Forensic Characterization of Liquor Samples by Gas Chromatography-Mass Spectrometry (GC-MS) – A Review

Praveen K. Yadav, Rakesh M. Sharma


Alcohol is a subject of forensic research across the world. The forensic characterization of alcoholic beverages is required in cases of death and crimes due to alcohol consumption. In many cases, determining the geographic origin becomes a very important part of the investigation. Therefore, it is important to develop more sensitive methods for the analysis of alcoholic beverages. In this review, an attempt has been made to summarize the work accomplished so far in the field of analysis and detection of alcoholic beverages. In this review, various sample preparation techniques for GC-MS analysis of alcoholic beverages have been discussed along with its applications. GC-MS based analysis is less time consuming, more sensitive and more accurate.  

Keywords: Forensic Sciences, Alcoholic beverages, Mortality, Analysis, GC-MS


Alcohol, Liquor, Gas-chromatography-mass spectrometry

Full Text:



Nordegren T. The A-Z Encyclopedia of Alcohol and Drug Abuse. First Edit. Florida: Brown Walker Press; 2002.

Thun MJ, Peto R, Lopez AD, Monaco JH, Henley SJ, Heath Jr CW, Doll R. Alcohol consumption and mortality among middle-aged and elderly US adults. N Engl J Med. 1997;337(24):1705-14., PMid:9392695

Chakrabarti A, Rai B, Panda S. Producer, sellers and drinkers - studies of noncommercial alcohol in nine countries. Int Cent alcohol policies Monogr Ser. 2012;33–8.

Gururaj G, Murthy P, Girish N, Benegal V. Alcohol related harm: Implications for public health and policy in India. Bangalore: NIMHANS. 2011. PMCid:PMC3209979

Martin C. Forensic issues in alcohol testing. 1st ed. Karch SB, editor. Boca Raton: CRC press, Taylor and francis group; 2008.

Hansen AC, Zhang Q, Lyne PW. Ethanol–diesel fuel blends––a review. Bioresour Technol. 2005;96(3):277-85., PMid:15474927

Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549-56., PMid:17050014

World Health Organization, World Health Organization. Management of Substance Abuse Unit. Global status report on alcohol and health, 2014. World Health Organization; 2014.

Babor T, Caetano R, Casswell S, Edwards G, Giesbrecht N, Graham K, et al. Alcohol: No ordinary commodity Research and public policy. Second Edi. New york: Oxford University Press; 2010.

Vial J, Jardy A. Quantitation by Internal Standard. In: Cazes J, editor. Encycl. Chromatogr. New york: Marcel Dekker; 2004. p. 1–2.

McNair HM, Miller JM. Qualitative and Quantitative Analysis. Basic Gas Chromatography, Second Edition.:129-44.

Pino JA, Queris O. Analysis of volatile compounds of mango wine. Food Chem. 2011;125(4):1141-6.

Zheng J, Liang R, Wu C, Zhou R, Liao X. Discrimination of different kinds of Luzhou-flavor raw liquors based on their volatile features. Food Res Int. 2014;56:77-84.

Plutowska B, Wardencki W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages–A review. Food chem. 2008 Mar 1;107(1):449-63.

Ortega C, López R, Cacho J, Ferreira V. Fast analysis of important wine volatile compounds: Development and validation of a new method based on gas chromatographic–flame ionisation detection analysis of dichloromethane microextracts. J Chromatogr A. 2001;923(1):205-14.

Farina L, Boido E, Carrau F, Dellacassa E. Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. J Chromatogr A. 2007;1157(1):46-50., PMid:17517420

Bosch-Fusté J, Riu-Aumatell M, Guadayol JM, Caixach J, López-Tamames E, Buxaderas S. Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography–mass spectrometry (GC–MS) analysis. Food Chem. 2007;105(1):428-35.

Caldeira M, Rodrigues F, Perestrelo R, Marques JC, Câmara JD. Comparison of two extraction methods for evaluation of volatile constituents patterns in commercial whiskeys: Elucidation of the main odour-active compounds. Talanta. 2007;74(1):78-90., PMid:18371616

Castro R, Natera R, Benitez P, Barroso CG. Comparative analysis of volatile compounds of ‘fino’sherry wine by rotatory and continuous liquid–liquid extraction and solid-phase microextraction in conjunction with gas chromatography-mass spectrometry. Anal Chim Acta. 2004;513(1):141-50.

Punia BS, Yadav PK, Bumbrah GS, Sharma RM. Analysis of Illicit Liquor by Headspace Gas Chromatography-Mass Spectrometry (HS-GC-MS): A Preliminary Study. J AOAC Int. 2017;100(1):109-25., PMid:28825540

Rodrigues F, Caldeira M, Câmara JD. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Anal Chim Acta. 2008;609(1):82-104., PMid:18243877

Morales MT, Aparicio R, Rios JJ. Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J Chromatogr A. 1994;668(2):455-62.

Zhang Z, Pawliszyn J. Headspace solid-phase microextraction. Anal chem. 1993;65(14):1843-52.

Luo T, Fan W, Xu Y. Characterization of Volatile and Semi-Volatile Compounds in Chinese Rice Wines by Headspace Solid Phase Microextraction Followed by Gas Chromatography-Mass Spectrometry. J Inst Brew. 2008;114(2):172-9.

Weldegergis BT, de Villiers A, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC× GC–TOFMS). Food Chem. 2011;129(1):188-99.

Cheng P, Fan W, Xu Y. Quality grade discrimination of Chinese strong aroma type liquors using mass spectrometry and multivariate analysis. Food res int. 2013;54(2):1753-60.

de Koning S, Janssen HG, Udo AT. Modern methods of sample preparation for GC analysis. Chromatographia. 2009;69(1):33.

Schulz K, Dreßler J, Sohnius EM, Lachenmeier DW. Determination of volatile constituents in spirits using headspace trap technology. J Chromatogr A. 2007;1145(1):204-9., PMid:17289058

Mamede ME, Pastore GM. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chem. 2006;96(4):586-90.

Kleinova J, Klejdus B. Determination of volatiles in beer using solid-phase microextraction in combination with gas chromatography/mass spectrometry. Czech J Food Sci. 2014;32(3):241-8.

Jeleń HH, Majcher M, Dziadas M. Microextraction techniques in the analysis of food flavor compounds: A review. Anal Chim Acta. 2012;738:13-26., PMid:22790695

Stashenko EE, Martínez JR. Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. J Biochem Biophys Methods. 2007;70(2):235-42., PMid:17045655

Wardencki W, Michulec M, Curyło J. A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int J Food Sci Technol. 2004;39(7):703-17.

Özhan D, Anli RE, Vural N, Bayram M. Determination of Chloroanisoles and Chlorophenols in Cork and Wine by using HS-SPME and GC-ECD Detection. J Inst Brew. 2009;115(1):71-7.

Crupi ML, Costa R, Dugo P, Dugo G, Mondello L. A comprehensive study on the chemical composition and aromatic characteristics of lemon liquor. Food Chem. 2007;105(2):771–83.

Galano E, Imbelloni M, Chambery A, Malorni A, Amoresano A. Molecular fingerprint of the alcoholic Grappa beverage by mass spectrometry techniques. Food Res Int. 2015;72:106–14.

Welke JE, Manfroi V, Zanus M, Lazzarotto M, Zini CA. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013;141(4):3897–905., PMid:23993563

Canuti V, Conversano M, Calzi ML, Heymann H, Mathews MA, Ebeler SE. Headspace solid-phase microextraction-gas chromatography- mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J Chromatogr. A. 2009;1216(15):3012–22., PMid:19233370

Torrens J, Riu-Aumatell M, Lopez-Tamames E, Buxaderas S. Volatile compounds of red and white wines by headspace-solid-phase microextraction using different fibers. J Chromatogr Sci. 2004;42(6):310-6., PMid:15296531

Riu-Aumatell M, Bosch-Fuste J, Lopez-Tamames F, Buxaderas S. Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem. 2006;95(2):237–42.

Tao Y, Li H, Wang H, Zhang L. Volatile compounds of young Cabernet Sauvignon red wine from Changli county (China). J Food Compos Anal. 2008;21(8):689–94.

Jelen HH, Szczurek A. Solid phase microextraction for profiling volatile compounds in liquered white wines. Acta Sci Pol. 2010;9(1):23–32.

Villiere A, Arvisenet G, Lethuaut L, Prost C, Serot T. Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GCMS-O and GC GC-TOF-MS. Food Chem. 2012;131(4):1561–8.

Vas G, Gal L, Harangi J, Dobo A, Vekey K. Determination of volatile aroma compounds of Blaufrankisch wines extracted by Solid-Phase Microextraction. J. Chromatogr. Sci. 1998;36(10):506–10.

Cheng P, Fan W, Xu Y. Determination of Chinese liquors from different geographic origins by combination of mass spectrometry and chemometric technique. Food Control. 2014;35(1):153-8.

Coelho E, Coimbra MA, Nogueira JM, Rocha SM. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal Chim Acta. 2009;635(2):214-21., PMid:19216881

Kawaguchi M, Takatsu A, Ito R, Nakazawa H. Applications of stir-bar sorptive extraction to food analysis. Trends Analyt Chem. 2013;45:280-93.

Ochiai N, Sasamoto K, David F, Sandra P. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine. J Chromatogr A. 2016;1455:45-56., PMid:27289502

Andujar-Ortiz I, Moreno-Arribas MV, Martín-Álvarez PJ, Pozo-Bayón MA. Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. J Chromatogr A. 2009;1216(43):7351-7., PMid:19732903

Wang PP, Li Z, Qi TT, Li XJ, Pan SY. Development of a method for identification and accurate quantitation of aroma compounds in Chinese Daohuaxiang liquors based on SPME using a sol–gel fibre. Food chem. 2015;169:230-40., PMid:25236221

Demyttenaere JC, Martı́ JI, Verhé R, Sandra P, De Kimpe N. Analysis of volatiles of malt whisky by solid-phase microextraction and stir bar sorptive extraction. J Chromatogr A. 2003;985(1):221-32.

Savchuk SA, Kolesov GM, Nuzhnyi VP. Chromatographic study of the chemical composition and potential toxicity of spirits and alcoholic beverages. J Anal Chem. 2007;62(6):575-82.

Dragone G, Mussatto SI, Oliveira JM, Teixeira JA. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009;112(4):929-35.

Zhou Q, Qian Y, Qian MC. Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. J Chromatogr A. 2015;1390:22-7., PMid:25766496

McKee M, Sűzcs S, Sárváry A, Ádany R, Kiryanov N, Saburova L, Tomkins S, Andreev E, Leon DA. The composition of surrogate alcohols consumed in Russia. Alcohol Clin Exp Res. 2005;29(10):1884-8., PMid:16269919

De León-Rodríguez A, González-Hernández L, Barba de la Rosa AP, Escalante-Minakata P, López MG. Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J Agric Food Chem. 2006;54(4):1337-41., PMid:16478257

Braga CM, Zielinski AA, da Silva KM, de Souza FK, Pietrowski GD, Couto M, Granato D, Wosiacki G, Nogueira A. Classification of juices and fermented beverages made from unripe, ripe and senescent apples based on the aromatic profile using chemometrics. Food chem. 2013;141(2):967-74., PMid:23790875

Andrea V, Nadia N, Teresa RM, Andrea A. Analysis of some Italian lemon liquors (Limoncello). J Agric Food Chem. 2003;51(17):4978-83., PMid:12903956

Anli RE, Vural N, Gucer Y. Determination of the principal volatile compounds of Turkish Raki. J Inst Brew. 2007;113(3):302-9.

Geroyiannaki M, Komaitis ME, Stavrakas DE, Polysiou M, Athanasopoulos PE, Spanos M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control. 2007;18(8):988-95.

Zhang CY, Lin NB, Chai XS, Barnes DG. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography. Food chem. 2015;183:169-72., PMid:25863625

Haider W, Barillier D, Hayat A, Gaillard JL, Ledauphin J. Rapid quantification and comparison of major volatile compounds of ciders from France (Normandy and Brittany) using microextraction by packed sorbent (MEPS). Anal Methods. 2014;6(5):1364-76.

Fan W, Xu Y, Zhang Y. Characterization of pyrazines in some Chinese liquors and their approximate concentrations. J Agric Food Chem.2007;55(24):9956-62., PMid:17970591

Ejim OS, Brands B, Rehm J, Lachenmeier DW. Composition of surrogate alcohol from South-Eastern Nigeria. Afr J Drug Alcohol Stud. 2007;6:65-74.

Ebeler SE, Terrien MB, Butzke CE. Analysis of brandy aroma by solid-phase microextraction and liquid–liquid extraction. J Sci Food Agric. 2000;80(5):625-30.<625::AID-JSFA584>3.0.CO;2-5

Mapitse R, Okatch H, Moshoeshoe E. Analysis of Volatile Compounds in Khadi (an Unrecorded Alcohol Beverage) from Botswana by Gas Chromatography-Flame Ionization Detection (GC-FID). S Afr J Chem. 2014;67:184-8.

Zhu S, Lu X, Ji K, Guo K, Li Y, Wu C, Xu G. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chim Acta. 2007;597(2):340-8., PMid:17683748

Arslan MM, Zeren C, Aydin Z, Akcan R, Dokuyucu R, Keten A, Cekin N. Analysis of methanol and its derivatives in illegally produced alcoholic beverages. J Forensic Leg Med. 2015;33:56-60., PMid:26048498

Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of analytical chemistry. Ninth. Belmont: Brooks/Cole Cengage Learning; 2014.

Boscaini E, Mikoviny T, Wisthaler A, von Hartungen E, Märk TD. Characterization of wine with PTR-MS. Int J Mass Spectrom. 2004;239(2):215-9.

Xiao Z, Yu D, Niu Y, Chen F, Song S, Zhu J, Zhu G. Characterization of aroma compounds of Chinese famous liquors by gas chromatography–mass spectrometry and flash GC electronic-nose. J Chromatogr B. 2014;945:92-100., PMid:24333641

da Silva GA, Augusto F, Poppi RJ. Exploratory analysis of the volatile profile of beers by HS–SPME–GC. Food Chem. 2008;111(4):1057-63.

da Silva GC, da Silva AA, da Silva LS, Godoy RL, Nogueira LC, Quitério SL, Raices RS. Method development by GC–ECD and HS-SPME–GC–MS for beer volatile analysis. Food chem. 2015;167:71-7., PMid:25148961

Welke JE, Zanus M, Lazzarotto M, Zini CA. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res Int. 2014;59:85-99.

Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography–mass spectrometry for the determination of volatile compounds in cherry wines. J Chromatogr B. 2015;978:122-30., PMid:25544009

Ferreira V, Ortín N, Escudero A, López R, Cacho J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J Agric Food Chem. 2002;50(14):4048-54., PMid:12083881

Dziadas M, Jeleń HH. Analysis of terpenes in white wines using SPE–SPME–GC/MS approach. Anal Chim Acta. 2010;677(1):43-9., PMid:20850588

Fitzgerald G, James KJ, MacNamara K, Stack MA. Characterisation of whiskeys using solid-phase microextraction with gas chromatography–mass spectrometry. J Chromatogr A. 2000;896(1):351-9.

De Souza MD, Vásquez P, del Mastro NL, Acree TE, Lavin EH. Characterization of cachaça and rum aroma. J Agric Food Chem. 2006;54(2):485-8., PMid:16417309

Vallejo-Cordoba B, González-Córdova AF, del Carmen Estrada-Montoya M. Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. J Agric Food Chem. 2004;52(18):5567-71., PMid:15373393

Rodda LN, Beyer J, Gerostamoulos D, Drummer OH. Alcohol congener analysis and the source of alcohol: a review. Forensic Sci Med Pathol. 2013;9(2):194-207., PMid:23456600

Simpkins W. Detection of Illicit Spirits. In: Linskens HF, Jackson JF, editors. Wine Anal. Mordern Methods Plant Anal. Vol. 6. Berlin: Springer-Verlag; 1988. p. 317–38.

Fan W, Qian MC. Identification of aroma compounds in Chinese “Yanghe Daqu” liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry. Flavour Fragr J. 2006;21:333–42.

Counet C, Ouwerx C, Rosoux D, Collin S. Relationship between procyanidin and flavor contents of cocoa liquors from different origins. J Agric Food Chem. 2004;52(20):6243–9., PMid:15453694

Cynkar W, Dambergs R, Smith P, Cozzolino D. Classification of tempranillo wines according to geographic origin: combination of mass spectrometry based electronic nose and chemometrics. Anal Chim Acta. 2010;660(1):227–31., PMid:20103167

Berna AZ, Trowell S, Clifford D, Cynkar W, Cozzolino D. Geographical origin of Sauvignon Blanc wines produced by mass spectrometry and metal oxide based electronic nose. Anal Chim Acta. 2009;648(2):146–52., PMid:19646576

Wang ML, Wang JT, Choong YM. A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography. J Food Compost Anal. 2004;17(2):187-96.

Wang M-L, Wang J-T, Choong Y-M. Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem. 2004;86(4):609–15.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.