tion may increase the suspended time.

• Reporting module: In the designed model, we re-
cord significant events in the reporting module.
However, the reporting module acts like a sum-
mary report containing important events taken by
the system like alert messages; whereas log file
provides detailed information for each process.
Therefore, the administrator reviews these actions
and makes necessary changes to the system for
QoS.

VI. EXPERIMENT AND EVALUATION

A. Testing Environment and Attack Scenarios
To evaluate the system design against App-DDoS

attacks, a virtual environment was created. The test
environment consisted of a web server with 2 VCPU and
2 GB memory running on Ubuntu 16.04 operating system.
The resource monitoring algorithm was implemented to
run continuously in the server’s background to trigger
the server’s resources and generate alert messages. The
screener was implemented with three primary modes
as mentioned in the system description section. In the
screening mode, we deployed the trained model based
on logistic regression analysis. The offline process was
performed to obtain the best learning parameters prior to
deploying the algorithm for real-time detection.

For the external network, a legitimate user machine
with 1 VCPU and 1 GB memory was created to send
requests to the webserver. Additionally, two attacker
machines with 1 VCPU and 1 GB memory were specified

Aljuhani et al.

92

JISCR 2019; Volume 2 Issue (1)

to generate App-DDoS attacks. The two attacker nodes
are configured with Goldeneye attack tool [21]. We also
installed Wireshark analyzer tool [22] at each station in
order to capture and analyze the network traffic. Details
of our experimental setup and description of machines
are presented in the Figure 10 and Table 1, respectively .

To test and validate the defense system, we performed
different attack scenarios targeting the webserver. The
webserver was targeted first with a host of light attacks
to determine the impacts on the target side. Next, we
conducted heavy attack scenarios in which the server’
resources were highly increased in the webserver and
a main influence was occurred in a short time. We also
created pulse attack scenarios to target the webserver
with a series of short but powerful pulses of App-DDoS
attacks. During light attack scenarios, no major impact
on the webserver was occurred, which, in turn, showed
no alert messages. Through the heavy and pulse attack
scenarios, however, the defense system encountered
resource depletion. The resource triggers sent alert
messages to the screener trying to detect and prevent
the attacks. In the following section, the results and
discussion are presented.

B. Light App-DDoS Attack
We started with light App-DDoS attacks; no major

effect on the webserver was noticed. The traffic rate was
also low during this scenario Fig. 11 (a). With light attack
scenarios, there were little errors over TCP connection
see Fig. 11 (b). In addition, the CPU usage was influenced
little between 30% and 35% Fig. 11 (c). The consumed
memory was increased little and then remained steady
Fig. 11 (d). The transmission rate was slightly increased
before become fluctuated Fig. 11 (e).

C. Heavy App-DDoS Attack
During the heavy attack without mitigation scenarios,

we were able to see the packet rate per second which
was highly increased in moments with the high amount
of App-DDoS attacks Fig. 12 (a). Meanwhile, the
webserver was busy of handling all packets coming
from attackers in a short time resulting in an increase in
TCP errors Fig. 12 (c). With the heavy attack phase, the
amount of CPU utilization was gradually occupied by
attackers. As the attacks increased, the CPU utilization
became overwhelmed; a response to the large number
of requests Fig. 12 (e). The memory usage was also
extremely influenced by the attacks, increased linearly
with the raise in attacks and continued to drain Fig. 12
(g). When the webserver was flooded by heavy attacks,

Fig. 10. Experimental setup.

TABLE I
 MACHINE’S SPECIFICATION

Machine Operating
System CPU CPU

Server Ubuntu
16.04 2 VCPU 2 GB

Legitimate
user

Ubuntu
16.04 1 VCPU 1 GB

Two
attacker

machines

Ubuntu
16.04 1 VCPU 1 GB

Fig. 11. Light attack.

Fig. 11. Light attack

6.3 Heavy App-DDoS Attack
During the heavy attack without mitigation scenarios, we

were able to see the packet rate per second which was
highly increased in moments with the high amount of App-
DDoS attacks (Figure 12 (a)). Meanwhile, the webserver
was busy of handling all packets coming from attackers in a
short time resulting in an increase in TCP errors (Figure 12
(c)). With the heavy attack phase, the amount of CPU
utilization was gradually occupied by attackers. As the
attacks increased, the CPU utilization became overwhelmed;
a response to the large number of requests (Figure 12 (e)).
The memory usage was also extremely influenced by the
attacks, increased linearly with the raise in attacks and
continued to drain (Figure 12 (g)). When the webserver was
flooded by heavy attacks, the transmission rate was

tremendously increased and continued to drain (Figure 12
(i)).

When heavy attack scenarios occurred with mitigation,
the attack led to a rapid increase in the traffic rate in a short
time. When the attack was detected and blocked, the traffic
rate decreased (Figure 12 (b)). As the CPU usage also
increased when the attack started, it returned to the normal
condition with the detection and blocking processes (Figure
12 (e)). Further, the memory usage was increased slightly at
the beginning of the attacks. When the attacks were detected
and blocked, the memory usage stopped to increase and
remained stable (Figure 12 (h)). The transmission rate was
also raised during the attack. However, when the attack was
successfully mitigated, the transmission rate was dropped
down and remained constant (Figures 12 (j)).

the transmission rate was tremendously increased and
continued to drain Fig. 12 (i).

When heavy attack scenarios occurred with
mitigation, the attack led to a rapid increase in the traffic
rate in a short time. When the attack was detected and
blocked, the traffic rate decreased Fig. 12 (b). As the CPU
usage also increased when the attack started, it returned

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

93

JISCR 2019; Volume 2 Issue (1)

to the normal condition with the detection and blocking
processes Fig. 12 (e). Further, the memory usage was
increased slightly at the beginning of the attacks. When
the attacks were detected and blocked, the memory usage
stopped to increase and remained stable Fig. 12 (h).
The transmission rate was also raised during the attack.
However, when the attack was successfully mitigated,
the transmission rate was dropped down and remained
constant Fig. 12 (j).

D. Pulse App-DDoS Attack
Another attack scenario was considered pulse attacks:

the attacker floods the webserver with multiple attacks
during a short time. When the attacks reached the peak,
another attack started and so on. As seen in Fig. 13 (a)
and 13 (c), this attack influenced traffic rate and increased
the transmission error connection with high rate of error
at each round. The CPU utilization reached about 100%

of CPU usage for a few seconds before turning down.
This attack repeated this strategy multiple times Fig. 13
(e). The memory utilization was fluctuated between high
and low level of used memory. The transmission rate
was high, and then sharply fell down, and started again
to increase. This is associated with the series of short
impulse attack multiple times made by the attackers Fig.
13 (i).

During pulse attack scenarios with mitigation, the
traffic rate and the transmission error were increased and
then dropped down in response to detection of hacking
Fig. 13 (b) and 13 (d). On the other hand, the CPU and
memory utilization were also influenced by attacks as the
mitigation method discovered and blocked the malicious
traffic. Based on this, the CPU and memory utilization
returned to the normal conditions Fig. 13 (f) and 13 (h).
The transmission rate was increased when attacks started
and then returned to the normal level Fig. 13 (j).

Fig. 12. Heavy attack. Fig. 13. Pulse attack.

Fig. 12. Heavy attack

6.4 Pulse App-DDoS Attack
Another attack scenario was considered pulse attacks:

the attacker floods the webserver with multiple attacks
during a short time. When the attacks reached the peak,
another attack started and so on. As seen in Figures 13 (a)
and (c), this attack influenced traffic rate and increased the
transmission error connection with high rate of error at each
round. The CPU utilization reached about 100% of CPU
usage for a few seconds before turning down. This attack
repeated this strategy multiple times (Figure 13 (e)). The
memory utilization was fluctuated between high and low
level of used memory. The transmission rate was high, and
then sharply fell down, and started again to increase. This is

associated with the series of short impulse attack multiple
times made by the attackers (Figure 13(i)).

During pulse attack scenarios with mitigation, the traffic
rate and the transmission error were increased and then
dropped down in response to detection of hacking (Figure
13 (b) and (d)). On the other hand, the CPU and memory
utilization were also influenced by attacks as the mitigation
method discovered and blocked the malicious traffic. Based
on this, the CPU and memory utilization returned to the
normal conditions (Figure 13 (f) and (h). The transmission
rate was increased when attacks started and then returned to
the normal level (Figure (j)).

Fig. 13. Pulse attack

6.5 Effectiveness Comparison
The following table compares our proposed mitigation

methods with existing techniques. To do so, we identified
the following standards:

• Attack identification method: identify signs of
DDoS attacks

• Screening for DDoS: whether method scans for
DDoS attacks continuously or on demand

• Detection method: detection algorithm being used
• Flash crowd detection: forms when many

legitimate users access a webserver simultaneously
• Automated response: DDoS attacks response

occurs without any involvement from the
administrator

• Early detection: early sign of DDoS attacks before
damaging the target

• Complexity: the level of computation for method
being used

• Detect zombie: attackers mimicking normal users

Aljuhani et al.

94

JISCR 2019; Volume 2 Issue (1)

E. Effectiveness Comparison
Table II compares our proposed mitigation methods

with existing techniques. To do so, we identified the
following standards:

• Attack identification method: identify signs of
DDoS attacks.

• Screening for DDoS: whether method scans for
DDoS attacks continuously or on demand.

• Detection method: detection algorithm being used

• Flash crowd detection: forms when many legiti-
mate users access a webserver simultaneously.

• Automated response: DDoS attacks response occurs
without any involvement from the administrator.

• Early detection: early sign of DDoS attacks before
damaging the target.

• Complexity: the level of computation for method
being used.

• Detect zombie: attackers mimicking normal users.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed an App-DDoS
defense system that effectively mitigates App-DDoS
attacks. The App-DDoS attack is one of the common
types of cyber-attacks that currently circumvent web
server security. Organizations and businesses are

suffering from App-DDoS attacks when relying on the
Internet to provide online services to their customers. In
this research, we have shown that our defense system
effectively mitigates App-DDoS attacks in a variety
of different scenarios. The system designed has three
primary modes: normal, screening and suspicious. The
normal mode indicates that the system is running in
normal conditions. However, when our monitor notices
a resource depletion exceeding predefined criteria, it
generates an alert message. The system switches over
to the screening mode. During screening stage, our
model checks the traffic and determines whether the
current user is an attacker or not. Then, the mitigation
algorithm runs to prevent attackers from accessing the
webserver. However, if the webserver continues to suffer
from additional resource depletion, the system shifts
into the suspicious mode. In the suspicious mode, each
user must pass the CAPTCHA test in order to connect
to the webserver. Our defense model records important
events during the attack to aid in the forensic evaluation
of security. The experimental results demonstrate that the
defense system is effective against App-DDoS attack.

Our system was designed to mitigate HTTP-GET
flooding DDoS attacks, one of the primary vectors of DDoS
attacks. However, there are numerous other types of attacks
in this layer that worthy of study, including Domain Name
System (DNS) attacks, Simple Message Transfer Protocol
(SMTP) attacks, and Session Initiation Protocol (SIP)
attacks. Each of these types can be used by attackers to

TABLE II
COMPARISON OF OUR SOLUTION METHOD WITH OTHER AVAILABLE APPROACHES

Citation

Attack
identi-
fication
method

Screening
for DDoS

Detection
method

Flash
crowd

detection

Automated
response

Early
detection

Early
detection

Detect
zombie

Detect
zombie

Traffic
Evaluator

auto-scaling
overload
method

Analyzing
user behav-

ior
No

Has to check
with Service
Level Agree-
ment (SLA)

Not spec-
ified Low No

Singh,
K.J. and

De, T
Http count continuously http counter No Not specified No Low Yes

Devi &
Yogesh

User Fea-
tures Not specified Access ma-

trix analysis Yes Not specified No Low No

Wang
et al

Not speci-
fied Not specified ML tech-

nique No Not specified Not spec-
ified High Yes

Our
solution

Alert
message

Upon
receiving

alert message

ML tech-
nique Yes Yes Yes Low Yes

Mitigation of Application Layer DDoS Flood Attack Against Web Servers

95

JISCR 2019; Volume 2 Issue (1)

exploit vulnerabilities and launch effective DDoS attacks.
Another consideration for future work is the development
of a dynamic threshold for the resource monitoring protocol
based on the requirements of the system during high
flood traffic. A fixed threshold depends on the system’s
capabilities and resource availability. The system failure
problem is another direction for future work. A method
could be found that provides backup and recovery for the

system after unexpected incidents have occurred. Even
during the mitigation process, a single point of failure
may stop the entire system from functioning correctly.

REFERENCES

[1] K. Singh, P. Singh and K. Kumar, “Application layer HTTP-

GET flood DDoS attack: Research landscape and challenges,”

Comput. Secur., vol. 65, pp. 344-372, Mar. 2017, doi: 10.1016/j.

cose.2016.10.005.

[2] K. Singh, P. Singh and K. Kumar, “User behavior analytics-based

classification of application layer HTTP-GET flood attacks,” J.
Netw. Comput. Appl., vol. 112, pp. 97-114, June 15, 2018, doi:

10.1016/j.jnca.2018.03.030.

[3] S. Mansfield-Devine, “The growth and evolution of DDoS,”

Netw. Secur., vol. 2015, no. 10, pp. 13-20, Oct. 2015, doi:

10.1016/S1353-4858(15)30092-1.

[4] T. Alharbi, A. Aljuhani, H. Liu and C. Hu, “Smart and Light-

weight DDoS Detection Using NFV,” in Proc. Int. Conf. Comput.
Data Anal. (ICCDA ’17), Lakeland, FL, USA, May 2017, pp.

220-227, doi: 10.1145/3093241.3093253.

[5] T. Thapngam, S. Yu, W. Zhou and G. Beliakov, "Discriminat-

ing DDoS attack traffic from flash crowd through packet arrival

patterns," 2011 IEEE Conf. Comput. Commun. Workshops (IN-
FOCOM WKSHPS), Shanghai, 2011, pp. 952-957, doi: 10.1109/

INFCOMW.2011.5928950.

[6] eCommerce web site performance today. An updated look at

consumer reaction to a poor online shopping experience, 2012.

[Online].Available: http://www.damcogroup.com/white papers/

ecommerce_website_perf_wp.pdf

[7] ETSI Industry Specification Group, “Network Function Virtual-

ization (NFV); Architectural Framework,” ETSI, France, RGS/

NFV-002 V1.2.1, 2014.

[8] A. Aljuhani and T. Alharbi, "Virtualized Network Functions se-

curity attacks and vulnerabilities," 2017 IEEE 7th Annu. Comput.
Commun. Workshop Conf. (CCWC), Las Vegas, NV, 2017, pp.

1-4, doi: 10.1109/CCWC.2017.7868478.

[9] D. Boro and D. K. Bhattacharyya, “DyProSD: a dynamic proto-

col specific defense for high-rate DDoS flooding attacks,” Mi-
crosyst. Technol., vol. 23, no. 3, pp 593-611, May 18, 2016, doi:

10.1007/s00542-016-2978-0.

[10] Nicky Woolf, “ DDoS attack that disrupted internet was largest

of its kind in history, experts say,” Oct. 26, 2016. [Online] .Avail-

able: https://www.theguardian.com/technology/2016/oct/26/

ddos-attack-dyn-mirai-botnet (accessed Dec. 2, 2016).

[11] Neustar, “Worldwide DDoS Attacks & Cyber Insights Research

Report,” May 2017. [Online].Available: https://www.discover.

neustar/201705-Security-Solutions-DDoS-SOC-Report-LP.html

[12] Worldwide infrastructure security report, 2017. [Online].Avail-

able: https://www.arbornetworks.com/images/documents/

WISR2016_EN_Web.pdf

[13] T. Alharbi, A. Aljuhani and Hang Liu, "Holistic DDoS mitigation

using NFV," 2017 IEEE 7th Annu. Comput. Commun. Workshop
Conf. (CCWC), Las Vegas, NV, 2017, pp. 1-4, doi: 10.1109/

CCWC.2017.7868480.

[14] ClarkNet-HTTP, http://ita.ee.lbl.gov/html/contrib/Clark-

Net-HTTP.html.

[15] G. Somani, A. Johri, M. Taneja, U. Pyne, M. S. Gaur and D. Sang-

hi, “DARAC: DDoS Mitigation Using DDoS Aware Resource

Allocation in Cloud,” in Int. Conf. Inf. Syst. Secur., in Informa-

tion System Security, in Lecture Notes in Computer Science, vol.

9478, pp. 263-282, doi: 10.1007/978-3-319-26961-0_16.

[16] K. J. Singh and T. De, "DDOS Attack Detection and Mitigation

Technique Based on Http Count and Verification Using CAPT-

CHA," 2015 Int. Conf. Comput. Intell. Netw., Bhubaneshwar,

2015, pp. 196-197, doi: 10.1109/CINE.2015.47.

[17] S. R. Devi and P. Yogesh, “An effective approach to counter

application layer DDoS attacks,’ in 2012 Third Conf. Comput.
Commun. Netw. Technol. (ICCCNT 2012), Coimbatore, 2012, pp.

1-4, doi: 10.1109/ICCCNT.2012.6395941.

[18] Y. Wang, L. Liu, C. Si and B. Sun, "A novel approach for coun-

tering application layer DDoS attacks," 2017 IEEE 2nd Adv. Inf.
Technol. Electron. Autom. Control Conf. (IAEAC), Chongqing,

2017, pp. 1814-1817, doi: 10.1109/IAEAC.2017.8054326.

[19] Q. Le, M. Zhanikeev and Y. Tanaka, "Methods of Distinguishing

Flash Crowds from Spoofed DoS Attacks," 2007 Next Genera-
tion Internet Netw., Trondheim, 2007, pp. 167-173, doi: 10.1109/

NGI.2007.371212.

[20] H. Beitollahi and G. Deconinck, “ConnectionScore: a statistical

technique to resist application-layer DDoS attack,” J. Ambient
Intell. Humanized Comput., vol. 5, no. 3, pp. 425-442, Jul. 10,

2013, doi: 10.1007/s12652-013-0196-5.

[21] Github, DDoS Attack Tools, 2013. [Online].Available: https://

github.com/jseidl/GoldenEye

[22] H. Kaur, S. Behal and K. Kumar, "Characterization and com-

parison of Distributed Denial of Service attack tools," 2015 Int.
Conf. Green Comput. Internet Things (ICGCIoT), Noida, 2015,

pp. 1139-1145, doi: 10.1109/ICGCIoT.2015.7380634.

Aljuhani et al.

