
110 Journal of Information Security & Cybercrimes Research 2019; Volume 2 Issue (1), 110-115

Vertical Fragmentation for Database Using FPClose Algorithm
Arwa S. Al-Shannaq 1*, Sultan Almotairi 2
1 Computer Science Department, Faculty of Computing and Information Technology, King Abdul-Aziz University, Jeddah, Saudi
Arabia.
2 Department of Natural and Applied Sciences, Community College, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.

Received 04 Feb. 2019 ; Accepted 06 Apr. 2019; Available Online 10 May 2019

Abstract
Vertical fragmentation technique is used to enhance the performance of database system and reduce the number of

access to irrelevant instances by splitting a table or relation into different fragments vertically. The partitioning design can
be derived using FPClose algorithm, which is a data mining algorithm used to extract the frequent closed itemsets in a
dataset. A new design approach is implemented to perform fragmentation. A benchmark with different minimum support
levels is tested. The obtained results from FPClose algorithm are compared with the Apriori algorithm.

I. INTRODUCTION

Data fragmentation is related to a process to divide a
table or database into many partitions. Each partition is
saved in a distributed site and many queries can be exe-
cuted in different fragments. Fragmentation is useful to
minimize very large database or table so it becomes easy
to manage and backup, data fragmentation enhances also
the performance of database systems.

Vertical fragmentation refers to a technique in which
a table or relation is vertically broken into different frag-
ments depending on the attributes. These new partitions
should not lose any information from the original rela-
tion, so the reconstruction of the original relation is still
possible.

Data mining is related to the methods that are used to
discover the information which are implicitly exists from
big tables and convert them to meaningful data. One of
the fastest algorithms for extracting closed frequent items
in a dataset is FPClose algorithm [13], which was imple-
mented using FP-trees and FP-arrays structure to make it

more effective. Furthermore, the generated closed item-
sets number is almost smaller than the frequent items that
are generated using Apriori algorithm [8].

By using FPClose technique to extract the closed fre-
quent item sets of attributes, a vertical fragmentation can
be done by grouping those closed frequent items.

The aim of this study is to perform the vertical frag-
mentation on the database depending on the frequent
items and specifically the closed itemesets. Hence the
performance of the database system will improve:

II. RELATED WORK

Vertical fragmentation in data warehouse views and
it’s utility was experimentally confirmed in terms of cost
reduction for the expected workload execution [1]. El-
houssaine [2], developed another approach for vertical
and horizontal fragmentation based on genetic algorithm.
The author aimed to reduce the cost of query execution by
applying the data partitioning on star schema for relation-
al DW. Marir et al. [3]. proposed a simple and easy algo-

Original Article

* Corresponding Author: Arwa S. Al-Shannaq

Email: almotairi@mu.edu.sa

doi: 10.26735/16587790.2019.005

Keywords: data mining, partitioning, vertical fragmentation.

Production and hosting by NAUSS

1658-7782© 2019. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Naif Arab University for Security Sciences
Journal of Information Security & Cybercrimes Research

مجلة بحوث اأمن المعلومات والجرائم ال�سيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

mailto:almotairi%40mu.edu.sa?subject=
https://doi.org/10.26735/16587790.2019.005
https://crossmark.crossref.org/dialog/?doi=10.26735/16587790.2019.005&domain=pdf
https://nauss.edu.sa/
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://doi.org/10.26735/16587790.2019.005

111

JISCR 2019; Volume 2 Issue (1)

rithm based on the affinity matrix, which started from the
values of affinity between the different attributes to the
step of generating the initial groups. The final fragments
were produced by merging those initial groups A com-
parative summary was performed between various frag-
mentation algorithms for DW such as hill climbing and
genetic algorithms [4]. Another comparison study was
conducted between two methods for horizontal fragmen-
tation with adaptation to XML context, these methods are
affinity-based fragmentation [5]. Yeruva et al. provided a
methodology for distributed warehouse design and ver-
tical fragmentation for large schema based on attribute
affinity matrix and bond energy algorithm [6]. Benkrid
et al. proposed another fragmentation approach based on
genetic algorithm for data warehouse that was modeled
using a star schema and the allocation of these different
partitions at several nodes [7]. Gorla and Betty designed
a new methodology for vertical fragmentation in relation-
al database based on data-mining technique by adapting
the Apriori algorithm [8]. Another usage of data-mining
techniques for vertical fragmentation was performed us-
ing FP-max algorithm [9] and tested on large database
and warehouse [10], the performance was compared with
approach based on Apriori algorithm [8]. Rakesh and A.
Bhanu used a clustering algorithm called k means to per-
form partitioning for a dataset after horizontal aggrega-
tions [11]. Fung et al. developed cost model for query
processing on object-oriented database which was imple-
mented used vertical partitioning [12].

III. METHODOLOGY

Our approach consists of three main steps: generat-
ing the closed itemsets using the FPClose algorithm [13],
then deriving the vertical partitions, and finally finding
the optimal partitioning scheme.

The approach will be tested using sample database
and transaction set [8] (see Appendix A)

A. Generating the closed itemsets
Closed frequent itemsets are called closed when

both items have a support that is equal to -or larger than
min-support, which is previously defined. An itemset is
supposed to be closed in a data set unless a superset ex-
ists, which has the same support as the original itemset.
The closed itemset is extracted by using the FPClose algo-
rithm. The frequency of queries is represented by the sup-
port. At this step, the inputs are database transaction sets
with transaction frequencies and a predetermined support
level. The outputs will be a set of closed frequent items.

B. Deriving the potentials of vertical partitions
Once the large itemsets was generated, the partitions

scheme is determined by tracing the large itemset from
the k-itemset. The first partition is picked from k-item-
set then the next partition is picked from (k-1) itemset
to reach first set considering that the partitions are dis-
joint. This process should be repeated until deriving all
the possible partitioning schemes. The input for this step
use the list of large itemsets extracted from the previous
step. The output will be the potential list of all partition-
ing schemes.

C. Finding the optimal portioning scheme
To find the optimal scheme, the cost formula is ap-

plied to compute the operating cost for each transaction.
Equation 2 is used for (Select) retrieval transaction and
equation 3 is used to update transaction such as (insert/
delete). The lowest cost is related to the optimal scheme.
For this module, the inputs are the list of all partitioning
schemes, the set of transactions and the optimal scheme
will be the output of this step.

D. Cost formula
The selecting of the optimal partitioning scheme will

depend on the lowest cost reductions. The cost is calcu-
lated using the number of blocks as shown in equation1
which are accessed by a query as used in [8]. A formula
for each segment will be applied which represents the
cost of query processing (retrieval) as shown in equation
2. In our approach, we include the cost of blocks estimate
to calculate the cost without considering the cost of stor-
age access and index access.

vertical fragmentation was performed using FP-max
algorithm [9] and tested on large database and
warehouse [10], the performance was compared
with approach based on Apriori algorithm [8].
Rakesh and A. Bhanu used a clustering algorithm
called k means to perform partitioning for a dataset
after horizontal aggregations [11]. Fung et al.
developed cost model for query processing on
object-oriented database which was implemented
used vertical partitioning [12].

3. Methodology

Our approach consists of three main steps:
generating the closed itemsets using the FPClose
algorithm [13], then deriving the vertical partitions,
and finally finding the optimal partitioning scheme.

The approach will be tested using sample
database and transaction set [8] (see Appendix A)

3.1. Generating the closed itemsets

Closed frequent itemsets are called closed when

both items have a support that is equal to -or larger
than min-support, which is previously defined. An
itemset is supposed to be closed in a data set unless
a superset exists, which has the same support as the
original itemset. The closed itemset is extracted by
using the FPClose algorithm. The frequency of
queries is represented by the support. At this step,
the inputs are database transaction sets with
transaction frequencies and a predetermined support
level. The outputs will be a set of closed frequent
items.

3.2. Deriving the potentials of vertical

partitions

Once the large itemsets was generated, the
partitions scheme is determined by tracing the large
itemset from the k-itemset. The first partition is
picked from k-itemset then the next partition is
picked from (k-1) itemset to reach first set
considering that the partitions are disjoint. This
process should be repeated until deriving all the
possible partitioning schemes. The input for this step
use the list of large itemsets extracted from the
previous step. The output will be the potential list of
all partitioning schemes.

3.3. Finding the optimal portioning scheme

To find the optimal scheme, the cost formula is

applied to compute the operating cost for each
transaction. Equation 2 is used for (Select) retrieval
transaction and equation 3 is used to update
transaction such as (insert/delete). The lowest cost is
related to the optimal scheme. For this module, the

inputs are the list of all partitioning schemes, the set
of transactions and the optimal scheme will be the
output of this step.

3.4. Cost formula

The selecting of the optimal partitioning scheme

will depend on the lowest cost reductions. The cost
is calculated using the number of blocks as shown in
equation1 which are accessed by a query as used in
[8]. A formula for each segment will be applied
which represents the cost of query processing
(retrieval) as shown in equation 2. In our approach,
we include the cost of blocks estimate to calculate
the cost without considering the cost of storage
access and index access.

#	𝑜𝑜𝑜𝑜	𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛 ,1 − /1 − 1 𝑛𝑛0 1

2
3 (1)

Where:
Fq= Query q frequency
Segqj= # of partitions j satisfying a query

q
Ni= [T*Li/BS]
Ni= # of accessed blocks in partition i
Kq= # of tuples satisfying a query
T= total tuples in the dataset
Li= size of partition i in bytes
BS= The block size

In case of insert/delete queries, the cost will be

multiplied by 2 while it takes two I/O times, which
is estimated as used in [8]:

2 ∗ 𝑜𝑜𝑓𝑓 ∗ 7 8 9𝑁𝑁𝑁𝑁 ,1 − /1 − 1 𝑁𝑁𝑁𝑁0 1
2<
3=

>?@<A

BCD

E (3)

4. Implementation

In this approach, a real-life database from (UCI)

called Teaching Assistant Evaluation (TAE) dataset
with 6 attributes, 151 tuples, and a block size of 100
bytes [14] was used. The description of the database
is shown in Table1.

Table 1. TAE database description

 Attributes Types Size
(bytes)

A speaker (binary) English
speaker=1,
non-English
speaker=2

19

B course_instructor (25 categories) 2
C course (26 categories) 2
D semester (binary)

Summer=1,
Regular=2

7

E class_size (numerical) 2

In case of insert/delete queries, the cost will be
multiplied by 2 while it takes two I/O times, which is
estimated as used in [8]:

Vertical Fragmentation for Database Using FPClose Algorithm

112

JISCR 2019; Volume 2 Issue (1)

vertical fragmentation was performed using FP-max
algorithm [9] and tested on large database and
warehouse [10], the performance was compared
with approach based on Apriori algorithm [8].
Rakesh and A. Bhanu used a clustering algorithm
called k means to perform partitioning for a dataset
after horizontal aggregations [11]. Fung et al.
developed cost model for query processing on
object-oriented database which was implemented
used vertical partitioning [12].

3. Methodology

Our approach consists of three main steps:
generating the closed itemsets using the FPClose
algorithm [13], then deriving the vertical partitions,
and finally finding the optimal partitioning scheme.

The approach will be tested using sample
database and transaction set [8] (see Appendix A)

3.1. Generating the closed itemsets

Closed frequent itemsets are called closed when

both items have a support that is equal to -or larger
than min-support, which is previously defined. An
itemset is supposed to be closed in a data set unless
a superset exists, which has the same support as the
original itemset. The closed itemset is extracted by
using the FPClose algorithm. The frequency of
queries is represented by the support. At this step,
the inputs are database transaction sets with
transaction frequencies and a predetermined support
level. The outputs will be a set of closed frequent
items.

3.2. Deriving the potentials of vertical

partitions

Once the large itemsets was generated, the
partitions scheme is determined by tracing the large
itemset from the k-itemset. The first partition is
picked from k-itemset then the next partition is
picked from (k-1) itemset to reach first set
considering that the partitions are disjoint. This
process should be repeated until deriving all the
possible partitioning schemes. The input for this step
use the list of large itemsets extracted from the
previous step. The output will be the potential list of
all partitioning schemes.

3.3. Finding the optimal portioning scheme

To find the optimal scheme, the cost formula is

applied to compute the operating cost for each
transaction. Equation 2 is used for (Select) retrieval
transaction and equation 3 is used to update
transaction such as (insert/delete). The lowest cost is
related to the optimal scheme. For this module, the

inputs are the list of all partitioning schemes, the set
of transactions and the optimal scheme will be the
output of this step.

3.4. Cost formula

The selecting of the optimal partitioning scheme

will depend on the lowest cost reductions. The cost
is calculated using the number of blocks as shown in
equation1 which are accessed by a query as used in
[8]. A formula for each segment will be applied
which represents the cost of query processing
(retrieval) as shown in equation 2. In our approach,
we include the cost of blocks estimate to calculate
the cost without considering the cost of storage
access and index access.

#	𝑜𝑜𝑜𝑜	𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛 ,1 − /1 − 1 𝑛𝑛0 1

2
3 (1)

Where:
Fq= Query q frequency
Segqj= # of partitions j satisfying a query

q
Ni= [T*Li/BS]
Ni= # of accessed blocks in partition i
Kq= # of tuples satisfying a query
T= total tuples in the dataset
Li= size of partition i in bytes
BS= The block size

In case of insert/delete queries, the cost will be

multiplied by 2 while it takes two I/O times, which
is estimated as used in [8]:

2 ∗ 𝑜𝑜𝑓𝑓 ∗ 7 8 9𝑁𝑁𝑁𝑁 ,1 − /1 − 1 𝑁𝑁𝑁𝑁0 1
2<
3=

>?@<A

BCD

E (3)

4. Implementation

In this approach, a real-life database from (UCI)

called Teaching Assistant Evaluation (TAE) dataset
with 6 attributes, 151 tuples, and a block size of 100
bytes [14] was used. The description of the database
is shown in Table1.

Table 1. TAE database description

 Attributes Types Size
(bytes)

A speaker (binary) English
speaker=1,
non-English
speaker=2

19

B course_instructor (25 categories) 2
C course (26 categories) 2
D semester (binary)

Summer=1,
Regular=2

7

E class_size (numerical) 2

IV. IMPLEMENTATION

In this approach, a real-life database from (UCI)
called Teaching Assistant Evaluation (TAE) dataset with
6 attributes, 151 tuples, and a block size of 100 bytes
[14] was used. The description of the database is shown
in Table I.

(TAE Dataset) Experiment
The TAE dataset attributes description is given in

Table I. It is assumed that the block size of this dataset
to be 100 bytes. The generated transaction set as shown
in Appendix A, contains 10 SELECT, one INSERT and
one DELETE SQL Query with the related frequency and
number of tuples satisfied the query which was used in
prior research [8].

The partitions are derived using predefined support
levels (20%,30%,40%,50%,60%). The extracted closed
itemsets are listed in five groups with min-support of
20% as shown in Table II. The partitioning schemes then
grouped from these different disjoint itemsets.

It can be noticed the better performance of FPclose
algorithm over Apriori algorithm. FPclose has an
improvement in cost by 15.74% whereas Apriori
algorithm has 13.62% as shown in Fig. 1.

An open source library for data mining algorithms
(SPMF) [15], which was developed in java used to
conduct the FPclose algorithm to extract the closed items
from the set of transactions. The generating time for
extracting data for 20% support is 15ms, while it is zero
for the other support levels.

F class_attribute (categorical)
Low=1,
Medium=2,
High=3

6

(TAE Dataset) Experiment

The TAE dataset attributes description is given
in Table 1. It is assumed that the block size of this
dataset to be 100 bytes. The generated transaction
set as shown in (Appendix A) contains 10 SELECT,
one INSERT and one DELETE SQL Query with the
related frequency and number of tuples satisfied the
query which was used in prior research [8].

The partitions are derived using predefined
support levels (20%,30%,40%,50%,60%). The
extracted closed itemsets are listed in five groups
with min-support of 20% as shown in Table 2. The
partitioning schemes then grouped from these
different disjoint itemsets.

It can be noticed the better performance of FPclose
algorithm over Apriori algorithm. FPclose has an
improvement in cost by 15.74% whereas Apriori
algorithm has 13.62% as shown in Figure 1.
An open source library for data mining algorithms
(SPMF) [15], which was developed in java used to
conduct the FPclose algorithm to extract the closed
items from the set of transactions. The generating
time for extracting data for 20% support is 15ms,
while it is zero for the other support levels.

As shown in Table 3 the best partitioning scheme
is obtained when the minimum support level is 20%
or 30% which gives a result of 15.74% cost
reductions compared with unpartitioned design.

The optimal design is:
{Speaker, Course, Semester}
{Course_instructor, Class_attribute}
{Class_size}

𝑓𝑓𝑓𝑓 ∗ F7 8 9𝑁𝑁𝑁𝑁 ,1 − /1 − 1 𝑁𝑁𝑁𝑁0 1
2<
3=

>?@<A

BCD

E ∗ ,1 + /0.1 ∗ (𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 − 1)13O (2)

Table 2.Closed itemsets for TAE with min_sup=20%

Itemset L1
Itemsets Support

{ A } 57
{ B } 62
{ C } 56
{ D } 54
{ E } 39
{ F } 88

Itemset L2
Itemsets Support

{FB} 50
{FA} 55
{AC} 46
{AD} 44
{BD} 47
{CD} 43
{DE} 39

Itemset L3
Itemsets Support
{CDE} 28
{ADE} 29
{BDE} 32
{ACD} 33
{BCD} 36
{BAD} 37
{FAD} 42
{FAC} 44

Itemset L4
Itemsets Support
{BCDE} 21
{BADE} 22
{FADE} 27
{BACD} 26
{FACD} 31
{FBAD} 35

Itemset L5
Itemsets Support
{ABDEF} 20
{ABCDF} 24

Table3. Results of TAE with different support level

Min-Support Best Partition
Schemes

Cost Cost Reductions Number of
closed items

20% ACD FB E 2720.30 15.74% 29
30% ACD FB E 2720.30 15.74% 20
40% ACF BD E 3643.80 -12.88% 13
50% A BF C D E 3133.00 2.94% 7
60% A B C D E F 3117.20 3.43% 2

Optimal Scheme ACD FB E 2720.30 15.74%
Without
Partitioning

ABCDEF 3228.00

As shown in Table III the best partitioning scheme is
obtained when the minimum support level is 20% or 30%
which gives a result of 15.74% cost reductions compared
with unpartitioned design.

The optimal design is:
{Speaker, Course, Semester}
{Course_instructor, Class_attribute}
{Class_size}

Vertical Fragmentation for Database Using FPClose Algorithm

TABLE I
 TAE DATABASE DESCRIPTION

Attributes Types Size
(bytes)

A speaker

(binary) English
speaker=1,

non-English
speaker=2

19

B course_in-
structor (25 categories) 2

C course (26 categories) 2

D semester
(binary)

Summer=1,
Regular=2

7

E class_size (numerical) 2

F class_attri-
bute

categorical)
Low=1,

Medium=2,
High=3

6

TABLE II
CLOSED ITEMSETS FOR TAE WITH MIN_SUP=20%

Itemset L1

Itemsets Support

{ A } 57
{ B } 62
{ C } 56
{ D } 54
{ E } 39
{ F } 88

Itemset L2

Itemsets Support

{FB} 50
{FA} 55
{AC} 46
{AD} 44
{BD} 47
{CD} 43
{DE} 39

113

JISCR 2019; Volume 2 Issue (1)

Al-Shannaq & Almotairi

TABLE IV
COST REDUCTIONS COMPARISONS

Min-Support FPClose Apriori

20% 15.74% 13.62%

30% 15.74% 13.62%

40% -12.88% 3.04%

50% 2.94% -1.67%

60% 3.43% -6.21%

Table 4: Cost reductions comparisons

Figure1. Cost reduction for TAE database

5. Discussion

FPclose algorithm is trying to discover the

frequent and closed itemset in the database. And if
the related database is splitting regarding these kind
of itemsets, the cost of query processing will be
decreased. The reduction in cost will also depend on
the queries and their frequencies. Moreover, the
characteristics of the database have an effect while
finding the optimal solutions. If there are more
inserts/delete queries, more fragmented solution will
be produced, because of the high cost for these
queries in partitioned scheme. On the other hand, the
minimum support with high level will give more
fragments which will increase the cost.

Our results show a better performance against
Apriori algorithm because of the less number of
fragments are produced using FPclose. The cost
reductions in our approach is 15.74% while using
Apriori algorithm gave 13.62%.

In the real world, the proposed method in our
research can be used by the database designers to
obtain the efficient partitioning design.

6. Conclusion

A new approach has been presented in this study

to make a vertical fragmentation for database using
FPclose data mining algorithm, which is used to
extract the closed itemsets in any relation. The
results show a better performance against Apriori
algorithm because of the less number of fragments
are produced using FPclose. The future work will
use the proposed method in mix fragmentation and
other large databases such as data warehouse.

7. References

[1] M. Golfarelli, D. Maio, and S. Rizzi, “Vertical

Fragmentation of Views in Relational Data
Warehouses,” in Atti del Settimo Convegno
Nazionale Sistemi Evoluti per Basi di Dati, 1999,
pp. 19–33.

[2] Z. Elhoussaine, “Complete Algorithm for
fragmentation in Data warehouse,” in 2008
International Conference on Information
Resources Management, 2008, no. November
2016, pp. 537–540.

[3] F. Marir, Y. Najjar, M. Y. AlFaress, and H. I.
Abdalla, “An enhanced grouping algorithm for
vertical partitioning problem in DDBs,” in 22nd
International Symposium on Computer and
Information Sciences, ISCIS 2007 - Proceedings,
2007, pp. 39–44.

[4] C. Science, “A Comparative Analysis of
Fragmentation Selection Algorithms for Data
Warehouse Partitioning,” in IEEE International
Conference on Advances in Engineering
&Technology Research, 2014, pp. 1–5.

[5] H. Mahboubi and J. Darmont, “Enhancing XML
Data Warehouse Query Performance by
Fragmentation,” in Proceedings of the 2009 ACM
symposium on Applied Computing, 2009, no.
Section 2, pp. 1555–1562.

[6] S. Yeruva, P. Y. Kumart, and P. Padmanabham,
“Design of Distributed Warehouse-A vertical
fragmentation approach,” in International
Conference on Next Generation Computing
Technologies, 2015, no. September, pp. 4–5.

[7] S. Benkrid, L. Bellatreche, and H. Drias, A
combined selection of fragmentation and
allocation schemes in parallel data warehouses.
2008, pp. 370–374.

[8] N. Gorla and P. W. Y. Betty, “Vertical
fragmentation in databases using data mining
technique,” Int. J. Data Warehous. Min., vol. 4,
no. 3, pp. 35–53, 2008.

[9] G. Grahne and J. Zhu, “High performance mining
of maximal frequent itemsets,” 6th Int. Work.
High Perform. Data Min., vol. 1, 2003.

[10] M. Bouakkaz, Y. Ouinten, and B. Ziani, Vertical
fragmentation of data warehouses using the FP-
Max algorithm. 2012, pp. 273–276.

[11] R. Rakesh Kumar and A. Bhanu Prasad, “K
Means Clustering Algorithm for Partitioning
Data Sets Evaluated From Horizontal
Aggregations ,” IOSR J. Comput. Eng. , vol. 12,
no. 5, pp. 42–45, 2013.

[12] C. W. Fung, K. Karlapalem, and Q. Li, “An
evaluation of vertical class partitioning for query
processing in object-oriented databases,” in IEEE
Transactions on Knowledge and Data
Engineering, 2002, vol. 14, no. 5, pp. 1095–1118.

[13] G. Grahne and J. Zhu, “Fast algorithms for
frequent itemset mining using FP-trees,” in IEEE
Transactions on Knowledge and Data
Engineering, 2005, vol. 17, no. 10, pp. 1347–
1362.

[14] M. Lichman, “{UCI} Machine Learning
Repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml.

[15] P. Fournier-Viger et al., “The SPMF open-source
data mining library version 2,” in Proc. 19th
European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD 2016),
2016, vol. 9853 LNCS, pp. 36–40.

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

2 0 % 3 0 % 4 0 % 5 0 % 6 0 %

C
O

ST
 R

ED
U

C
TI

O
N

S

MIN-SUPPORT

FPClose Apriori

Min-Support FPClose Apriori
20% 15.74% 13.62%
30% 15.74% 13.62%
40% -12.88% 3.04%
50% 2.94% -1.67%
60% 3.43% -6.21%

Itemset L3

Itemsets Support

{CDE} 28
 {ADE} 29
 {BDE} 32
 {ACD} 33
 {BCD} 36
 {BAD} 37
{FAD} 42
{FAC} 44

Itemset L4

Itemsets Support

{BCDE} 21
{BADE} 22
{FADE} 27
{BACD} 26
{FACD} 31
{FBAD} 35

Itemset L5

Itemsets Support

{ABDEF} 20
}ABCDF{ 24

TABLE II
CLOSED ITEMSETS FOR TAE WITH MIN_SUP=20% (Continued.)

Fig. 1. Cost reduction for TAE database.

TABLE III
RESULTS OF TAE WITH DIFFERENT SUPPORT LEVEL

Min-Support Best Partition
Schemes Cost Cost Reductions Number of closed

items
20% ACD FB E 2720.30 15.74% 29

30% ACD FB E 2720.30 15.74% 20

40% ACF BD E 3643.80 -12.88% 13

50% A BF C D E 3133.00 2.94% 7

60% A B C D E F 3117.20 3.43% 2

Optimal Scheme ACD FB E 2720.30 15.74% -

Without Partitioning ABCDEF 3228.00 - -

114

JISCR 2019; Volume 2 Issue (1)

Vertical Fragmentation for Database Using FPClose Algorithm

V. DISCUSSION

FPclose algorithm is trying to discover the frequent
and closed itemset in the database. And if the related
database is splitting regarding these kind of itemsets,
the cost of query processing will be decreased. The
reduction in cost will also depend on the queries and their
frequencies. Moreover, the characteristics of the database
have an effect while finding the optimal solutions. If
there are more inserts/delete queries, more fragmented
solution will be produced, because of the high cost for
these queries in partitioned scheme. On the other hand,
the minimum support with high level will give more
fragments which will increase the cost.

Our results show a better performance against Apriori
algorithm because of the less number of fragments are
produced using FPclose. The cost reductions in our
approach is 15.74% while using Apriori algorithm gave
13.62%.

In the real world, the proposed method in our research
can be used by the database designers to obtain the
efficient partitioning design.

VI. CONCLUSION

A new approach has been presented in this study to
make a vertical fragmentation for database using FPclose
data mining algorithm, which is used to extract the
closed itemsets in any relation. The results show a better
performance against Apriori algorithm because of the
less number of fragments are produced using FPclose.
The future work will use the proposed method in mix
fragmentation and other large databases such as data
warehouse.

REFERENCES

[1] M. Golfarelli, D. Maio and S. Rizzi, “Vertical Fragmentation of

Views in Relational Data Warehouses,” in Atti del Settimo Con-
vegno Nazionale Sistemi Evoluti per Basi di Dati (7th SEBD),
1999, pp. 19-33.

[2] Z. Elhoussaine, D. Aboutajdine and E. Abderrahim, “Complete

algorithm for fragmentation in data warehouse,” in Proc. 7th
WSEAS Int. Conf. Artif. Intell. Knowl. Eng. Data Bases, Feb.

2008, pp. 537-540.

[3] F. Marir, Y. Najjar, M. Y. AlFaress and H. I. Abdalla, "An en-

hanced grouping algorithm for vertical partitioning problem in

DDBs," 2007 22nd Int. Sympo. Comput. Inf. Sci., Ankara, 2007,

pp. 1-6, doi: 10.1109/ISCIS.2007.4456833.

[4] M. Thenmozhi and K. Vivekanandan, "A comparative analysis of

fragmentation selection algorithms for data warehouse partition-

ing," 2014 Int. Conf. Adv. Eng. Technol. Res. (ICAETR - 2014),
Unnao, 2014, pp. 1-5, doi: 10.1109/ICAETR.2014.7012866.

[5] H. Mahboubi and J. Darmont, “Enhancing XML Data Ware-

house Query Performance by Fragmentation,” in Proc. 2009
ACM Symp. Appl. Comput., Mar. 2009, pp. 1555–1562, doi:

10.1145/1529282.1529630.

[6] S. Yeruva, P. V. Kumar and P. Padmanabham, "Design of dis-

tributed warehouse-a vertical fragmentation approach," in 2015
1st Int. Conf. Next Gener. Comput. Technol. (NGCT), Dehradun,

2015, pp. 616-621, doi: 10.1109/NGCT.2015.7375195.

[7] S. Benkrid, L. Bellatreche and H. Drias, "A Combined Selection

of Fragmentation and Allocation Schemes in Parallel Data Ware-

houses," 2008 19th Int. Workshop Database Expert Syst. Appl.,
Turin, 2008, pp. 370-374, doi: 10.1109/DEXA.2008.63.

[8] N. Gorla and P. W. Betty, “Vertical Fragmentation in Databases

Using Data Mining Technique,” Int. J. Data Warehous. Min., vol.

4, no. 3, pp. 35-53, July 2008, doi: 10.4018/jdwm.2008070103.

[9] G. Grahne and J. Zhu, “High performance mining of maximal

frequent itemsets,” in 6th Int. Workshop High Perform. Data
Min., 2003, p. 34.

[10] M. Bouakkaz, Y. Ouinten and B. Ziani, "Vertical fragmentation

of data warehouses using the FP-Max algorithm," 2012 Int. Conf.
Innov. Inf. Technol. (IIT), Abu Dhabi, 2012, pp. 273-276, doi:

10.1109/INNOVATIONS.2012.6207746.

[11] R. R. Kumar and A. B. Prasad, “K Means Clustering Algorithm

for Partitioning Data Sets Evaluated From Horizontal Aggrega-

tions,” IOSR J. Comput. Eng. (IOSR-JCE), vol. 12, no. 5, pp.

45-48, Jul.-Aug. 2013, doi: 10.9790/0661-1254548.

[12] Chi-wai Fung, K. Karlapalem and Qing Li, "An evaluation of

vertical class partitioning for query processing in object-oriented

databases," in IEEE Trans. Knowl. Data Eng., vol. 14, no. 5, pp.

1095-1118, Sept.-Oct. 2002, doi: 10.1109/TKDE.2002.1033777.

[13] G. Grahne and J. Zhu, "Fast algorithms for frequent itemset min-

ing using FP-trees," in IEEE Trans. Knowl. Data Eng., vol. 17,

no. 10, pp. 1347-1362, Oct. 2005, doi: 10.1109/TKDE.2005.166.

[14] M. Lichman, “{UCI} Machine Learning Repository,” 2013. [On-

line]. Available: http://archive.ics.uci.edu/ml

[15] P. Fournier-Viger, “The SPMF Open-Source Data Mining Li-

brary Version 2,” in Jt. Eur. Conf. Mach. Learn. Knowl. Discov.
Databases, in Machine Learning and Knowledge Discovery in

Databases, in Lecture Noyes in Computer Science, vol. 9853, pp.

32-35, Sept. 2016.

115

JISCR 2019; Volume 2 Issue (1)

Al-Shannaq & Almotairi

APPENDIX

APPENDIX A
DATABASE TRANSACTIONS

Transaction Attributes Frequency Kq

SELECT A, B, C, D, E 2 1

SELECT A, B, D, E, F 3 137

SELECT A, C, F 13 55

SELECT A, B, C, D, F 15 50

SELECT A, B, D, E, F 2 66

SELECT A, C, D, E, F 7 0

SELECT B, F 15 115

SELECT A, B, D, E, F 6 21

SELECT F 18 149

SELECT B, C, D, E 10 17

INSERT A, B, C, D, E, F 6 1

DELETE A, B, C, D, E, F 3 4

