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Abstract
The Application-layer Distributed Denial of Service (App-DDoS) attack is one of the most menacing types of cyber-

attacks that circumvent web servers. Since the attackers have developed different techniques and methods, preventing 
App-DDoS attacks has become more difficult than ever before. One of the most commonly and targeted protocols in 
the application-layer is HTTP-GET flooding attacks. The attacker sends a large number of HTTP-GET requests from 
different infected devices to force the server to assign the maximum resources available in response to every single 
request. The objective of this attack is to exhaust the server’s resources and deny service to the legitimate users. The 
App-DDoS attacks affect Quality of Service (QoS) and are extremely costly in terms of resource exhaustion. In this 
paper, we discuss development and testing of an App-DDoS attack detection and mitigation model in order to defend web 
servers against threats. Our design model employs three principle states: normal, screening and suspicious. The defense 
model transits between these modes based on the server load. We use Machine Learning (ML) techniques to provide 
high detection accuracy of App-DDoS attacks. Our experimental results demonstrate that this defense system is effective 
against App-DDoS attack.

I. INTRODUCTION

Many organizations and institutions provide 
online services, including online sales, education and 
entertainment. With the increasing number of online 
applications, the potential of such Distributed Denial 
of Service (DDoS) attacks is also increasing [1]. DDoS 
attacks have become more common and complicated in 
recent years. A single DDoS attack compromises many 
devices “zombies” target the victim and interrupt system 
services by inundating resources [4]. Using botnets, the 
attacker installs malware known as a master DDoS, to 

find vulnerabilities in other devices within the same 
network. Then the attacker controls these compromised 
devices and continues to attack the victim. Most malware 
programs have a high degree of automation to generate 
massive traffic directed toward the target [5]. When an 
attack occurs, it overwhelms the web servers and makes 
them inaccessible for valid users.

The App-DDoS attack is one of the major threats to 
web servers. The attacker employs botnets to send a large 
number of requests to the target server. One of the most 
commonly targeted protocols in the application-layer is 
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the HTTP protocol; flooding DDoS attacks on HTTP-
GET are particularly of concern due to its wide integrate 
with online services [2]. Therefore, most web servers 
are vulnerable to such attacks. When an attack occurs, 
online services become unavailable and legitimate users 
cannot access a web server. As a result, businesses suffer 
significant financial and operating expenses for every 
hour a system is down. The impact of an attack depends 
on the size of the attack and the length of time the system 
remains unavailable. Businesses often lose range from 
$84,000 to $108,000 per hour when online services 
become unavailable [6].

With rapid improvement in technology and online 
systems, the application-layer DDoS attacks have 
been increasingly used by attackers. One common 
technique to launch such attack is to use botnets, a large 
group of compromised devices which attack a web 
server simultaneously. The volume and complexity of 
application-layer DDoS attacks have increased recently. 
Further, application-layer DDoS attacks are easy to 
use because necessary sources and tools are publicly 
available in the Internet.

Network Functions Virtualization (NFV) has 
been given more attention recently aiming to deploy 

network functions as software instances running on 
Virtual Machines (VMs) [7]. A main characteristic of 
the NFV is automation: instantiation, modification and 
deletion of Virtualized Network Functions (VNFs) can 
be automatically performed. Another essential feature 
is cost reduction; NFV reduces the capital expenditure 
(CapEx) and operating expenses (OpEx) [8].

The organization of this paper is as follows: Section 
2 demonstrates the contribution of this work. Section 
3 discusses the background and related work of the 
application-layer DDoS attack. Section 4 presents the 
methodology and system design of our defense model. 
Section 5 expresses important considerations when 
designing the defense system. Section 6 shows the 
experimental evaluation and results of this work. Finally, 
Section 7 summarizes the most essential points of the 
research and recommendations for future work.

 
II. CONTRIBUTION

App-DDoS attacks require robust mitigation to help 
protect from malicious attacks. Current mechanisms use 
different procedures to defend against App-DDoS attacks, 
though they have several limitations. Limitations include 
slow/delayed attack detection, increased computational 
complexity, and reduced computational capacity of 
the dedicated hardware. In view of these problems, we 
presented a holistic DDoS mitigation framework that may 
be applied against all types of DDoS attacks enumerated 
in previous research studies [4, 13]. The focus of the 
present study, however, is on the App-DDoS attacks.  We 
designed and developed an App-DDoS attack detection 
and mitigation model to defend web servers against 
threats. Three primary modes of system operation are: 
normal, screening and suspicious. Our system selects 
these modes based on the server’s load. In our model, 
the resource monitoring protocol trigger upon changes in 
the server’s load and generates alert messages when it is 
overloaded.

To ensure better detection of App-DDoS attacks, the 
system employs Machine Learning (ML) techniques 
during the screening mode to determine whether a given 
user is normal or an attacker.  However, when the trained 
model cannot automatically discriminate whether the 
traffic belongs to a legitimate user or an attacker and the 
webserver continues to suffer from resource depletion 
(overload), the system switches to the suspicious mode. 
In that mode, each user must pass the CAPTCHA test in 
order to connect to the webserver. The defense system is 
designed to automatically to defeat App-DDoS attacks; 
every action is recorded into a reporting module for the 
security evaluation.

Fig. 1. The architecture of DDoS flooding attacks.

Fig. 2. Network Functions Virtualization (NFV) Architecture.
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III. BACKGROUND AND RELATED WORK

A. Background
Distributed Denial of Service (DDoS) attacks are a 

major threat to the infrastructure of a network. Network 
providers suffer from various types of DDoS attacks; 
each attack uses different, advanced techniques, such as 
botnets and malware, to augment and prolong an attack. 
Recently, sophisticated attacks using botnets involve 
IoT devices and utilize a new DDoS method to disrupt 
network services. 

In current, DDoS attacks have been characterized by 
greater magnitude and greater complexity than attacks of 
the past. One of the remarkable trends in both scenarios 
is the large amount of traffic generated by the botnets. 
For example, in 2012, the botnet-based DDoS attack that 
targeted US bank generated traffic up to 75 GBPS [9]. In 
2013, the Spamhaus website was attacked with generated 
traffic of 300 GBPS [9]. In 2014, an unnamed ISP was 
knocked down by a Network Time Protocol (NTP) DDoS 
attack with 400 GBPS of generated traffic [9]. In October 
2016, the Mirai botnet targeted the DNS company named 
Dyn with a flood that reached 1.2 Tbps; the Mirai botnet 
attack was the largest DDoS attack to date [10]. Recent 
report shows that DDoS attacks cost businesses on 
average more than $2.5 million [10].

This operating and financial impact of DDoS attacks 
on businesses is tremendous. The concern of businesses 
about their network infrastructure grows after they 
become a victim or a target of DDoS attacks. The cost 
of an attack varies with the magnitude of the attack 
and the duration of the system’s unavailability. Fig. 3 
displays the distribution of DDoS financial impact, which 
69% operational expense, 33% losses in revenue, 31% 
customer attrition and 14% employee turnover [12].

The application layer, seventh layer of the OSI model, 
interacts directly with the end user. This layer provides 
many protocols, including the File Transfer Protocol 
(FTP), Telnet, HTTP, the Domain Name System (DNS) 
and the Simple Network Management Protocol (SNMP).

In the application-layer, DDoS attacks focus on 
draining the server’s resources, such as Sockets, CPU, 
memory, disk/database bandwidth, and I/O bandwidth. 
As a result, legitimate users cannot access online services, 
which are emptied of resources throughout the DDoS 
attack. App-DDoS flooding attacks endeavor to target a 
specific application protocol such as the HTTP- GET. The 
attack floods the application server with many requests 
and keeps the server busy handling these requests until 
the server runs out of resources and becomes unavailable. 
As a result, legitimate clients are not able to access the 

application. The attacker usually launches the application 
flooding attacks by using botnets, which make the server 
unresponsive to legitimate users.

B. Related Works
Somani et al. in [15], proposed DDoS mitigation 

technique “DARAC: DDoS Mitigation Using DDoS 
Aware Resource Allocation in Cloud” was deployed 
in the cloud. The detection method is based on human 
behavior analysis, and, blacklist of source IPs to filter 
out the malicious traffic. Also, it provided auto resource 
scaling for services operating onto a virtual machine. The 
resource utilization and traffic analysis were monitored 
within a window size of three minutes. However, 
the resource scaling is subject to service agreement 
constraints with the cloud provider. 

In a recent study, Singh and De in [16] presented 
a defense model entitled DDoS Attack Detection 
and Mitigation Technique Based on Http Count and 
Verification Using CAPTCHA. The authors developed a 
method for IP blacklisting to block the whole blacklisted 
IP address. They used http counter to detect DDoS 
attacks. The suspicious IP was received CAPTCHA 
(puzzle test) in order to distinguish a normal user form 
a zombie machine. This method, however, depends 
only on the proposed http counter: attackers were able 
to deceive the proposed solution and mimic the user 
behavior through sending requests from a large group of 
devices below the http counter threshold which will be 
considered as normal users.

Devi and Yogesh in [17] proposed a DDoS detection 
method as an approach to counter application layer 
DDoS attacks. An Access Matrix was defined to capture 
the access information from legitimate clients of a web 
server. The access matrix contained the HTTP request 
rate, HTTP session rate, and duration of users’ access. 
The method to counter DDoS counted a suspicious 

Fig. 3. DDoS financial impact.
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assignment once sessions were established. Then, 
based on the score, the counter method decided whether 
to accept or drop the packet. However, this method 
relied on the score calculation; if the proposed counter 
miscalculates, it drops legitimate traffic.

Wang et al. in [18] suggested two methods for resisting 
App-DDoS attacks. The App-DDoS attacks consist of 
two categories, flooding attacks and asymmetric attacks. 
In flooding attacks, the authors used entropy predictions, 
based on selected features, to detect attacks. In the second 
type, asymmetric attacks, the paper used a second-order 
Markov Model to determine the normal user behavior 
and calculate the deviation between the current access 
sequence and the prediction sequence of each user. 
However, the authors stated that the detection accuracy 
needs to be improved in future work.

IV. SYSTEM DISCRIPTION

Our model is designed to mitigate App-DDoS flood 
attacks: aiming to detect attacks at an early stage by 
receiving alert messages from the resource monitoring 
protocol. As a result, the server assures that App-DDoS 
attacks will not degrade Quality of Service (QoS) for 
legitimate users keeping the server from becoming 
unavailable. The system has three primary modes: 
normal, screening and suspicious. When the system runs 
in a normal condition even if there is high demand from 
certain users, the normal mode continues to operate as 
long as the system remains in normal circumstances. 
However, when a webserver resource depletion exceeds 
a predefined criteria, an alert message is sent and the 
system switches over to the screening mode. In the 
screening mode, the screener uses our trained ML model 
to check the traffic and determine whether the current user 
is malicious or not. If an attack is detected, the screener 
calls the mitigation algorithm to prevent the attacker from 
accessing the server. However, if the trained ML model 
has insufficient information to determine whether the 
traffic belongs to a legitimate user or an attacker and the 
webserver continues to suffer from resource depletion, the 
system shifts into the suspicious mode. In the suspicious 
mode, each user must pass a CAPTCHA test in order 
to connect to the webserver. When the user solves the 
graphical test, the connection is verified legitimate.

Our goal is to minimize system disruption. During 
an incident, the system switches to the screening mode 
(intermediate phase). If the load remains above the 
accepted limit, the system transits into the suspicious 
mode. However, it returns to the normal mode when 
server’s load falls below the acceptable limit. After 
exiting the suspicious mode, the system returns to the 

normal mode. All three modes are implemented in the 
screener.

In our system, modes are run exclusively. The 
normal mode is the initial starting point for the system; 
expectation of the system to operate in this mode most of 
the time. Fig. 4 shows the state transition diagram for our 
model. Our App-DDoS defense system as shown in Fig. 
5 consists of several modules that together achieve this 
robust mitigation in the face of App- DDoS attacks. The 
details of the App-DDoS defense system is elucidated in 
the rest of the paper.

A. Screening Mode
The normal mode is the initial starting point for the 

system; expectation of the system to operate in this mode 

Fig. 4. Transitioning mode based on the server load.

Fig. 5. App-DDoS defense class.
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model the algorithm online using its trained parameters. 
The following subsection illustrates this process.

2) Dataset Description
In order to train and test the algorithm, the App-DDoS 

dataset has been created for both normal and attack. We 
use the ClarkNet-HTTP to define normal user behavior 
[14]. This dataset includes host name, time stamp, 
HTTP-GET requests, and destination address. The attack 
data has been ׳collected by simulating attacks toward the 
target. The traffic analyzer software was used to capture 
all incoming traffic. Before feeding the dataset to the 
algorithm, analysis and data cleaning are performed. 
Missing information and gaps in the dataset are filtered 
to not be trained in the model, to assure both the quality 
of training and accuracy of the classification. 

• Feature Extraction
We used the difference in time between requests made 

by a user. As a normal user might show large variations 
in a sequence of time requests, the attacker may present 
a sequence of requests with small variations, aiming 
to flood a webserver with many requests in short time. 
The difference in time of those requests would explore a 
much more telling pattern to distinguish whether users are 
legitimate or not. When processing complete, the dataset 
sample helps identify a set of k features. We denote a given 
sample as a vector x of dimension k, where xi represents 
the times at which requests i is arrived in sample x.

• Training and Testing
The algorithm is trained and tested offline to construct 

the online prediction model for help in detecting App-
DDoS attacks during the screening mode. The offline 
process is outlined in Algorithm 1. 

most of the time. The normal mode indicates that there is 
no overload of the system’s resources. The system runs 
in the normal mode as the system operates in normal 
conditions. Fig. 6 presents the sequence of the system 
operations during the normal mode; showing how the 
screener interacts when the system encounters resource 
exhaustion and then switching to the screening mode.

B. Suspicious Mode
When the resource usage of the web server exceeds a 

certain limit, such as if it encounters a flood of App-DDoS 
attacks, an alert message is generated by the resource 
monitoring protocol, and the system switches into the 
screening mode. In the screening mode, the screener uses 
the trained model of the logistic regression method to 
check the traffic and identify the user’s behavior whether 
a normal user or an attacker.

1) Logistic Regression
Logistic regression is a common used method for 

binary classification due to its simplicity and efficiency. 
We employ it to determine whether a given sequence of 
requests is normal or an attacker (0 or 1). Formally, given 
a set of parameters w to learn for the model, a dataset X 
of size K and true labels y, logistic regression minimizes 
the following objective:

is the logistic function. To construct the detection
algorithm, we train and test the dataset during offline 

processing. After the algorithm is trained and tested, we 

4.1 Normal Mode 
The normal mode is the initial starting point for 

the system; expectation of the system to operate in 
this mode most of the time. The normal mode 
indicates that there is no overload of the system’s 
resources. The system runs in the normal mode as the 

system operates in normal conditions. Figure 6 
presents the sequence of the system operations during 
the normal mode; showing how the screener interacts 
when the system encounters resource exhaustion and 
then switching to the screening mode. 

Fig. 6. System’s operation during the normal mode

4.2 Screening Mode 
When the resource usage of the web server 

exceeds a certain limit, such as if it encounters a flood 
of App-DDoS attacks, an alert message is generated 
by the resource monitoring protocol, and the system 
switches into the screening mode. In the screening 
mode, the screener uses the trained model of the 
logistic regression method to check the traffic and 
identify the user’s behavior whether a normal user or 
an attacker. 
A) Logistic Regression 

Logistic regression is a common used method for 
binary classification due to its simplicity and 
efficiency. We employ it to determine whether a given 
sequence of requests is normal or an attacker (0 or 1). 
Formally, given a set of parameters w to learn for the 
model, a dataset X of size K and true labels y, logistic 
regression minimizes the following objective: 

								𝐽𝐽(𝑤𝑤) = ∑ −(𝑦𝑦* log.σ(𝒘𝒘1	𝑿𝑿*	)3 + (1 − 𝑦𝑦*6
*78 )log	(1 − σ(𝒘𝒘1𝑿𝑿*))) (1) 

where Xi is the ith sample in X and  σ	(𝑡𝑡) = 8
8:;<=

 is the 
logistic function. To construct the detection algorithm, we 
train and test the dataset during offline processing. After the 
algorithm is trained and tested, we model the algorithm 
online using its trained parameters. The following subsection 
illustrates this process. 
B) Dataset Description 

In order to train and test the algorithm, the App-
DDoS dataset has been created for both normal and 
attack. We use the ClarkNet-HTTP to define normal 
user behavior [14]. This dataset includes host name, 
time stamp, HTTP-GET requests, and destination 
address. The attack data has been collected by 
simulating attacks toward the target. The traffic 
analyzer software was used to capture all incoming 
traffic. Before feeding the dataset to the algorithm, 
analysis and data cleaning are performed. Missing 
information and gaps in the dataset are filtered to not 

be trained in the model, to assure both the quality of 
training and accuracy of the classification. 
• Feature Extraction 

We used the difference in time between requests made 
by a user. As a normal user might show large variations in a 
sequence of time requests, the attacker may present a 
sequence of requests with small variations, aiming to flood a 
webserver with many requests in short time. The difference 
in time of those requests would explore a much more telling 
pattern to distinguish whether users are legitimate or not. 
When processing complete, the dataset sample helps 
identify a set of k features. We denote a given sample as a 
vector x of dimension k, where xi represents the times at 
which requests i is arrived in sample x. 
• Training and Testing 

The algorithm is trained and tested offline to 
construct the online prediction model for help in 
detecting App-DDoS attacks during the screening 
mode. The offline process is outlined in algorithm 1. 
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟏𝟏:	Offline	Process  
1: PPrroocceedduurree:	Training	and	testing  
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐀𝐀:	Dataset 
3: 𝐎𝐎𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀:	Learning	parameters 
4: Analyze	and	structure	the	App − DDoS	dataset 
5: Feature	extraction 
6: Training 
7: Store	the	learning	parameters		           
8: 𝐄𝐄𝐈𝐈𝐄𝐄	𝐈𝐈𝐀𝐀𝐀𝐀𝐩𝐩𝐩𝐩𝐄𝐄𝐈𝐈𝐀𝐀𝐩𝐩 

After the offline processing, the prediction model 
based on the logistic regression method will be used 
during the screening mode to help identify the user as 
a legitimate user or an attacker. Figure 7 presents the 
sequence of the system operations during the 
screening mode; showing how the screener interacts 
when the system encounters resource exhaustion and 
then running the detection algorithm to distinguish a 
normal user from an attack. When an attack is 
detected, the detection algorithm activates the 
mitigation process to stop and block the attack. As a 
final step, the system returns to the normal mode.  

Fig. 6. System’s operation during the screening mode.
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Fig. 6. System’s operation during the normal mode
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 is the 
logistic function. To construct the detection algorithm, we 
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algorithm is trained and tested, we model the algorithm 
online using its trained parameters. The following subsection 
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B) Dataset Description 

In order to train and test the algorithm, the App-
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time stamp, HTTP-GET requests, and destination 
address. The attack data has been collected by 
simulating attacks toward the target. The traffic 
analyzer software was used to capture all incoming 
traffic. Before feeding the dataset to the algorithm, 
analysis and data cleaning are performed. Missing 
information and gaps in the dataset are filtered to not 

be trained in the model, to assure both the quality of 
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When processing complete, the dataset sample helps 
identify a set of k features. We denote a given sample as a 
vector x of dimension k, where xi represents the times at 
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After the offline processing, the prediction model 
based on the logistic regression method will be used 
during the screening mode to help identify the user as 
a legitimate user or an attacker. Figure 7 presents the 
sequence of the system operations during the 
screening mode; showing how the screener interacts 
when the system encounters resource exhaustion and 
then running the detection algorithm to distinguish a 
normal user from an attack. When an attack is 
detected, the detection algorithm activates the 
mitigation process to stop and block the attack. As a 
final step, the system returns to the normal mode.  
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After the offline processing, the prediction model 
based on the logistic regression method will be used 
during the screening mode to help identify the user as 
a legitimate user or an attacker. Fig. 7 presents the 
sequence of the system operations during the screening 
mode; showing how the screener interacts when the 
system encounters resource exhaustion and then running 
the detection algorithm to distinguish a normal user 
from an attack. When an attack is detected, the detection 
algorithm activates the mitigation process to stop and 
block the attack. As a final step, the system returns to the 
normal mode.

C. Mitigation Module
Often after shifting to the screening mode, attacks can 

be detected and the mitigation algorithm immediately 
applied to prevent attack and return system loading to 

normal. However, if the server’s resources continue to 
be drained, the system shifts into the suspicious mode 
and applies the CAPTCHA mechanism to distinguish 
legitimate user from zombie machines. However, 
our goal is to identify attacks with minimal use of the 
CAPTHCA method to avoid annoying users. 

When the system shifts into the suspicious mode, it 
sends a CAPTHCHA puzzle to users for authentication. 
The normal user can easily solve the puzzle and obtain 
access to a web server. However, zombie machines 
struggle to solve CAPTCHA puzzles; they either 
try to mimic human users who are not able to solve 
puzzles after many attempts or keep sending requests 
continuously without solving puzzles. Those who keep 
sending requests without solving the test are identified 
as zombie machines. However, for attackers who try to 
mimic human users and cannot solve puzzles after several 
attempts, they will be considered zombie machines, 
and then mitigation procedure will run. We consider  
situations exist where a normal user sometimes fails to 
solve a graphical test on the first attempt; the system will 
not consider that user as a zombie machine. However, 
if a user continuously fails to solve a graphical test and 
exceeds a baseline limit for attempts, it will be classified 
a zombie machine. The suspicious mode returns to the 
normal mode when loading returns below threshold. 
Algorithm 2 illustrates our application of the CAPTCHA 
method.
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Figure 8 presents the sequence of the system operations 
during the suspicious mode. After applying the screening 
mode, the system checks the resource and determines if the 
resource is above the acceptable limit, it switches into the 
suspicious mode. This process ultimately will be applied the 
CAPTCHA mechanism to distinguish legitimate users from 
zombie machines. 
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Fig. 8 presents the sequence of the system operations 
during the suspicious mode. After applying the screening 
mode, the system checks the resource and determines 
if the resource is above the acceptable limit, it switches 
into the suspicious mode. This process ultimately will 

be applied the CAPTCHA mechanism to distinguish 
legitimate users from zombie machines.

D. Mitigation Module
When an attack is detected, the detection algorithm 

activates the mitigation process to stop and block the 
attack. The mitigation algorithm receives the attacker’s 
information detected by the screener detection algorithm. 
Then the algorithm checks if the source IP already has 
been captured; if not already in the list, it will be added. 
If a given IP address comes up again, it may increase the 
blocking time interval. The mitigation module does not 
block the IP address permanently because some legitimate 
IPs are included in zombie groups for a short time. When 
legitimate users discover misuse devices and perform 
security updates, the source IP might once again be a 
legitimate user. Such zombie machines are usually created 
from the same network in order to launch an effective 
DDoS attack. Attackers seek a large group of devices, 
in order to do that, the attacker may infect a specific 
network to turn its machines into botnets for the purpose 
of attacking a specific target. To enhance the performance 
of mitigation, our mitigation algorithm includes the 
capability to block IPs which come from the same network 
or subnet instead of blocking each individual source IP. 
The blacklist is updated; it expires within a pre-determined 
time to prevent blocking legitimate users in the future. 
Algorithm 3 illustrates the mitigation process.
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4.4 Mitigation Module 
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address permanently because some legitimate IPs are 
included in zombie groups for a short time. When legitimate 
users discover misuse devices and perform security updates, 
the source IP might once again be a legitimate user. Such 
zombie machines are usually created from the same network 
in order to launch an effective DDoS attack. Attackers seek 
a large group of devices, in order to do that, the attacker 
may infect a specific network to turn its machines into 
botnets for the purpose of attacking a specific target. To 
enhance the performance of mitigation, our mitigation 
algorithm includes the capability to block IPs which come 
from the same network or subnet instead of blocking each 
individual source IP. The blacklist is updated; it expires 
within a pre-determined time to prevent blocking legitimate 
users in the future. Algorithm 3 illustrates the mitigation 
process. 
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟑𝟑:	Mitigation	Process 
1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Block	IPs 
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Attacker	list 
3:     𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑖𝑖𝑖𝑖	𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀	
4:             𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑒𝑒𝑎𝑎𝑒𝑒	𝑖𝑖𝑛𝑛𝑎𝑎	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈 
5:																				𝑒𝑒𝑎𝑎𝑎𝑎	𝐼𝐼𝐼𝐼	𝑎𝑎𝑛𝑛	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎		
6:            𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟 
7:     𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀 
8:   𝐟𝐟𝐀𝐀𝐀𝐀	𝐚𝐚𝐀𝐀𝐀𝐀	𝐼𝐼𝐼𝐼𝑙𝑙	 ∈ 	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀 
9:           𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈 
10:																	𝐼𝐼𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒	𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏	𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒	𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑙𝑙 
11:        eellssee 
12:               𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎_𝐼𝐼𝐼𝐼𝑙𝑙	𝑎𝑎𝑒𝑒𝑡𝑡𝑡𝑡𝑛𝑛𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡 
13:   𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀 
14: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏 

4.5 Resource Monitoring 
To determine the critical level and normal level, 

resource utilization is managed according to the predefined 
criteria. When any resource exceeds the acceptable limit, 
resource monitoring protocol sends an alert message to the 
screener. Then, the screener switches into the screening 
mode and applies the detection algorithm. By the end of the 
screening stage, we expect the resources to be back to the 
normal level. However, if the resource remains above the 
acceptable limit, the screener switches into the suspicious 
mode. The system switches between modes based on the 
server’s load. 
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟒𝟒:	Resource	Monitoring	Protocol	 
1:𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Server	(ID,M)	//	M	is	the	maximum	capacity	
2:PPrroocceedduurree:	Trigger	resource	usage	and	send	alert	messages	
3:lloooopp:	
4:	calculate	𝑈𝑈	 = 	 û

ü
	U:	used	resource, C:	current	utlization	

5:														𝐀𝐀𝐟𝐟	𝑈𝑈 > 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
6:																		{send	an	alert	message	to	the	screener		
7:																		send	alert_message	to	the	reporting	module}		
8:													𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏		𝐀𝐀𝐟𝐟	𝑈𝑈 < 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
9:																{send	an	alert	message	to	the	screener	
10:																send	alert_message	to	the	reporting	module}		
11:											eenndd		iiff	
12:	eenndd		lloooopp		
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏	
4.6 Screener 

The screener component is deployed on the application 
server to protect the server from App-DDoS attacks. It 
continuously checks for alert messages sent by resource 
monitoring protocol. It is also responsible for changing 
detection mode based on the type of the alert message. For 
example, if an alert message is received indicating that the 
resource usage is exceeded a threshold and the system 
operates in the normal mode, the screener changes the 
system mode to screening. If the screener receives another 
alert message indicating that the resource usage is exceeded 
a threshold, the screener changes the mode to suspicious. 
Algorithm 5 illustrates the pseudocode of the screener 
process. 

Fig. 8. System’s operation during the suspicious mode.
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E. Resource Management
To determine the critical level and normal level, 

resource utilization is managed according to the predefined 
criteria. When any resource exceeds the acceptable limit, 
resource monitoring protocol sends an alert message 
to the screener. Then, the screener switches into the 
screening mode and applies the detection algorithm. By 
the end of the screening stage, we expect the resources 
to be back to the normal level. However, if the resource 
remains above the acceptable limit, the screener switches 
into the suspicious mode. The system switches between 
modes based on the server’s load Algorithm 4.

F. Screener
The screener component is deployed on the application 

server to protect the server from App-DDoS attacks. It 
continuously checks for alert messages sent by resource 
monitoring protocol. It is also responsible for changing 
detection mode based on the type of the alert message. 
For example, if an alert message is received indicating 
that the resource usage is exceeded a threshold and the 
system operates in the normal mode, the screener changes 
the system mode to screening. If the screener receives 
another alert message indicating that the resource usage 
is exceeded a threshold, the screener changes the mode 
to suspicious. Algorithm 5 illustrates the pseudocode of 
the screener process.

G. Reporting Module and Policy Evaluation 
The administrator evaluates important events that have 

been recorded during an incident. Based on the report, 
the administrator should make some arrangements to the 
policy and security rules as needed. Using this report, the 
administrator is able to review system’s capabilities and 
make changes necessary to improve QoS in future.

V. DEFENSE AGAINST APP-DDOS ATTACKS

The following considerations are taken into account 
when designing the protection model that provides 
effective mitigation against App-DDoS attacks.

• Early indications of the possibility of App-DDoS 
attacks: We use resource monitoring protocol to 
send an alert message when any server’s resourc-
es are above the accepted limit. This warning 
limit gives an early indication of the possibility 
of App-DDoS attacks and allows the detection 
module to investigate traffic. Our method defines 
early detection by the server consumed resources. 

Fig. 9. Reporting analysis and policy evaluation

 
Fig. 8. System’s operation during the suspicious mode 

4.4 Mitigation Module 
When an attack is detected, the detection algorithm 

activates the mitigation process to stop and block the attack. 
The mitigation algorithm receives the attacker’s information 
detected by the screener detection algorithm. Then the 
algorithm checks if the source IP already has been captured; 
if not already in the list, it will be added. If a given IP 
address comes up again, it may increase the blocking time 
interval. The mitigation module does not block the IP 
address permanently because some legitimate IPs are 
included in zombie groups for a short time. When legitimate 
users discover misuse devices and perform security updates, 
the source IP might once again be a legitimate user. Such 
zombie machines are usually created from the same network 
in order to launch an effective DDoS attack. Attackers seek 
a large group of devices, in order to do that, the attacker 
may infect a specific network to turn its machines into 
botnets for the purpose of attacking a specific target. To 
enhance the performance of mitigation, our mitigation 
algorithm includes the capability to block IPs which come 
from the same network or subnet instead of blocking each 
individual source IP. The blacklist is updated; it expires 
within a pre-determined time to prevent blocking legitimate 
users in the future. Algorithm 3 illustrates the mitigation 
process. 
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟑𝟑:	Mitigation	Process 
1: 𝐏𝐏𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏:	Block	IPs 
2: 𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Attacker	list 
3:     𝐟𝐟𝐀𝐀𝐀𝐀	𝑒𝑒𝑒𝑒𝑒𝑒ℎ	𝐼𝐼𝐼𝐼	𝑖𝑖𝑖𝑖	𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀	
4:             𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑒𝑒𝑎𝑎𝑒𝑒	𝑖𝑖𝑛𝑛𝑎𝑎	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈 
5:																				𝑒𝑒𝑎𝑎𝑎𝑎	𝐼𝐼𝐼𝐼	𝑎𝑎𝑛𝑛	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎		
6:            𝐏𝐏𝐈𝐈𝐏𝐏𝐀𝐀𝐟𝐟 
7:     𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀 
8:   𝐟𝐟𝐀𝐀𝐀𝐀	𝐚𝐚𝐀𝐀𝐀𝐀	𝐼𝐼𝐼𝐼𝑙𝑙	 ∈ 	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐏𝐏𝐀𝐀 
9:           𝐀𝐀𝐟𝐟	𝐼𝐼𝐼𝐼𝑙𝑙	𝑖𝑖𝑖𝑖	𝑎𝑎ℎ𝑒𝑒	𝑏𝑏𝑙𝑙𝑒𝑒𝑒𝑒𝑎𝑎	𝑙𝑙𝑖𝑖𝑙𝑙𝑎𝑎	𝐀𝐀𝐀𝐀𝐏𝐏𝐈𝐈 
10:																	𝐼𝐼𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒	𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏	𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒	𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑙𝑙 
11:        eellssee 
12:               𝑏𝑏𝑙𝑙𝑛𝑛𝑒𝑒𝑎𝑎_𝐼𝐼𝐼𝐼𝑙𝑙	𝑎𝑎𝑒𝑒𝑡𝑡𝑡𝑡𝑛𝑛𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑡𝑡 
13:   𝐏𝐏𝐈𝐈𝐏𝐏	𝐟𝐟𝐀𝐀𝐀𝐀 
14: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏 

4.5 Resource Monitoring 
To determine the critical level and normal level, 

resource utilization is managed according to the predefined 
criteria. When any resource exceeds the acceptable limit, 
resource monitoring protocol sends an alert message to the 
screener. Then, the screener switches into the screening 
mode and applies the detection algorithm. By the end of the 
screening stage, we expect the resources to be back to the 
normal level. However, if the resource remains above the 
acceptable limit, the screener switches into the suspicious 
mode. The system switches between modes based on the 
server’s load. 
𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟒𝟒:	Resource	Monitoring	Protocol	 
1:𝐈𝐈𝐈𝐈𝐈𝐈𝐏𝐏𝐀𝐀:	Server	(ID,M)	//	M	is	the	maximum	capacity	
2:PPrroocceedduurree:	Trigger	resource	usage	and	send	alert	messages	
3:lloooopp:	
4:	calculate	𝑈𝑈	 = 	 û

ü
	U:	used	resource, C:	current	utlization	

5:														𝐀𝐀𝐟𝐟	𝑈𝑈 > 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
6:																		{send	an	alert	message	to	the	screener		
7:																		send	alert_message	to	the	reporting	module}		
8:													𝐏𝐏𝐀𝐀𝐞𝐞𝐏𝐏		𝐀𝐀𝐟𝐟	𝑈𝑈 < 	𝑎𝑎ℎ𝑎𝑎𝑒𝑒𝑙𝑙ℎ𝑛𝑛𝑙𝑙𝑎𝑎	
9:																{send	an	alert	message	to	the	screener	
10:																send	alert_message	to	the	reporting	module}		
11:											eenndd		iiff	
12:	eenndd		lloooopp		
13: 𝐏𝐏𝐈𝐈𝐏𝐏	𝐈𝐈𝐀𝐀𝐀𝐀𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐀𝐀𝐏𝐏	
4.6 Screener 

The screener component is deployed on the application 
server to protect the server from App-DDoS attacks. It 
continuously checks for alert messages sent by resource 
monitoring protocol. It is also responsible for changing 
detection mode based on the type of the alert message. For 
example, if an alert message is received indicating that the 
resource usage is exceeded a threshold and the system 
operates in the normal mode, the screener changes the 
system mode to screening. If the screener receives another 
alert message indicating that the resource usage is exceeded 
a threshold, the screener changes the mode to suspicious. 
Algorithm 5 illustrates the pseudocode of the screener 
process. 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀	𝟓𝟓:	Screener Process 
1:	𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐀𝐀:	Alert	messages	
2:	PPrroocceedduurree:	Switching	between	system	modes	
3:mode=normal	
3:	lloooopp:	
4:	check	for	alert	message	
5:	iiff	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎	and	mode	==	normal	
6:										mode	=	screening	
7:										ffoorr	eeaacchh	incoming	IP		
8:																		apply	logistic	regression	
9:																		iiff	pass	test	
10:																									forward	request	
11:																eellssee		
12:																									call	mitigation	
13:																eenndd		iiff		
14:									eenndd		ffoorr		
15:	eellssee		iiff	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎	and	mode	==	screening	
16:									mode	=	suspicious	
17:									ffoorr	eeaacchh	incoming	IP		
18:																		apply	CAPTCHA	method	
19:																		iiff		pass	test		
20:																											forward	request	
21:																		eellssee		
22:																											drop	connection	and	call	mitigation	
23:																		eenndd		iiff	
24:									eenndd		ffoorr		
25:eellssee		iiff	alert	message	and	(mode	==	screening	or			
																		suspicious)	
26:									mode=normal	
27:eenndd		iiff		
28:eenndd		lloooopp		

 
4.7 Reporting Module and Policy Evaluation  

The administrator evaluates important events that have 
been recorded during an incident. Based on the report, the 
administrator should make some arrangements to the policy 
and security rules as needed. Using this report, the 
administrator is able to review system’s capabilities and 
make changes necessary to improve QoS in future. 

 
Fig. 9. Reporting module and policy evaluation 

5 DEFENSE AGAINST APP-DDOS ATTACKS  
The following considerations are taken into account 

when designing the protection model that provides effective 
mitigation against App-DDoS attacks. 

• Early indications of the possibility of App-DDoS 
attacks: We use resource monitoring protocol to 
send an alert message when any server’s resources 
are above the accepted limit. This warning limit 
gives an early indication of the possibility of App-
DDoS attacks and allows the detection module to 
investigate traffic. Our method defines early 
detection by the server consumed resources. The 
resource monitoring triggers the web server 

resources in all modes in order to generate alert 
messages about resource depletion. As a result, the 
system transitions between modes based on the 
web server load. 

• Automated response: DDoS attacks of this sort 
require a rapid response; the screener uses the 
detection method once it receives an alert message 
from the resource monitoring protocol. Because of 
this, the administrator does not need to be present 
in order to respond during an incident. 

• A flash crowd event: A flash crowd forms when 
many legitimate users access the webserver 
simultaneously [19]. Our defense system is 
designed to distinguish a flash crowd from DDoS 
attacks. A flash crowd has mostly identical 
attributes to normal users while the attributes of 
App-DDoS attacks are radically different from 
those of legitimate users. Additionally, a flash 
crowd usually occurs during a special event, and a 
defense system should expect more users during 
such a time. Furthermore, during a flash crowd, 
users usually have small number of requests in 
comparison to App-DDoS attacks, which employ a 
large number of requests. 

• Attackers mimicking normal users: In order to 
imitate legitimate users’ behavior, attackers need 
an enormous group of zombie to emulate normal 
users [20]. Because of this, an adversary seeks for 
diverse of zombie machines within the same 
network. Our designed model is able to detect 
attackers who intimate normal users during the 
screening mode. Additionally, CAPTCHA 
mechanism will be performed during the suspicious 
mode in case if attackers have not detected through 
the screening mode. 

• Minimal use of CAPTCHA: Our goal is to 
identify attacks without using the CAPTHCA 
method or at least to rely upon minimal use of 
CAPTCHA. We do not want to authenticate users 
using a CAPTCHA puzzle each time they need to 
access a web server because this is sometimes 
annoying for users. Our model is designed to detect 
attacks without using graphical tests. However, at 
some point, we use a graphical test when the 
server’ resources continue to drain after the 
screening mode is complete. Otherwise, the 
graphical test does not appear during the normal 
and screening mode. 

• Policy control: The administrator determines 
security rules for detection mechanisms and the 
learning parameters that are required during the 
screening stage. The administrator also defines the 
threshold values for server’s resources. 

• Effective mitigation: In our design system, we 
detected and mitigated attacks in an appropriate 
manner for the sake of performance and fast 
protection. Like a large group of zombies, they 
usually come from same LAN network, the 
mitigation algorithm prevents zombies by blocking 
subnet address instead of suspended each IP 
address, which takes time to process and influence 
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The resource monitoring triggers the web server 
resources in all modes in order to generate alert 
messages about resource depletion. As a result, 
the system transitions between modes based on 
the web server load.

• Automated response: DDoS attacks of this sort 
require a rapid response; the screener uses the de-
tection method once it receives an alert message 
from the resource monitoring protocol. Because 
of this, the administrator does not need to be pres-
ent in order to respond during an incident.

• A flash crowd event: A flash crowd forms when 
many legitimate users access the webserver simul-
taneously [19]. Our defense system is designed 
to distinguish a flash crowd from DDoS attacks. 
A flash crowd has mostly identical attributes to 
normal users while the attributes of App-DDoS 
attacks are radically different from those of legit-
imate users. Additionally, a flash crowd usually 
occurs during a special event, and a defense sys-
tem should expect more users during such a time. 
Furthermore, during a flash crowd, users usually 
have small number of requests in comparison to 
App-DDoS attacks, which employ a large number 
of requests.

• Attackers mimicking normal users: In order to 
imitate legitimate users’ behavior, attackers need 
an enormous group of zombie to emulate normal 
users [20]. Because of this, an adversary seeks for 
diverse of zombie machines within the same net-
work. Our designed model is able to detect attack-
ers who intimate normal users during the screen-
ing mode. Additionally, CAPTCHA mechanism 
will be performed during the suspicious mode 
in case if attackers have not detected through the 
screening mode.

• Minimal use of CAPTCHA: Our goal is to iden-
tify attacks without using the CAPTHCA method 
or at least to rely upon minimal use of CAPT-
CHA. We do not want to authenticate users using 
a CAPTCHA puzzle each time they need to access 
a web server because this is sometimes annoying 
for users. Our model is designed to detect attacks 
without using graphical tests. However, at some 
point, we use a graphical test when the server’ re-
sources continue to drain after the screening mode 
is complete. Otherwise, the graphical test does not 

appear during the normal and screening mode.

• Policy control: The administrator determines 
security rules for detection mechanisms and the 
learning parameters that are required during the 
screening stage. The administrator also defines 
the threshold values for server’s resources.

• Effective mitigation: In our design system, we 
detected and mitigated attacks in an appropri-
ate manner for the sake of performance and fast 
protection. Like a large group of zombies, they 
usually come from same LAN network, the mit-
igation algorithm prevents zombies by blocking 
subnet address instead of suspended each IP ad-
dress, which takes time to process and influence 
the performance of the system. Also, our mitiga-
tion method temporarily adds the IP address to 
a black list, so malicious traffic will be blocked. 
However, when the IP comes up again, the mitiga-
tion may increase the suspended time.

• Reporting module: In the designed model, we re-
cord significant events in the reporting module. 
However, the reporting module acts like a sum-
mary report containing important events taken by 
the system like alert messages; whereas log file 
provides detailed information for each process. 
Therefore, the administrator reviews these actions 
and makes necessary changes to the system for 
QoS.

VI. EXPERIMENT AND EVALUATION 

A. Testing Environment and Attack Scenarios
To evaluate the system design against App-DDoS 

attacks, a virtual environment was created. The test 
environment consisted of a web server with 2 VCPU and 
2 GB memory running on Ubuntu 16.04 operating system. 
The resource monitoring algorithm was implemented to 
run continuously in the server’s background to trigger 
the server’s resources and generate alert messages. The 
screener was implemented with three primary modes 
as mentioned in the system description section. In the 
screening mode, we deployed the trained model based 
on logistic regression analysis. The offline process was 
performed to obtain the best learning parameters prior to 
deploying the algorithm for real-time detection. 

For the external network, a legitimate user machine 
with 1 VCPU and 1 GB memory was created to send 
requests to the webserver. Additionally, two attacker 
machines with 1 VCPU and 1 GB memory were specified 
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to generate App-DDoS attacks. The two attacker nodes 
are configured with Goldeneye attack tool [21]. We also 
installed Wireshark analyzer tool [22] at each station in 
order to capture and analyze the network traffic. Details 
of our experimental setup and description of machines 
are presented in the Figure 10 and Table 1, respectively .

To test and validate the defense system, we performed 
different attack scenarios targeting the webserver. The 
webserver was targeted first with a host of light attacks 
to determine the impacts on the target side. Next, we 
conducted heavy attack scenarios in which the server’ 
resources were highly increased in the webserver and 
a main influence was occurred in a short time. We also 
created pulse attack scenarios to target the webserver 
with a series of short but powerful pulses of App-DDoS 
attacks. During light attack scenarios, no major impact 
on the webserver was occurred, which, in turn, showed 
no alert messages. Through the heavy and pulse attack 
scenarios, however, the defense system encountered 
resource depletion. The resource triggers sent alert 
messages to the screener trying to detect and prevent 
the attacks. In the following section, the results and 
discussion are presented. 

B. Light App-DDoS Attack
We started with light App-DDoS attacks; no major 

effect on the webserver was noticed. The traffic rate was 
also low during this scenario Fig. 11 (a). With light attack 
scenarios, there were little errors over TCP connection 
see Fig. 11 (b). In addition, the CPU usage was influenced 
little between 30% and 35% Fig. 11 (c). The consumed 
memory was increased little and then remained steady 
Fig. 11 (d). The transmission rate was slightly increased 
before become fluctuated Fig. 11 (e).

C. Heavy App-DDoS Attack
During the heavy attack without mitigation scenarios, 

we were able to see the packet rate per second which 
was highly increased in moments with the high amount 
of App-DDoS attacks Fig. 12 (a). Meanwhile, the 
webserver was busy of handling all packets coming 
from attackers in a short time resulting in an increase in 
TCP errors Fig. 12 (c). With the heavy attack phase, the 
amount of CPU utilization was gradually occupied by 
attackers. As the attacks increased, the CPU utilization 
became overwhelmed; a response to the large number 
of requests Fig. 12 (e). The memory usage was also 
extremely influenced by the attacks, increased linearly 
with the raise in attacks and continued to drain Fig. 12 
(g). When the webserver was flooded by heavy attacks, 

Fig. 10. Experimental setup.

TABLE I
 MACHINE’S SPECIFICATION

Machine Operating 
System CPU CPU

Server Ubuntu 
16.04 2 VCPU 2 GB

Legitimate 
user

Ubuntu 
16.04 1 VCPU 1 GB

Two 
attacker 

machines

Ubuntu 
16.04 1 VCPU 1 GB

Fig. 11. Light attack.
 

Fig. 11. Light attack 

6.3 Heavy App-DDoS Attack 
During the heavy attack without mitigation scenarios, we 

were able to see the packet rate per second which was 
highly increased in moments with the high amount of App-
DDoS attacks (Figure 12 (a)). Meanwhile, the webserver 
was busy of handling all packets coming from attackers in a 
short time resulting in an increase in TCP errors (Figure 12 
(c)). With the heavy attack phase, the amount of CPU 
utilization was gradually occupied by attackers. As the 
attacks increased, the CPU utilization became overwhelmed; 
a response to the large number of requests (Figure 12 (e)). 
The memory usage was also extremely influenced by the 
attacks, increased linearly with the raise in attacks and 
continued to drain (Figure 12 (g)). When the webserver was 
flooded by heavy attacks, the transmission rate was 

tremendously increased and continued to drain (Figure 12 
(i)). 

When heavy attack scenarios occurred with mitigation, 
the attack led to a rapid increase in the traffic rate in a short 
time. When the attack was detected and blocked, the traffic 
rate decreased (Figure 12 (b)). As the CPU usage also 
increased when the attack started, it returned to the normal 
condition with the detection and blocking processes (Figure 
12 (e)). Further, the memory usage was increased slightly at 
the beginning of the attacks. When the attacks were detected 
and blocked, the memory usage stopped to increase and 
remained stable (Figure 12 (h)). The transmission rate was 
also raised during the attack. However, when the attack was 
successfully mitigated, the transmission rate was dropped 
down and remained constant (Figures 12 (j)). 

the transmission rate was tremendously increased and 
continued to drain Fig. 12 (i).

When heavy attack scenarios occurred with 
mitigation, the attack led to a rapid increase in the traffic 
rate in a short time. When the attack was detected and 
blocked, the traffic rate decreased Fig. 12 (b). As the CPU 
usage also increased when the attack started, it returned 
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to the normal condition with the detection and blocking 
processes Fig. 12 (e). Further, the memory usage was 
increased slightly at the beginning of the attacks. When 
the attacks were detected and blocked, the memory usage 
stopped to increase and remained stable Fig. 12 (h). 
The transmission rate was also raised during the attack. 
However, when the attack was successfully mitigated, 
the transmission rate was dropped down and remained 
constant Fig. 12 (j).

D. Pulse App-DDoS Attack
Another attack scenario was considered pulse attacks: 

the attacker floods the webserver with multiple attacks 
during a short time. When the attacks reached the peak, 
another attack started and so on. As seen in Fig. 13 (a) 
and 13 (c), this attack influenced traffic rate and increased 
the transmission error connection with high rate of error 
at each round. The CPU utilization reached about 100% 

of CPU usage for a few seconds before turning down. 
This attack repeated this strategy multiple times Fig. 13 
(e). The memory utilization was fluctuated between high 
and low level of used memory. The transmission rate 
was high, and then sharply fell down, and started again 
to increase. This is associated with the series of short 
impulse attack multiple times made by the attackers Fig. 
13 (i). 

During pulse attack scenarios with mitigation, the 
traffic rate and the transmission error were increased and 
then dropped down in response to detection of hacking 
Fig. 13 (b) and 13 (d). On the other hand, the CPU and 
memory utilization were also influenced by attacks as the 
mitigation method discovered and blocked the malicious 
traffic. Based on this, the CPU and memory utilization 
returned to the normal conditions Fig. 13 (f) and 13 (h). 
The transmission rate was increased when attacks started 
and then returned to the normal level Fig. 13 (j).

Fig. 12. Heavy attack. Fig. 13. Pulse attack.
 

Fig. 12. Heavy attack 

6.4 Pulse App-DDoS Attack 
Another attack scenario was considered pulse attacks: 

the attacker floods the webserver with multiple attacks 
during a short time. When the attacks reached the peak, 
another attack started and so on. As seen in Figures 13 (a) 
and (c), this attack influenced traffic rate and increased the 
transmission error connection with high rate of error at each 
round. The CPU utilization reached about 100% of CPU 
usage for a few seconds before turning down. This attack 
repeated this strategy multiple times (Figure 13 (e)). The 
memory utilization was fluctuated between high and low 
level of used memory. The transmission rate was high, and 
then sharply fell down, and started again to increase. This is 

associated with the series of short impulse attack multiple 
times made by the attackers (Figure 13(i)).  

During pulse attack scenarios with mitigation, the traffic 
rate and the transmission error were increased and then 
dropped down in response to detection of hacking (Figure 
13 (b) and (d)). On the other hand, the CPU and memory 
utilization were also influenced by attacks as the mitigation 
method discovered and blocked the malicious traffic. Based 
on this, the CPU and memory utilization returned to the 
normal conditions (Figure 13 (f) and (h). The transmission 
rate was increased when attacks started and then returned to 
the normal level (Figure (j)). 

 
Fig. 13. Pulse attack 

6.5 Effectiveness Comparison 
The following table compares our proposed mitigation 

methods with existing techniques. To do so, we identified 
the following standards: 

• Attack identification method: identify signs of 
DDoS attacks 

• Screening for DDoS: whether method scans for 
DDoS attacks continuously or on demand 

• Detection method: detection algorithm being used 
• Flash crowd detection: forms when many 

legitimate users access a webserver simultaneously 
• Automated response: DDoS attacks response 

occurs without any involvement from the 
administrator 

• Early detection: early sign of DDoS attacks before 
damaging the target 

• Complexity: the level of computation for method 
being used 

• Detect zombie: attackers mimicking normal users 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aljuhani et al.



94

JISCR 2019; Volume 2 Issue (1)

E. Effectiveness Comparison
Table II compares our proposed mitigation methods 

with existing techniques. To do so, we identified the 
following standards:

• Attack identification method: identify signs of 
DDoS attacks.

• Screening for DDoS: whether method scans for 
DDoS attacks continuously or on demand.

• Detection method: detection algorithm being used

• Flash crowd detection: forms when many legiti-
mate users access a webserver simultaneously.

• Automated response: DDoS attacks response occurs 
without any involvement from the administrator.

• Early detection: early sign of DDoS attacks before 
damaging the target.

• Complexity: the level of computation for method 
being used.

• Detect zombie: attackers mimicking normal users.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed an App-DDoS 
defense system that effectively mitigates App-DDoS 
attacks. The App-DDoS attack is one of the common 
types of cyber-attacks that currently circumvent web 
server security. Organizations and businesses are 

suffering from App-DDoS attacks when relying on the 
Internet to provide online services to their customers. In 
this research, we have shown that our defense system 
effectively mitigates App-DDoS attacks in a variety 
of different scenarios. The system designed has three 
primary modes: normal, screening and suspicious. The 
normal mode indicates that the system is running in 
normal conditions. However, when our monitor notices 
a resource depletion exceeding predefined criteria, it 
generates an alert message. The system switches over 
to the screening mode. During screening stage, our 
model checks the traffic and determines whether the 
current user is an attacker or not. Then, the mitigation 
algorithm runs to prevent attackers from accessing the 
webserver. However, if the webserver continues to suffer 
from additional resource depletion, the system shifts 
into the suspicious mode. In the suspicious mode, each 
user must pass the CAPTCHA test in order to connect 
to the webserver. Our defense model records important 
events during the attack to aid in the forensic evaluation 
of security. The experimental results demonstrate that the 
defense system is effective against App-DDoS attack. 

Our system was designed to mitigate HTTP-GET 
flooding DDoS attacks, one of the primary vectors of DDoS 
attacks. However, there are numerous other types of attacks 
in this layer that worthy of study, including Domain Name 
System (DNS) attacks, Simple Message Transfer Protocol 
(SMTP) attacks, and Session Initiation Protocol (SIP) 
attacks. Each of these types can be used by attackers to 

TABLE II
COMPARISON OF OUR SOLUTION METHOD WITH OTHER AVAILABLE APPROACHES

Citation

Attack 
identi-
fication 
method

Screening 
for DDoS

Detection 
method

Flash 
crowd 

detection

Automated 
response

Early 
detection

Early 
detection

Detect 
zombie

Detect 
zombie

Traffic 
Evaluator

auto-scaling 
overload 
method

Analyzing 
user behav-

ior
No

Has to check 
with Service 
Level Agree-
ment (SLA)

Not spec-
ified Low No

Singh, 
K.J. and 

De, T
Http count continuously http counter No Not specified No Low Yes

Devi & 
Yogesh

User Fea-
tures Not specified Access ma-

trix analysis Yes Not specified No Low No

Wang 
et al

Not speci-
fied Not specified ML tech-

nique No Not specified Not spec-
ified High Yes

Our 
solution

Alert 
message

Upon
receiving 

alert message

ML tech-
nique Yes Yes Yes Low Yes
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exploit vulnerabilities and launch effective DDoS attacks. 
Another consideration for future work is the development 
of a dynamic threshold for the resource monitoring protocol 
based on the requirements of the system during high 
flood traffic. A fixed threshold depends on the system’s 
capabilities and resource availability. The system failure 
problem is another direction for future work. A method 
could be found that provides backup and recovery for the 

system after unexpected incidents have occurred. Even 
during the mitigation process, a single point of failure 
may stop the entire system from functioning correctly.
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