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Abstract
Vertical fragmentation technique is used to enhance the performance of database system and reduce the number of 

access to irrelevant instances by splitting a table or relation into different fragments vertically. The partitioning design can 
be derived using FPClose algorithm, which is a data mining algorithm used to extract the frequent closed itemsets in a 
dataset. A new design approach is implemented to perform fragmentation. A benchmark with different minimum support 
levels is tested. The obtained results from FPClose algorithm are compared with the Apriori algorithm.

I. INTRODUCTION

Data fragmentation is related to a process to divide a 
table or database into many partitions. Each partition is 
saved in a distributed site and many queries can be exe-
cuted in different fragments. Fragmentation is useful to 
minimize very large database or table so it becomes easy 
to manage and backup, data fragmentation enhances also 
the performance of database systems. 

Vertical fragmentation refers to a technique in which 
a table or relation is vertically broken into different frag-
ments depending on the attributes. These new partitions 
should not lose any information from the original rela-
tion, so the reconstruction of the original relation is still 
possible.

Data mining is related to the methods that are used to 
discover the information which are implicitly exists from 
big tables and convert them to meaningful data. One of 
the fastest algorithms for extracting closed frequent items 
in a dataset is FPClose algorithm [13], which was imple-
mented using FP-trees and FP-arrays structure to make it 

more effective. Furthermore, the generated closed item-
sets number is almost smaller than the frequent items that 
are generated using Apriori algorithm [8]. 

By using FPClose technique to extract the closed fre-
quent item sets of attributes, a vertical fragmentation can 
be done by grouping those closed frequent items. 

The aim of this study is to perform the vertical frag-
mentation on the database depending on the frequent 
items and specifically the closed itemesets. Hence the 
performance of the database system will improve:

II. RELATED WORK 

Vertical fragmentation in data warehouse views and 
it’s utility was experimentally confirmed in terms of cost 
reduction for the expected workload execution [1]. El-
houssaine [2], developed another approach for vertical 
and horizontal fragmentation based on genetic algorithm. 
The author aimed to reduce the cost of query execution by 
applying the data partitioning on star schema for relation-
al DW. Marir et al. [3]. proposed a simple and easy algo-
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rithm based on the affinity matrix, which started from the 
values of affinity between the different attributes to the 
step of generating the initial groups. The final fragments 
were produced by merging those initial groups  A com-
parative summary was performed between various frag-
mentation algorithms for DW such as hill climbing and 
genetic algorithms [4]. Another comparison study was 
conducted between two methods for horizontal fragmen-
tation with adaptation to XML context, these methods are 
affinity-based fragmentation [5]. Yeruva et al. provided a 
methodology for distributed warehouse design and ver-
tical fragmentation for large schema based on attribute 
affinity matrix and bond energy algorithm [6]. Benkrid 
et al. proposed another fragmentation approach based on 
genetic algorithm for data warehouse that was modeled 
using a star schema and the allocation of these different 
partitions at several nodes [7]. Gorla and Betty designed 
a new methodology for vertical fragmentation in relation-
al database based on data-mining technique by adapting 
the Apriori algorithm [8]. Another usage of data-mining 
techniques for vertical fragmentation was performed us-
ing FP-max algorithm [9] and tested on large database 
and warehouse [10], the performance was compared with 
approach based on Apriori algorithm [8]. Rakesh and A. 
Bhanu used a clustering algorithm called k means to per-
form partitioning for a dataset after horizontal aggrega-
tions [11]. Fung et al. developed cost model for query 
processing on object-oriented database which was imple-
mented used vertical partitioning [12].

III. METHODOLOGY

Our approach consists of three main steps: generat-
ing the closed itemsets using the FPClose algorithm [13],  
then deriving the vertical partitions, and finally finding 
the optimal partitioning scheme.

The approach will be tested using sample database 
and transaction set [8] (see Appendix A)

A. Generating the closed itemsets
Closed frequent itemsets are called closed when 

both items have a support that is equal to -or larger than 
min-support, which is previously defined. An itemset is 
supposed to be closed in a data set unless a superset ex-
ists, which has the same support as the original itemset. 
The closed itemset is extracted by using the FPClose algo-
rithm. The frequency of queries is represented by the sup-
port. At this step, the inputs are database transaction sets 
with transaction frequencies and a predetermined support 
level. The outputs will be a set of closed frequent items.

B. Deriving the potentials of vertical partitions
Once the large itemsets was generated, the partitions 

scheme is determined by tracing the large itemset from 
the k-itemset. The first partition is picked from k-item-
set then the next partition is picked from (k-1) itemset 
to reach first set considering that the partitions are dis-
joint. This process should be repeated until deriving all 
the possible partitioning schemes. The input for this step 
use the list of large itemsets extracted from the previous 
step. The output will be the potential list of all partition-
ing schemes.

C. Finding the optimal portioning scheme
To find the optimal scheme, the cost formula is ap-

plied to compute the operating cost for each transaction. 
Equation 2 is used for (Select) retrieval transaction and 
equation 3 is used to update transaction such as (insert/
delete). The lowest cost is related to the optimal scheme. 
For this module, the inputs are the list of all partitioning 
schemes, the set of transactions and the optimal scheme 
will be the output of this step.

D. Cost formula
The selecting of the optimal partitioning scheme will 

depend on the lowest cost reductions. The cost is calcu-
lated using the number of blocks as shown in equation1 
which are accessed by a query as used in [8]. A formula 
for each segment will be applied which represents the 
cost of query processing (retrieval) as shown in equation 
2. In our approach, we include the cost of blocks estimate 
to calculate the cost without considering the cost of stor-
age access and index access.

vertical fragmentation was performed using FP-max 
algorithm [9] and tested on large database and 
warehouse [10], the performance was compared 
with approach based on Apriori algorithm [8]. 
Rakesh and A. Bhanu used a clustering algorithm 
called k means to perform partitioning for a dataset 
after horizontal aggregations [11]. Fung et al. 
developed cost model for query processing on 
object-oriented database which was implemented 
used vertical partitioning [12]. 
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#	𝑜𝑜𝑜𝑜	𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛 ,1 − /1 − 1 𝑛𝑛0 1

2
3 (1) 

Where: 
Fq= Query q frequency  
Segqj= # of partitions j satisfying a query 

q  
Ni= [T*Li/BS] 
Ni= # of accessed blocks in partition i 
Kq= # of tuples satisfying a query 
T= total tuples in the dataset 
Li= size of partition i in bytes 
BS= The block size  

 
In case of insert/delete queries, the cost will be 

multiplied by 2 while it takes two I/O times, which 
is estimated as used in [8]: 

 

2 ∗ 𝑜𝑜𝑓𝑓 ∗ 7 8 9𝑁𝑁𝑁𝑁 ,1 − /1 − 1 𝑁𝑁𝑁𝑁0 1
2<
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>?@<A

BCD

E (3) 

 
4. Implementation  

 
In this approach, a real-life database from (UCI) 

called Teaching Assistant Evaluation (TAE) dataset 
with 6 attributes, 151 tuples, and a block size of 100 
bytes [14] was used. The description of the database 
is shown in Table1. 
 
Table 1. TAE database description 
 

 Attributes Types Size 
(bytes) 

A speaker (binary) English 
speaker=1,  
non-English 
speaker=2 

19 

B course_instructor (25 categories) 2 
C course (26 categories) 2 
D semester (binary) 

Summer=1, 
Regular=2 

7 

E class_size (numerical) 2 

In case of insert/delete queries, the cost will be 
multiplied by 2 while it takes two I/O times, which is 
estimated as used in [8]:

Vertical Fragmentation for Database Using FPClose Algorithm



112

JISCR 2019; Volume 2 Issue (1)

vertical fragmentation was performed using FP-max 
algorithm [9] and tested on large database and 
warehouse [10], the performance was compared 
with approach based on Apriori algorithm [8]. 
Rakesh and A. Bhanu used a clustering algorithm 
called k means to perform partitioning for a dataset 
after horizontal aggregations [11]. Fung et al. 
developed cost model for query processing on 
object-oriented database which was implemented 
used vertical partitioning [12]. 
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IV. IMPLEMENTATION 

In this approach, a real-life database from (UCI) 
called Teaching Assistant Evaluation (TAE) dataset with 
6 attributes, 151 tuples, and a block size of 100 bytes 
[14] was used. The description of the database is shown 
in Table I.

(TAE Dataset) Experiment
The TAE dataset attributes description is given in 

Table I. It is assumed that the block size of this dataset 
to be 100 bytes. The generated transaction set as shown 
in Appendix A, contains 10 SELECT, one INSERT and 
one DELETE SQL Query with the related frequency and 
number of tuples satisfied the query which was used in 
prior research [8].

The partitions are derived using predefined support 
levels (20%,30%,40%,50%,60%). The extracted closed 
itemsets are listed in five groups with min-support of 
20% as shown in Table II. The partitioning schemes then 
grouped from these different disjoint itemsets. 

It can be noticed the better performance of FPclose 
algorithm over Apriori algorithm. FPclose has an 
improvement in cost by 15.74% whereas Apriori 
algorithm has 13.62% as shown in Fig. 1.

An open source library for data mining algorithms 
(SPMF) [15], which was developed in java used to 
conduct the FPclose algorithm to extract the closed items 
from the set of transactions. The generating time for 
extracting data for 20% support is 15ms, while it is zero 
for the other support levels.
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Table 2.Closed itemsets for TAE with min_sup=20% 
 

Itemset L1 
Itemsets Support 

{ A } 57 
{ B } 62 
{ C } 56 
{ D } 54 
{ E } 39 
{ F } 88 

 
 

Itemset L2 
Itemsets Support 

{FB} 50 
{FA} 55 
{AC} 46 
{AD} 44 
{BD} 47 
{CD} 43 
{DE} 39 

 

Itemset L3 
Itemsets Support 
{CDE} 28 
{ADE}  29 
{BDE}  32 
{ACD}  33 
{BCD}  36 
{BAD}  37 
{FAD} 42 
{FAC} 44 

 

Itemset L4 
Itemsets Support 
{BCDE} 21 
{BADE} 22 
{FADE} 27 
{BACD} 26 
{FACD} 31 
{FBAD} 35 

 

Itemset L5 
Itemsets Support 
{ABDEF} 20 
{ABCDF} 24 

 

 

 
Table3. Results of TAE with different support level  
 

Min-Support Best Partition 
Schemes 

Cost Cost Reductions Number of 
closed items 

20% ACD    FB    E 2720.30 15.74% 29 
30% ACD    FB    E 2720.30 15.74% 20 
40% ACF    BD    E 3643.80 -12.88% 13 
50% A   BF   C   D   E  3133.00 2.94% 7 
60% A   B   C   D   E    F 3117.20 3.43% 2 

Optimal Scheme ACD    FB    E 2720.30 15.74%  
Without 
Partitioning 

ABCDEF 3228.00 

As shown in Table III the best partitioning scheme is 
obtained when the minimum support level is 20% or 30% 
which gives a result of 15.74% cost reductions compared 
with unpartitioned design. 

The optimal design is:
{Speaker, Course, Semester}
{Course_instructor, Class_attribute}
{Class_size}

Vertical Fragmentation for Database Using FPClose Algorithm

TABLE I
 TAE DATABASE DESCRIPTION

Attributes Types Size
(bytes)

A speaker

(binary) English
speaker=1, 

non-English
speaker=2

19

B course_in-
structor (25 categories) 2

C course (26 categories) 2

D semester
(binary)

Summer=1,
Regular=2

7

E class_size (numerical) 2

F class_attri-
bute

categorical) 
Low=1,

Medium=2,
High=3

6

TABLE II 
CLOSED ITEMSETS FOR TAE WITH MIN_SUP=20%

Itemset L1

Itemsets Support

{ A } 57
{ B } 62
{ C } 56
{ D } 54
{ E } 39
{ F } 88

Itemset L2

Itemsets Support

{FB} 50
{FA} 55
{AC} 46
{AD} 44
{BD} 47
{CD} 43
{DE} 39
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TABLE IV
COST REDUCTIONS COMPARISONS

Min-Support FPClose Apriori

20% 15.74% 13.62%

30% 15.74% 13.62%

40% -12.88% 3.04%

50% 2.94% -1.67%

60% 3.43% -6.21%

Table 4: Cost reductions comparisons  
 

 

 
 
Figure1. Cost reduction for TAE database 
 

5. Discussion 
 
FPclose algorithm is trying to discover the 

frequent and closed itemset in the database. And if 
the related database is splitting regarding these kind 
of itemsets, the cost of query processing will be 
decreased. The reduction in cost will also depend on 
the queries and their frequencies. Moreover, the 
characteristics of the database have an effect while 
finding the optimal solutions. If there are more 
inserts/delete queries, more fragmented solution will 
be produced, because of the high cost for these 
queries in partitioned scheme. On the other hand, the 
minimum support with high level will give more 
fragments which will increase the cost. 

Our results show a better performance against 
Apriori algorithm because of the less number of 
fragments are produced using FPclose. The cost 
reductions in our approach is 15.74% while using 
Apriori algorithm gave 13.62%. 

In the real world, the proposed method in our 
research can be used by the database designers to 
obtain the efficient partitioning design. 

 
6. Conclusion 

 
A new approach has been presented in this study 

to make a vertical fragmentation for database using 
FPclose data mining algorithm, which is used to 
extract the closed itemsets in any relation. The 
results show a better performance against Apriori 
algorithm because of the less number of fragments 
are produced using FPclose. The future work will 
use the proposed method in mix fragmentation and 
other large databases such as data warehouse. 
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TABLE III
RESULTS OF TAE WITH DIFFERENT SUPPORT LEVEL

Min-Support Best Partition 
Schemes Cost Cost Reductions Number of closed 

items
20% ACD    FB    E 2720.30 15.74% 29

30% ACD    FB    E 2720.30 15.74% 20

40% ACF    BD    E 3643.80 -12.88% 13

50% A   BF   C   D   E 3133.00 2.94% 7

60% A   B   C   D   E    F 3117.20 3.43% 2

Optimal Scheme ACD    FB    E 2720.30 15.74% -

Without Partitioning ABCDEF 3228.00 - -
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V. DISCUSSION

FPclose algorithm is trying to discover the frequent 
and closed itemset in the database. And if the related 
database is splitting regarding these kind of itemsets, 
the cost of query processing will be decreased. The 
reduction in cost will also depend on the queries and their 
frequencies. Moreover, the characteristics of the database 
have an effect while finding the optimal solutions. If 
there are more inserts/delete queries, more fragmented 
solution will be produced, because of the high cost for 
these queries in partitioned scheme. On the other hand, 
the minimum support with high level will give more 
fragments which will increase the cost.

Our results show a better performance against Apriori 
algorithm because of the less number of fragments are 
produced using FPclose. The cost reductions in our 
approach is 15.74% while using Apriori algorithm gave 
13.62%.

In the real world, the proposed method in our research 
can be used by the database designers to obtain the 
efficient partitioning design.

VI. CONCLUSION

A new approach has been presented in this study to 
make a vertical fragmentation for database using FPclose 
data mining algorithm, which is used to extract the 
closed itemsets in any relation. The results show a better 
performance against Apriori algorithm because of the 
less number of fragments are produced using FPclose. 
The future work will use the proposed method in mix 
fragmentation and other large databases such as data 
warehouse.
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APPENDIX

APPENDIX A
DATABASE TRANSACTIONS

Transaction Attributes Frequency Kq

SELECT A, B, C, D, E 2 1

SELECT A, B, D, E, F 3 137

SELECT A, C, F 13 55

SELECT A, B, C, D, F 15 50

SELECT A, B, D, E, F 2 66

SELECT A, C, D, E, F 7 0

SELECT B, F 15 115

SELECT A, B, D, E, F 6 21

SELECT F 18 149

SELECT B, C, D, E 10 17

INSERT A, B, C, D, E, F 6 1

DELETE A, B, C, D, E, F 3 4


